Hair Follicular Expression and Function of Group X Secreted Phospholipase A₂ in Mouse Skin^{*S}

Received for publication, November 25, 2010, and in revised form, January 17, 2011 Published, JBC Papers in Press, January 25, 2011, DOI 10.1074/jbc.M110.206714

Kei Yamamoto,^a Yoshitaka Taketomi,^{a,b} Yuki Isogai,^{a,c} Yoshimi Miki,^{a,b} Hiroyasu Sato,^{a,b} Seiko Masuda,^{a,b} Yasumasa Nishito,^d Kiyokazu Morioka,^{e1} Yoshikazu Ishimoto,^f Noriko Suzuki,^f Yasunori Yokota,^f Kohji Hanasaki,^f Yukio Ishikawa,^g Toshiharu Ishii,^g Tetsuyuki Kobayashi,^c Kiyoko Fukami,^h Kazutaka Ikeda,^{ij} Hiroki Nakanishi,^{ij} Ryo Taguchi,^{ij} and Makoto Murakami^{a,k2}

From the ^aLipid Metabolism Project, ^dCore Technology and Research Center and the ^eElectron Microscope Laboratory, the Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, the ^bDepartment of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, the ^cDepartment of Biology, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, ^fShionogi Research Laboratories, Shionogi and Company Ltd, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, the ^gDepartment of Pathology, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ohta-ku, Tokyo 143-8540, the ^hLaboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, 192-0392 Tokyo, the ⁱDepartment of Metabolome, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, and ^jCREST and ^kPRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

Although perturbed lipid metabolism can often lead to skin abnormality, the role of phospholipase $\rm A_2$ (PLA_2) in skin homeostasis is poorly understood. In the present study we found that group X-secreted PLA₂ (sPLA₂-X) was expressed in the outermost epithelium of hair follicles in synchrony with the anagen phase of hair cycling. Transgenic mice over expressing sPLA₂-X (PLA2G10-Tg) displayed alopecia, which was accompanied by hair follicle distortion with reduced expression of genes related to hair development, during a postnatal hair cycle. Additionally, the epidermis and sebaceous glands of PLA2G10-Tg skin were hyperplasic. Proteolytic activation of sPLA₂-X in PLA2G10-Tg skin was accompanied by preferential hydrolysis of phosphatidylethanolamine species with polyunsaturated fatty acids as well as elevated production of some if not all eicosanoids. Importantly, the skin of *Pla2g10*-deficient mice had abnormal hair follicles with noticeable reduction in a subset of hair genes, a hypoplasic outer root sheath, a reduced number of melanin granules, and unexpected up-regulation of prostanoid synthesis. Collectively, our study highlights the spatiotemporal expression of sPLA₂-X in hair follicles, the presence of skin-specific machinery leading to sPLA₂-X activation, a functional link of sPLA₂-X with hair follicle homeostasis, and compartmentalization of the prostanoid pathway in hair follicles and epidermis.

Hair follicle morphogenesis is regulated by interactions between epidermal keratinocytes committed to hair follicle differentiation and dermal fibroblasts committed to form the dermal papilla of the developing hair follicles (1-3). These epithelialmesenchymal interactions culminate in the formation of the hair shaft, which is surrounded by the multilayered inner root sheath $(IRS)^3$ and outer root sheath (ORS), the latter being the outermost concentric layer of epithelial cells. Hair follicles undergo repeated cycles of growth (anagen), regression (catagen), and rest (telogen) during their life span. Distinct signaling pathways and transcription factors control hair follicle morphogenesis, postnatal hair growth, and hair cycling in a coordinated manner. Accordingly, disturbance in the expression or function of these genes by point mutations, transgenic (Tg) overexpression, or targeted disruption often culminates in a hairless phenotype. Because hair loss due to various factors, such as diseases, hormonal imbalance, and drug regimens, affects a large population worldwide, there are compelling reasons to understand the fundamentals of hair biology.

