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Bardet—Biedl syndrome (BBS) is a syndromic form of retinal degeneration. Recently, homozygosity mapping
with a consanguineous family with isolated retinitis pigmentosa identified a missense mutation in BBS3, a
known BBS gene. The mutation in BBS3 encodes a single amino acid change at position 89 from alanine
to valine. Since this amino acid is conserved in a wide range of vertebrates, we utilized the zebrafish
model system to functionally characterize the BBS3 A89V mutation. Knockdown of bbs3 in zebrafish alters
intracellular transport, a phenotype observed with knockdown of all BBS genes in the zebrafish, as well as
visual impairment. Here, we find that BBS3 A89V is sufficient to rescue the transport delays induced by
the loss of bbs3, indicating that this mutation does not affect the function of BBS3 as it relates to syndromic
disease. BBS3L A89V, however, was unable to rescue vision impairment, highlighting a role for a specific
amino acid within BBS3 that is necessary for visual function, but dispensable in other cell types. These
data aid in our understanding of why patients with the BBS3 A89V missense mutation only present with iso-
lated retinitis pigmentosa.

INTRODUCTION

Bardet—Biedl syndrome (BBS, OMIM 209900) is a geneti-
cally heterogeneous autosomal recessive disorder character-
ized by retinitis pigmentosa, obesity, polydactyly, renal
abnormalities, hypogenitalism and cognitive impairment
(1-4). Moreover, BBS is associated with an increased risk for
hypertension, diabetes and heart defects (1,2,5). BBS patients
present with early and progressive photoreceptor degeneration
and are blind by the third decade of life (2,6—13). To date, 12
BBS (BBS1—12) genes are reported to individually cause BBS
(14-27). Additionally, hypomorphic mutations in MKS/ and
CEP290 have been associated with BBS, representing
BBS13 and BBS14, respectively (28). The BBS genes belong
to multiple protein families and function cannot be defined
based on homology; however, recent advances in molecular

pathophysiology and animal models have helped to elucidate
why 14 different genes can lead to the same phenotype.
Work in mouse, zebrafish, Caenorhabditis elegans and Chla-
mydomonas has provided multiple lines of evidence support-
ing a role for BBS proteins in cilia function and
intraflagellar and/or intracellular transport (19,22,23,26,29—
36). Although progress has been made in understanding the
pathophysiology of BBS, there are major gaps in our under-
standing of the precise cellular function of the BBS proteins.

BBS3 (ARL6, ADP-ribosylation factor-like), a member of
the Ras family of small GTP-binding proteins, was initially
identified as a BBS gene through computational genomics
and high-density single nucleotide polymorphism (SNP) geno-
typing (21,22). Several mutations (G2X, T31M, T31R, P108L,
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R122X, G169A and L170W) leading to BBS have been
reported throughout BBS3 (21,22,37). Knockdown of bbs3
using an antisense oligonucleotide [Morpholino (MO)]
results in two cardinal features of BBS in the zebrafish:
reduced size of the ciliated Kupffer’s Vesicle and delays in
intracellular melanosome transport (35,38). These prototypical
phenotypes are preset with knockdown of all BBS genes in the
zebrafish (26,34,35,38). Recently, we identified a second
longer eye-specific transcript of BBS3, BBS3L, which is
required for retinal organization and function in both the
mouse and zebrafish (38). Knockdown of either both bbs3
transcripts or bbs3L alone leads to vision impairment in zebra-
fish. To determine the functional requirement of each tran-
script, RNA encoding either human BBS3 or BBS3L was
co-injected with the bbs3 aug MO, which targets both tran-
scripts. We determined that human BBS3 RNA is sufficient
to suppress the melanosome transport delays, but not the
vision defect. In contrast, BBS3L RNA was sufficient to
rescue the vision defect; however, it was unable to suppress
the cardinal phenotypes of BBS seen in the zebrafish, support-
ing a retina specific role for BBS3L (38).