Current evidence suggests that, in addition to a variety of cytokines and growth factors (4, 5), lipids also play important roles in hair follicle homeostasis (6, 7). The PGE_2 receptors EP3 and EP4 are expressed in the dermal papilla and ORS of hair follicles (8, 9). COX-2 displays a trend of hair cycle-synchronized expression in the ORS of hair follicles (9), and skin-specific Tg overexpression of COX-2 leads to delayed emergence of hair shafts, reduced hair follicle density, and alopecia (10, 11). Elevated expression of EP4 and COX-2 has been found in biopsy samples from patients with scarring alopecia (12). These observations suggest that excess PGE_2 signaling is detrimental for hair homeostasis. Autosomal recessive wooly hair with

asbmb/

^{*} This work was supported by grants-in aid for Scientific Research (to M. M.) and for Young Investigators (to K. Y., Y. T., and H. S.) from the Ministry of Education, Science, Culture, Sports, and Technology of Japan, SHISEIDO Grants for Scientific Research (to K. Y.), PRESTO (to M. M.), and CREST (to R. T.) from the Japan Science and Technology Agency, and the Cosmetology Research, Nakatomi, Uehara Toray and Mitsubishi Science Foundations (to M. M.).

The on-line version of this article (available at http://www.jbc.org) contains supplemental Tables S1 and S2 and Figs. S1–S6.

¹ Present address: Dept. of Biological Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 152-8551, Japan.

² To whom correspondence should be addressed: Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan. Tel.: 81-3-5316-3228; Fax: 81-3-5316-3125; E-mail: murakami-mk@igakuken.or.jp.

³ The abbreviations used are: IRS, inner root sheath; ORS, outer root sheath; Tg, transgenic; PG, prostaglandin; LPA, lysophosphatidic acid; PLA₂, phospholipase A₂; sPLA₂, secreted PLA₂; sPLA₂-IIA, group IIA sPLA₂; sPLA₂-X, group X sPLA₂; PE, phosphatidylethanolamine; ESI, electrospray ionization; AA, arachidonic acid; PC, phosphatidylcholine; PUFA, polyunsaturated fatty acid; LOX, lipoxygenase; mPGES, microsomal PGE synthase; PPAR, peroxisome proliferator-activating receptor.

hypotrichosis, a type of nonsyndromic human alopecia, is caused by mutations of either *LIPH*, which encodes a phospholipase A_1 that produces lysophosphatidic acid (LPA) from phosphatidic acid, or *P2Y5*, which encodes the LPA₆ receptor (7), implying the importance of LPA signaling in hair growth. In addition, hair abnormalities have often been associated with mutations or altered expression of genes for lipid synthesis, degradation, signaling, or transport (13–16), further highlighting the close connection between lipid perturbation and hair disorders.

Because phospholipase A₂ (PLA₂) regulates the first step of enzymatic cascades, leading to biosynthesis of lipid mediators, and also plays an important role in membrane homeostasis, it is tempting to speculate that certain PLA₂ enzymes would participate in the regulation of hair development. PLA₂s have been classified into several groups, including secreted PLA₂s (sPLA₂s), Ca²⁺-dependent cytosolic PLA₂s, Ca²⁺-independent PLA₂s, platelet-activating factor acetylhydrolases, and lysosomal PLA₂s (17). Although recent studies employing mice with gene targeting of intracellular and extracellular PLA₂s have delineated their non-redundant functions in various biological events (17, 18), none of these knock-out mice have developed skin abnormalities. The notion that sPLA₂ may play a role in skin biology originally arose from studies employing Tg mice overexpressing group IIA sPLA₂ (sPLA₂-IIA), which develop permanent alopecia and epidermal hyperplasia (19). However, the fact that the mouse strain used so far (C57BL/6) intrinsically lacks sPLA2-IIA because of a frameshift mutation in its gene (20) has raised a question as to the physiological relevance of the hairless phenotype in PLA2G2A-Tg mice. Although mammalian genomes encode genes for 10 catalytically active sPLA₂ isoforms that exhibit unique tissue and cellular localizations and enzymatic properties (17, 18), it remains uncertain whether other sPLA₂ isoforms are expressed and play roles within a skin niche.

Group X sPLA₂ (sPLA₂-X) is the most active sPLA₂ isoform that can hydrolyze phospholipids in the mammalian cell membrane (21). sPLA₂-X is synthesized as an enzymatically inactive zymogen, and proteolytic cleavage of the N-terminal propeptide leads to its conversion into the active form (22). Recent studies using *Pla2g10*-deficient mice have revealed its roles in T_{H2}-biased asthma (23), ischemia/perfusion-induced myocardial injury (24), sperm fertility (25), adrenal corticosterone secretion (26), adiposity (27), and aortic aneurysm (28). In the present study, we found that Tg overexpression of sPLA₂-X in mice resulted in skin abnormalities characterized by alopecia, unusual hair cycling, and epidermal and sebaceous gland hyperplasia, accompanied by aberrant hydrolysis of phosphatidylethanolamine (PE) and increased synthesis of some eicosanoids. More importantly, endogenous sPLA₂-X was spatiotemporally expressed in the anagen hair follicles of mouse skin, and the skin of *Pla2g10*-deficient mice had abnormal hair follicles with reduced hair growth and hypoplasic ORS. Thus, our results highlight a novel role of sPLA₂-X in hair homeostasis within a highly restricted and specialized skin compartment, the hair follicle.

EXPERIMENTAL PROCEDURES

Animals—All procedures involving animals were approved by the Institutional Animal Care and Use Committees of the Tokyo Metropolitan Institute of Medical Science and of Showa University in accordance with the Standards Relating to the Care and Management of Experimental Animals in Japan. The strategy for the generation and maintenance of Tg mice overexpressing *PLA2G10* under the β -actin promoter was reported previously (29). All the *PLA2G10*-Tg mice were inbred with C57BL/6 mice. Mice lacking sPLA₂-X (*Pla2g10^{-/-}*) (24) and phospholipase C δ 1 (*Plcd1^{-/-}*) (30) were described previously.

RT-PCR—Synthesis of cDNAs was performed using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems). PCR reactions were carried out using GeneAmp Fast PCR system (Applied Biosystems) on the ABI9800 Fast Thermal Cycler (Applied Biosystems) with a primer pair that could amplify both mouse Pla2g10 and human PLA2G10 mRNAs (5'-GACGCCATTGACTGGTGCTGC-3' and 5'-AGTTCTTG-GCATTTGTTCTCTGC-3'). For quantitative RT-PCR, PCR reactions were carried out using Power SYBR Green PCR system (Applied Biosystems) or TaqMan Gene Expression System (Applied Biosystems) on the ABI7700 Real Time PCR system (Applied Biosystems). The relative abundance of transcripts was normalized with constitutive expression of 18 S ribosomal RNA or β -actin mRNA. The oligonucleotide primers and probes (Roche Applied Science) used for quantitative RT-PCR are listed in supplemental Table S1.

Measurement of PLA₂ Activity—Tissues were soaked in 10 volumes of 20 mM Tris-HCl (pH 7.4) and then homogenized with a Polytron homogenizer. The homogenates were centrifuged at 10,000 × g for 10 min. PLA₂ activities in the supernatant were assayed by measuring the amounts of radiolabeled linoleic acid released from the substrate 1-palmitoyl-2-[¹⁴C]linoleoyl-PE (PerkinElmer Life Sciences). The substrate in ethanol was dried under a stream of N₂ and dispersed in water by sonication. Each reaction mixture (total volume 250 µl) consisted of appropriate amounts of the required samples, 100 mM Tris-HCl (pH 7.4), 4 mM CaCl₂, and 1 µM substrate. After incubation for 30 min at 37 °C, [¹⁴C]linoleic acid was extracted, and the radioactivity was quantified with a liquid scintillation counter as described previously (31). Protein contents were determined by BCA protein assay (Pierce).