BBS is rare in the general population; however, the study of
this disease can offer insight into normal retinal development
as well as provide an understanding of the pathophysiology
involved in non-syndromic forms of BBS. Homozygosity
mapping of a consanguineous Saudi Arabian family has ident-
ified a missense mutation (A89V) in BBS3 that leads to non-
syndromic retinitis pigmentosa (39,40). The identification of
specific mutations in the same gene that results in either syn-
dromic or non-syndromic retinitis pigmentosa will provide
insight into tissue-specific functional regions of BBS3 in the
retina. Moreover, understanding the functional domains of
proteins involved in vision aids in our understanding of not
only the disease state, but also normal vision development.

Here we report the functional characterization of the BBS3
missense mutation (A89V), which occurs in a highly con-
served region of BBS3. The function of the BBS3 A89V
mutation was evaluated by utilizing gene knockdown of
bbs3 coupled with RNA rescue in the zebrafish. We examined
the intracellular transport of melanosomes, a cardinal feature
of BBS gene knockdown in the zebrafish, and visual function
using a vision startle assay. The A89V mutation can suppress
the melanosome transport defects, but not the vision impair-
ment observed with the loss of bbs3. Thus, the missense
mutation identified in patients with non-syndromic retinal
degeneration has uncovered an amino acid in BBS3 that is
necessary for vision. The A89V mutation is able to function
in melanosome transport, demonstrating that the mutant
form of the protein retains the ability to function in tissues
typically affected by BBS.

RESULTS

BBS3 conservation and BBS3L mutant expression

Previous homozygosity mapping with a consanguineous
family from Saudi Arabia identified a novel missense mutation
(A89V) in BBS3 that results in non-syndromic retinitis pig-
mentosa (39,40). Comparison across vertebrate species with
available full-length BBS3 sequences demonstrates that the

A89V mutation occurs in an evolutionarily conserved region
of the protein, suggesting that the alanine at position 89 may
have an essential function within the protein (Fig. 1A). The
location of the mutation upstream of the C-terminus would
impact both BBS3 and BBS3L, as this region is identical
between the two isoforms (Fig. 1B). Additionally, the mis-
sense mutation is located downstream of the phosphate
binding loop (P-loop), which is important for binding tripho-
sphates of the GTP nucleotide (41). To test whether BBS3L
A89V is stably expressed, we performed western blot analysis
on embryos injected with either human myc-tagged BBS3L or
BBS3L A89V RNA. We found that similar to BBS3L, BBS3L
A89V was present through 5 days post-fertilization (dpf)
(Fig. 1C). Thus, the BBS3 A89V missense mutation is in an
evolutionally conserved region of the protein and would be
found in both BBS3 and BBS3L. Moreover, the mutation
does not impact BBSL expression, indicating that the mutation
does not inhibit protein expression.

BBS3 A89V functions in melanosome transport

Knockdown of bbs3 using a MO that targets both transcripts
(bbs3 aug MO) results in intracellular melanosome transport
delay, a phenotype related to syndromic disease and shared
among all BBS genes (26,34,35,38). In response to light or
hormonal stimuli, zebrafish alter their skin pigmentation
through intracellular melanosome transport within the melano-
phores (42-45). To test the rate of cellular trafficking,
6-day-old zebrafish embryos were dark adapted and treated
with epinephrine to induce retrograde melanosome transport
(Fig. 2A). Retrograde transport results in the movement of
the dispersed melanosomes to a perinuclear location
(Fig. 2B). Rescue experiments were performed by co-injecting
RNA encoding human BBS3 or BBS3 A89V with the bbs3 aug
MO. Wild-type embryos demonstrate rapid melanosome
aggregation, averaging 1.45 min, whereas knockdown of
bbs3 leads to a statistically significant delay in transport
[analysis of variance (ANOVA) with Tukey, P < 0.01]
(Fig. 2C and Table 1). We previously demonstrated that
human BBS3, but not human BBS3L, can suppress the mela-
nosome transport delays, thus we focused on BBS3 to investi-
gate the role of the A9V mutation in syndromic disease (38).
Similar to BBS3 RNA, co-injection of BBS3 489V RNA with
the bbs3 aug MO can restore transport times to wild-type
levels (Fig. 2C and Table 1). These results demonstrate that
the BBS3 A89V missense mutation can function to suppress
the cardinal BBS phenotype of intracellular melanosome
transport. This is consistent with the observation that the
human patients harboring the BBS3 A89V mutation do not
present with BBS-related phenotypes, such as obesity, poly-
dactyly, renal anomalies or cognitive impairment.