Immunoprecipitation and Western Blotting—Rabbit polyclonal and mouse monoclonal anti-human sPLA₂-X antibodies were gifted from Dr. Michael Gelb (University of Washington, Seattle, WA) and Dr. Shinji Hatakeyama (Novartis Pharma, Tsukuba, Japan), respectively. Immunoprecipitation and immunoblotting were performed using these antibodies as described previously (32). In brief, a monoclonal antibody for human sPLA₂-X (7E2F11) or control mouse IgG₁ (2 mg) was conjugated with 0.5 ml of formyl cellurofine (Seikagaku Kogyo). The beads (20 μ l) were incubated with 250 μ l of skin homogenates obtained from *PLA2G10*-Tg or control mice at 4 °C overnight. After centrifugation, the beads were washed 5 times with 1 ml of PBS and boiled for 5 min in 20 μ l of sodium SDS-PAGE sample buffer with β -mercaptoethanol. Then the resulting supernatants were applied to 12.5% SDS-PAGE gels, and sep-

arated proteins were transferred to nitrocellulose membranes. The membranes were subjected to immunoblotting with rabbit anti-human sPLA₂-X polyclonal antibody as described previously.

Histochemistry-Immunohistochemistry of mouse tissue sections was performed as described previously (33). In brief, skin samples were fixed with 100 mM phosphate buffer (pH 7.2) containing 4% paraformaldehyde and embedded in paraffin, sectioned, mounted on glass slides, deparaffinized in xylene, and rehydrated in ethanol with increasing concentrations of water. Hematoxylin and eosin staining was performed on $5-\mu m$ thick cryosections. For immunofluorescence, the tissue sections (5 μ m) were incubated with 1× Blockace (DS Pharma BioMedical) in PBS for 30 min, washed 3 times with PBS for 5 min each, and incubated with rabbit antibody to mouse loricrin, filaggrin, cytokeratin 1, or cytokeratin 5 (Covance) at 1:1000-2000 dilution in $10 \times$ dilution of Blockace overnight at 4 °C. Sections were then washed 3 times with PBS for 5 min each and incubated with Alexa Fluor 647-labeled goat anti-rabbit IgG antibody (Molecular Probes) diluted to 1:1000 at 20 °C for 1 h. Counterstaining was performed with 4,6-diamino-2-phenylindole (DAPI) (Vector). Stained sections were analyzed with a confocal laser scanning microscope (LSM510 META, Carl Zeiss).

Electrospray Ionization Mass Spectrometry (ESI-MS)-Tissues were soaked in 10 volumes of 20 mM Tris-HCl (pH 7.4) and then homogenized with a Polytron homogenizer. Lipids were extracted from the homogenates by the method of Bligh and Dyer (34). The analysis was performed using a 4000Q-TRAP quadrupole-linear ion trap hybrid mass spectrometer (Applied Biosystems/MDS Sciex) with an Ultimate 3000 HPLC system (DIONEX Company) combined with an HTC PAL autosampler (CTC Analytics). The extracted lipids were subjected to electrospray ionization mass spectrometry analysis by flow injection (typically 3 nmol of phosphorus equivalent in the positive ion mode and 0.6 nmol of phosphorus equivalent in the negative ion mode) without liquid chromatography separation. The mobile phase composition was acetonitrile/methanol/water (6:7:2, v/v/v) (plus 0.1% ammonium formate (pH 6.8)) at a flow-rate of 10 μ l/min. The scan range of the instrument was set at m/z 200–1000 at a scan speed of 1000 Da/s. The trap fill-time was set at 1 ms in the positive ion mode and at 20 ms in the negative ion mode. The ion spray voltage was set at 5500 V in the positive ion mode and at -4500 V in the negative ion mode. Nitrogen was used as curtain gas (setting of 10, arbitrary units) and as collision gas (set to "high"). The declustering potential was set at 100 V in the positive ion mode and at -100V in the negative ion mode. The collision energy in ESI-MS and ESI-MS/MS analyses were optimized according to the desired experiments. The method to detect the proper precursor ions and neutral losses derived from phospholipids in ESI-MS/MS analysis was described previously (35, 36).

For the assay of oxygenated lipids using LC-ESI-MS/MS analysis, tissues were soaked in ten volumes of methanol and then homogenized with a Polytron homogenizer. After overnight incubation at -20 °C, H₂O was added to the mixture to give a final methanol concentration of 10% (v/v). d_8 -Labeled arachidonic acid (AA) (Cayman Chemicals) was added as an

internal standard. The oxygenated lipids in the supernatant were extracted using Sep-Pak C18 cartridges (Waters). The LC-ESI-MS/MS analysis was performed using a 4000Q-TRAP quadrupole linear ion trap hybrid mass spectrometer (Applied Biosystems/MDS Sciex) with ACQUITY Ultra Performance LC[®] (Waters). The sample was applied to the ACQUITY UPLCTM BEH C18 column (1 × 150-mm inner diameter, 0.17- μ m particle) and then to ESI-MS/MS analysis. The samples injected by the autosampler (10 μ l) were directly introduced and separated by a step gradient with mobile phase A (water containing 0.1% (v/v) formic acid) and mobile phase B (acetonitrile:methanol = 4:1 v/v) at a flow rate of 50 μ l/min and a column temperature of 30 °C. The specific detection of individual lipids was performed by multiple reaction monitoring (37).

Measurement of PGE_2 —Tissues were soaked in 10 volumes of methanol and then homogenized with a Polytron homogenizer. After the homogenates were kept on -20 °C overnight, H₂O was added to the reaction mix (final concentration, 10% (v/v) methanol). The lipids were extracted by Sep-Pak C18 cartridges using [³H]AA (GE Healthcare) as a calibrator of the sample recovery. After the columns were equilibrated with H₂O and methanol, the methanol extracts were applied to Sep-Pac C18 columns. The columns were sequentially washed with H₂O and then with hexane followed by elution of the bound lipids with methyl formate. The contents of PGE₂ in skin were quantified with a PGE₂ enzyme immunoassay kit (Cayman Chemical).

Microarray Gene Profiling—Total RNAs were isolated from the skin of *PLA2G10*-Tg and control mice (n = 4) or *Pla2g10*^{+/+} and *Pla2g10*^{-/-} mice (n = 4) at P25 by use of TRIzol reagent (Invitrogen) and purified using an RNeasy mini kit (Qiagen). cRNA targets were synthesized and hybridized with Whole Mouse Genome Oligo Microarray according to the manufacturer's instructions (Agilent). The array slides were scanned with a Laser Scanner GenePix 4000B (Molecular Devices) using appropriate gains on the photomultiplier to obtain the highest intensity without saturation. Gene expression values were background corrected and normalized using the GenePix software (Molecular Devices).

Microdissection—Mouse skin samples (P8) were embedded in OCT compound, sectioned (10- μ m thick), mounted on a DIRECTOR LMD slide (AMR Inc.), fixed with cold ethanol/ acetic acid (19:1, v/v) for 5 min, and stained with toluidine blue. Laser-capture microdissection was performed on cryosections using Leica LMD6000 system (Leica). mRNA was extracted using RNeasy Micro Kit (Qiagen) from the isolated hair follicle or epidermis fraction. Quantitative RT-PCR reactions were carried out using TaqMan Gene Expression system as described above.

For lipid analyses, lipids were extracted from the hair follicle or epidermis fraction microdissected from replicate skin sections without fixation with ethanol/acetic acid solution. An aliquot of the extracted lipids was subjected to PGE_2 enzyme immunoassay or to ESI-MS for quantification of phospholipids. The contents of PGE_2 in the microdissected samples were normalized with those of phospholipids as described previously (38).

FIGURE 1. **Gross abnormality in the skin of PLA2G10-Tg mice**. *A*, shown is expression of sPLA₂-X in the skin of PLA2G10-Tg (X-Tg) and control (Ct) mice at P25, as assessed by RT-PCR. *B*, gross appearances of *X-Tg* and control littermates are shown. *X-Tg* mice were normal at birth (*P0*), and no gross abnormalities in coat hairs were apparent by P10. *X-Tg* mice began to lose coat hairs by P15 and were entirely bald over P20–P30. After this hairless period, new hairs reappeared in *PLA2G10-Tg* mice by P42. After 18 weeks, the fur of *X-Tg* mice looked matted, lusterless, coarse and ungroomed. *C*, a dorsal view of the head (whiskers) of control and *X-Tg* mice at P25 is shown. There were few whiskers on the Tg snout. *D*, shown is a dorsal view of the wrinkled skin of *X-Tg* mice at P20. *E*, PLA₂ enzymatic activity in homogenates of skin from control (*open columns*) and *X-Tg* (*solid columns*) mice at each postnatal point is shown. Data are the means ± S.D. (*n* = 4). *F*, detection of sPLA₂-X protein in skin homogenates by immunoblotting is shown. The homogenates from *X-Tg* and control mice at the indicated postnatal points were immunoprecipitated with mouse monoclonal anti-human sPLA₂-X antibody and immunoblotted with rabbit polyclonal anti-human sPLA₂-X antibody. Positions of mature, zymogen, and glycosylated forms of sPLA₂-X protein, as evaluated by comparison with a positive control (PC12 cells infected with adenovirus expressing sPLA₂-X (22)) (*C*), are indicated in the *right margin*.