BBS3L A89V does not function in vision

Both the mouse and zebrafish model systems have demon-
strated that BBS3L is necessary for proper retinal function.
Additionally, rescue experiments in the zebrafish have
shown that human BBS3L is sufficient to suppress the bbs3
aug MO-induced vision defect (38). Since patients with the
BBS3 A89V mutation present with only retinitis pigmentosa,
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Figure 1. BBS3 conservation and protein expression. (A) Multi-species alignment of BBS3 demonstrating the conservation among vertebrates. Shaded box high-
lights the location of the A89V mutation. Asterisks (*) indicate identical amino acids, while colons (:) and periods (.) represent conserved amino acids.
(B) Schematic depicting the location of the A89V mutation in human BBS3 and BBS3L isoforms. Hatched box depicts the location of the P-loop motif and
the grey box on the C-terminus of BBS3L denotes the region of difference between the two isoforms. (C) Western blot analysis of staged zebrafish embryos
injected with either human BBS3L or BBS3L A89V myc-tagged RNA. Both proteins are present through 5 dpf. Actin served as a control.

we sought to functionally test the role of this mutation in
vision by co-injecting BBS3L and BBS3L A89V RNA in
bbs3 knockdown embryos. Visual function was evaluated by
using a natural escape response that is elicited when zebrafish
embryos are exposed to rapid changes in light intensity
(38,46). In the vision startle assay, an embryos response to
five short blocks in bright light are monitored and recorded.
Visually responsive embryos change swimming directions in
response to short blocks of bright light (Fig. 3A). Wild-type
embryos respond on average 3.77 times (Fig. 3B). Cone-rod
homeobox (crx) gene knockdown was used as a control for
vision impairment as crx is necessary for photoreceptor for-
mation in the zebrafish (47,48). crx knockdown embryos
respond an average of 2.39 times, indicative of vision impair-
ment (Fig. 3B) (ANOVA with Tukey, P < 0.01). bbs3 aug
MO-injected embryos show a statistically significant reduction
in the number of responses when compared with controls
(Fig. 3B) (ANOVA with Tukey, P < 0.01) (38). Co-injection

of BBS3L RNA with the bbs3 aug MO restored visual respon-
siveness back to wild-type levels, indicating that BBS3L RNA
was sufficient to rescue vision (Fig. 3B). Conversely, BBS3L
A89V RNA was not able to restore visual function back to
wild-type levels as embryos responded on average 1.60
times (Fig. 3B). Western blot analysis confirms expression
of BBS3L A89V through 5 dpf, when the vision assay is per-
formed (Fig. 1C). The inability of BBS3L A89V RNA to
restore vision provides strong functional support that this mis-
sense mutation leads to non-syndromic retinitis pigmentosa.

DISCUSSION

The present study utilizes the zebrafish to examine the func-
tion of BBS3 A89V in intracellular transport, a phenotype
associated with the knockdown of BBS genes, and vision.
This mutation was identified in a consanguineous Saudi
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Figure 2. BBS3 A89V functions in melanosome transport. (A) Schematic illustrating the retrograde movement of melanosomes within the melanocyte from the
periphery before epinephrine treatment to the perinuclear region after epinephrine treatment. (B) Dorsal view of a dark-adapted wild-type 6-day-old zebrafish
embryo. Boxed head region is magnified below the full embryo. The left-hand image shows melanocytes prior to epinephrine treatment, while the right-hand
panel depicts the same melanocytes at the endpoint of retrograde transport. (C) The graph summarizes the average epinephrine-induced response times in
minutes for each experimental group. Both human BBS3 and BBS3 A89V RNAs are able to suppress the transport time seen with knockdown of bbs3.
Sample size (n) is denoted on the X-axis. **P < 0.01, ANOVA with Tukey. Data presented as the mean + SEM.