Transmission Electron Microscopy—Mouse skin was fixed with 1% glutaraldehyde, 4% paraformaldehyde, and 0.1 \bowtie phosphate buffer (pH 7.4) at 4 °C overnight. After a brief wash with PBS, post-fixation with 2% OsO₄⁻ in PBS was carried out for 1 h followed by gradual dehydration with ethanol. The skin was embedded in Poly/Bed812 EPON (Polyscience). Thin serial sections (100-nm thick) were stained with uranyl acetate and lead acetate. Ultrastructures of the samples were examined at 80 kV with a JEM-1010 (Jeol Ltd.).

Statistics—Data were statistically evaluated by unpaired Student's *t* test at a significance level of p < 0.05.

RESULTS

Development of Alopecia in PLA2G10-Tg Mice—We previously established PLA2G10-Tg mice, in which the majority of overexpressed sPLA₂-X protein existed as an inactive zymogen in most tissues (29). RT-PCR of dorsal skin from control and Tg mice at postnatal day 25 (P25) revealed that mRNA for sPLA₂-X was endogenously expressed in control skin at a trace level (for details, see below), and it was markedly increased in Tg skin (Fig. 1A). Although PLA2G10-Tg mice appeared normal up to postnatal day 10 (Fig. 1B (P10)), complete loss of coat hairs was observed at 20–30 days (Fig. 1B (P20-P30)). Most Tg pups also had no or few whiskers (Fig. 1C), and their bald skin was wrinkled (Fig. 1, B (P20-P30) and D). After this hairless period, new pelage hairs appeared by P42 and were sustained for more than 1 year. After 18 weeks of age, however, the fur of PLA2G10-Tg mice appeared matted, lusterless, coarse, and ungroomed (Fig. 1B (18W)). Some older mice began to show thinning fur and small patchy areas of hair loss, particularly between the ears and on the back, where epidermal thickening was histologically obvious (data not shown). No apparent histological abnormality was found in various tissues of PLA2G10-Tg mice as they aged, including lung, liver, kidney, heart, small intestine, and colon (supplemental Fig. S1). Nevertheless, because the severe skin abnormalities in PLA2G10-Tg mice were particularly evident during P15-P30, in subsequent studies we focused on detailed phenotypic analyses of Tg mouse skin at this early stage.

The remarkable skin-specific phenotype of *PLA2G10*-Tg mice during the early period of life suggests that the proteolytic activation of sPLA₂-X should have temporally occurred in the skin. In fact, a PLA₂ enzymatic assay conducted using 1-palmitoyl-2-linoleoyl-PE as a substrate demonstrated that the activ-

ity in PLA2G10-Tg skin was increased 3- and 6-fold relative to that in control skin (reflecting the combined activities of various intrinsically present PLA₂ enzymes) at P0 and P10, respectively (Fig. 1E). After reaching a peak value around P10, the PLA₂ activity in Tg skin declined gradually to a level only <2-fold higher than that in control skin by 16 weeks. When skin homogenates were immunoprecipitated with mouse antihuman sPLA2-X monoclonal antibody followed by immunoblotting with rabbit anti-human sPLA₂-X polyclonal antibody, three major bands with molecular masses of 11, 14, and 20 kDa as well as broad 21~29-kDa bands were detected in PLA2G10-Tg skin, whereas they were undetectable in control skin (because mouse monoclonal anti-human sPLA2-X antibody failed to pull down endogenous mouse sPLA₂-X) (Fig. 1F). Overall, the expression of immunoreactive sPLA₂-X proteins in Tg skin was higher during P0-P10 than during P25-42 (Fig. 1F). As evaluated from the molecular sizes of authentic mature, zymogen and glycosylated forms of sPLA₂-X (sPLA₂-X overexpressed in PC12 cells (22); lane C in Fig. 1F), the 14-kDa species, whose intensity paralleled the PLA₂ activity (Fig. 1E), appeared to correspond to the mature sPLA₂-X. The smallest 11-kDa band might have been a cleaved fragment of sPLA₂-X, although its precise identity requires further clarification. Nevertheless, the data for PLA₂ activity (Fig. 1E) and immunoblotting (Fig. 1F) indicate that the mature (active) form of sPLA₂-X was produced during a period when skin abnormality became evident in the Tg mice (see below).