Table 1. Melanosome transport (MT) times and vision assay responses

Treatment MT n Vision n
(min) (# responses)

wt 1.45° 65 3.77 64

bbs3 aug MO 2.42° 72 1.91° 75

bbs3 aug MO + 1.942° 36 1.00° 15

hBBS3 RNA

bbs3 aug MO + 1.63° 35 1.05° 42

hBBS3 A89V RNA

bbs3 aug MO + NA NA 3.46 26

hBBS3L RNA

bbs3 aug MO + NA NA 1.60° 25

hBBS3L A89V RNA

“ANOVA and Tukey test, P < 0.01 when compared with bbs3 aug MO.
PANOVA and Tukey test, P < 0.01 when compared with wt.

Arabian family that presented with only retinitis pigmentosa
(39,40). The polymorphism phenotyping program, PolyPhen,
predicts that the BBS3 A89V missense mutation is a benign
non-synonomous SNP; however, the alanine at position 89 is
highly conserved in vertebrates, suggesting that this amino
acid has an essential function. Using RNA rescue experiments,
we demonstrate that unlike BBS3L RNA, the BBS3L A89V
RNA does not rescue the vision defect observed with the
loss of bbs3. Although the A89V mutation is not functional
in vision, BBS3 489V RNA is able to suppress the cardinal
zebrafish BBS phenotype of melanosome transport. Taken
together, these data demonstrate that the BBS3 A89V
mutation identified in patients with non-syndromic retinal
degeneration is critical and specific for the vision defect.
This study highlights the importance of functionally evaluating
mutations that fall within different splice variants of a single gene
for disease or tissue-specific relevance. It is estimated that
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Figure 3. The BBS3L A89V mutation is not functional in vision. (A) Still images of a 5-day-old zebrafish embryo illustrating the characteristic escape response
elicited by a sudden change in light intensity. The white boxes below the stills indicate lights on, while the grey box indicates lights off. For visualization of the
embryo in the dark, image contrast manipulation was performed in Adobe Photoshop. (B) Graphical representation of the vision startle response data. crx gene
knockdown was used as a control for visual impairment. Human BBS3L can rescue the vision defect, whereas human BBS3L A89V is not able to rescue the vision

defect in bbs3 knockdown embryos. The sample size (n) is noted on the X-axis. **P < 0.01, ANOVA with Tukey. Data presented as the mean + SEM.

alternative splicing affects 94% of multi-exon human genes
(49,50). Multiple splice isoforms with potentially diverse func-
tions can be generated from a single gene, thus contributing to phe-
notypic complexity in disease. Recently, a retina specific splice
variant was identified for another BBS gene, BBSS (51). A splice-
site mutation was identified in BBSS that resulted in the skipping of
a retina specific exon (51). This mutation results in affected indi-
viduals presenting with non-syndromic retinitis pigmentosa,
similar to what was seen with patients harboring the BBS3
A89V missense mutation (51). While the BBS3 A89V mutation
does not fall within in a splice site, it is located such that it
impacts both the canonical BBS3 isoform as well as the eye-
specific BBS3L isoform. Thus, mutations targeting a gene with
multiple isoforms can have different affects on disease presen-
tation.

Our finding that the BBS3 A89V missense mutation is
specific for vision demonstrates that this region is important
for proper function of the protein in the eye. While no
known domains are predicated to map to this region of
BBS3, it is possible that the A89V mutation abrogates the
interaction of BBS3 with a retina specific modifier and/or

retina specific binding partner. Mutations in another BBS
gene, CEP290, also result in phenotypic variation. This gene
has been implicated in numerous diseases, in particular BBS
and isolated blindness (52). While this gene has been impli-
cated in several syndromic diseases, a mouse model for
Cep290, the rd16 mouse in which a few exons of the gene
are missing, only manifests early onset retinal degeneration
(53). Moreover, additional splice isoforms are predicted for
Cep290 and western blot analysis supports the notion that
there are retina specific isoforms (53). These observations
for BBS8, Cep290 and now BBS3 indicate that mutations
need to be evaluated in the context of both isoform and
tissue specificity. Moreover, this study highlights the impor-
tance of functionally testing human disease mutations to
further elucidate their underlying pathophysiology in disease.

MATERIALS AND METHODS
Ethics statement

The University Animal Care and Use Committee at the
University of lowa approved all animal work in this study.
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Animal care

Adult zebrafish were maintained under standard conditions
and embryos collected from natural spawnings (54).
Embryos were staged using previously described criteria (55).

Conservation

Using the Ensemble genome (release 59), orthologs to BBS3
were identified by performing BLAST algorithms with the
human BBS3 sequence (ENST00000335979). Sequences
were aligned using ClustalW (56).

Morpholino injections

Antisense MOs were air pressure injected into one- to
four-cell-staged embryos at a concentration of 12ng for
bbs3 and 1 ng for crx.

MO sequences:

bbs3_aug (35,38): 5'-AGCTTGTCAAAAAGCCCCATTT
GCT-3;

crx (48): 5-ATGTAGGACATCATTCTTGGGACGG-3'.

DNA constructs and RNA synthesis

The A89V mutation was generated by introducing the appro-
priate nucleotide change into C-terminally myc-tagged
human BBS3 or BBS3L constructs using the Quick Change
II site-directed mutagenesis kit (Stratagene).

Primers:

BBS3 A89V-F: 5-GGAACACTATTATAAAGAAGGCC
AAG-3;

BBS3 A89V-R: 5-CACTACTATCAATGACAAAAATA
ATAA-3.

RNA was synthesized using the mMessage mMachine tran-
scription kit (Ambion) and injected into 1-2 cell embryos at a
concentration of 8 pg.

Melanosome transport assay

The melanosome transport assay was performed as previously
described (26,34,35). Briefly, epinephrine (500 pl/ml, Sigma
E437) treatment was applied to dark-adapted 6-day-old zebra-
fish embryos. The movement of the melanosomes from the
periphery to the perinuclear region was timed and recorded.
A stereoscope equipped with a Zeiss Axiocam camera was
used to image live embryos.

Vision startle response

Zebrafish embryos change swimming directions in response to
rapid changes in light intensity. Prior to performing the vision
startle assay, 5 dpf embryos are light adapted for 1 h. Embryos
were exposed to five trials of rapid changes in light intensity
spaced at 30 s intervals and the response, a distinct C-bend,
scored (38,57). crx gene knockdown was used as a control
for vision impairment. To ensure motility, embryos were
probed with a blunt needle on their flank, invoking the same
response observed in the vision assay.

Statistical analysis

Statistics for both the melanosome transport and vision startle
assay were calculated using the one-way ANOVA paired with
the Tukey honestly significant difference test.

Western blot

Embryos were injected with C-terminal myc-tagged human
BBS3L (8pg) and BBS3L A89V (8pg) RNA at the 1-2 cell
stage. Embryos (n = 15) were collected at the following time
points: 72 hpf, 4 dpf and 5 dpf. Collected embryos were hom-
ogenized in lysis buffer [20 mm Tris; 100 mm NaCl; 1 mm
EDTA (ethylenediaminetetraacetic acid); 0.5% Triton X-100;
0.5% SDS (sodium dodecyl sulfate)] with protease inhibitor
[0.1 mm PMSF (phenylmethanesulfonyl fluoride, Roche);
10 pwg/ml Leupeptin (Roche)] and the supernatant collected.
Whole cell lysates were run and transferred using the X Cell
SureLock Mini-Cell System under reduced conditions (Invitro-
gen). Samples were mixed with NuPAGE LDS Sample Buffer
and NuPAGE Reducing Agent (Invitrogen), heated at 70°C for
10 min and run on a pre-cast 4—12% NuPAGE Novex Bis-Tris
gel (Invitrogen). Protein was transferred to a PVDF membrane
(polyvinylidene fluoride, Amersham). The membrane was
blocked in 5% milk (Carnation) for 1 h and probed with either
mouse monoclonal anti-Myc (1:2000, 9B11, Cell Signaling) or
rabbit polyclonal anti-actin (1:2000, Sigma) antibody overnight
at 4°. Horseradish peroxidase-conjugated species-specific sec-
ondary antibodies (1:10,000, Jackson ImmunoResearch) were
used for detection of primary antibodies.
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