PLA2G10-Tg Mice Display Unusual Hair Cycling, Hair Distortion, and Epidermal Hyperplasia-In mice, initial development of hair follicles starts from E13 to E18 and extends to P14 (growing phase or anagen) (1-3). Hematoxylin/eosin-stained sections of the mid-dorsal skin of newborn (P0) PLA2G10-Tg mice appeared entirely normal (supplemental Fig. S2). At P5, when wild-type follicles were in anagen, all follicular cell types were present, and the follicles had penetrated into the adipose layer, whereas fewer follicles could be found in the deeper regions of subcutaneous fat tissue in Tg mice. At P10, almost all pelage hair follicles of control mice had entered the final stage of anagen morphogenesis, having acquired their maximal length with hair shafts that had broken through the epidermis. Notably, many hair follicles in the skin of age-matched Tg mice had already entered catagen (regression phase), when retracting epithelial hair shafts had separated from the dermal papilla, indicating precocious entry of the Tg hair follicles into the growth-resting transition stage of the first postnatal hair growth cycle. Thereafter, hair follicles in control mice were synchronized in catagen at P15, telogen (resting phase) at P20, and transition from telogen to the next (second) anagen at P25 (1-3), whereas the majority of hair follicles in PLA2G10-Tg mice were still in telogen at P25. Moreover, although hair follicles in control skin were entirely in anagen at P30-P42, follicles exhibiting the telogen feature still existed in Tg skin, suggesting delayed transition of the Tg follicles to the next anagen. Thus, the effects of Tg expression of sPLA₂-X culminate in abnormal hair cycling, with shortened anagen and prolonged catagen and telogen.

The dorsal skin of *PLA2G10*-Tg mice at P10-42, in which alopecia had developed (Fig. 1*B*), exhibited an abnormal hair

FIGURE 2. Hair follicle distortion, epidermal hyperplasia with hyperkeratosis, and sebaceous gland enlargement in the skin of PLA2G10-Tg mice. A, sections from control and PLA2G10-Tg (X-Tg) mice at P25 were stained with hematoxylin and eosin. In the Tg mice, the hair shafts appeared thin and distorted (arrow a); epidermal thickening (arrow b) and enlarged hair follicles (arrow c) were obvious; some follicles had degenerated into cyst-like structures filled with keratinized debris and surrounded by multilayered epithelium (arrow d); sebaceous glands displayed hyperplasia (arrow e). B and C, expression of genes associated with the differentiation of hair follicles and hair shafts (B) and of the interfollicular epidermis (C) in the skins of PLA2G10-Tg mice (solid columns) and control mice (open columns) at P25 was assessed by quantitative RT-PCR. Data are two representative results for each genotype (B) and means \pm S.D. (n = 4; *, p < 0.05; **, p < 0.01) (C). The expression levels of individual genes in control mice are regarded as 1, with the expression of ribosomal RNA (18 S) as a reference. D, confocal laser scanning microscopy of various epidermal differentiation markers in dorsal skins from control and X-Tg mice at P25 is shown. Individual markers were stained red with specific antibodies, and nuclei were stained green with DAPI. Loricrin was present in the cornified layers (arrows a and e), filaggrin in the cornified and granular layers (arrows b and f), keratin 1 in the granular and spinous layers (arrows c and g), and keratin 5 in a single basal layer (arrows d and h). In X-Tg mice, loricrin-, filaggrin-, keratin 1-, and keratin 5-positive signals were distributed in the cysts (arrowheads). Bars represent 20 μ m for all panels.

follicle and epidermal histology (Fig. 2*A* and supplemental Fig. S2). The most obvious changes were fragile hairs (Fig. 2*A*, *a*), epidermal thickening (Fig. 2*A*, *b*), and enlarged hair follicles (Fig. 2*A*, *c*), which were already apparent at P15 and manifested

at P25. Follicular enlargement appeared to result primarily from thickened ORS. At P25, some follicles had degenerated into cyst-like structures filled with keratinized debris and surrounded by multilayered epithelium (Fig. 2A, d). Both the squamous and suprabasal cellular layers, which appeared overall to be irregular and disorganized, contributed to the dramatic epidermal thickening. In PLA2G10-Tg mice, the uppermost layers of the epidermis displayed hyperkeratosis with a highly thickened stratum corneum, and hair shafts appeared thin, fragile, and often distorted. In addition, the sebaceous glands, an epidermal appendage budding from the upper ORS, of Tg mice displayed hyperplasia, which was characterized by the presence of numerous lobules consisting of sebocytes grouped around an enlarged sebaceous gland duct (Fig. 2A, e). In contrast, dermal infiltration of inflammatory cells and epidermal erosions, which are commonly observed in patients with inflammatory skin diseases such as psoriasis and atopic dermatitis, were scarcely evident in *PLA2G10*-Tg mice.

The histochemical data presented above indicate that overexpression of sPLA2-X in vivo leads to abnormal hair differentiation with perturbed hair cycling in the skin niche. To gain further molecular insight into these changes, we carried out quantitative RT-PCR with skin from PLA2G10-Tg mice and littermate controls at P25 (Fig. 2, B and C). In line with the hairless phenotype of PLA2G10-Tg mice, quantitative RT-PCR revealed markedly reduced expression of a subset of genes related to hair follicle differentiation and hair shaft formation, such as Shh (Sonic Hedgehog) and Bmp4 (bone morphogenetic protein 4), which regulate the proliferation and differentiation of matrix cells in the dermal papilla, and Msx2, Lef1, Foxn1, and Gata3, which are transcription factors required for proper differentiation of the hair shaft or IRS (1-3) (Fig. 2B). Quantitative RT-PCR analyses also showed marked increases ($> \sim 10$ -fold) in several mRNAs that could account for accelerated terminal differentiation of epidermal keratinocytes (Fig. 2C). These included mRNA for S100a9 (S100 family protein A; S100A), Flg1 (filaggrin 1), and Krt1 (keratin 1), which are enriched in the well differentiated stratum corneum and granulosum layers (2, 39). A moderate increase in Krt14 (keratin 14), a basal layer keratin (2, 39), was also notable, whereas the expression of Tgm1 (transglutaminase 1) and Tgm2, which are expressed in the stratum spinosum and basale (2, 39), did not differ appreciably between *PLA2G10*-Tg and control mice (Fig. 2C).

To verify whether the changes in these epidermal genes would be histologically relevant, we stained skin sections with antibodies for epidermal differentiation markers (2, 39). As expected, loricrin was present in the cornified layer (Fig. 2*D*, *a*), filaggrin in the cornified and granular layers (Fig. 2*D*, *b*), keratin 1 in the granular and spinous layers (Fig. 2*D*, *c*), and keratin 5 in a single basal layer (Fig. 2*D*, *d*) in the skin of control mice. Consistent with the quantitative RT-PCR analyses, increases in loricrin (Fig. 2*D*, *e*)-, filaggrin (Fig. 2*D*, *f*)-, keratin 1 (Fig. 2*D*, *g*)-, and keratin 5 (Fig. 2*D*, *h*)-positive cells were obvious in the epidermis of *PLA2G10*-Tg mice. Staining of keratin 5 extended focally to the upper epidermal layers as well as to the thickened hair follicular epidermal layers, and thickening of the loricrin-, filaggrin- and even keratin 1-positive signals in the stratum corneum was evident (Fig. 2*D*, *e*-*g*). Moreover, positive signals for these differentiation markers were also distributed in the cysts; loricrin and filaggrin were located in the innermost cell layers as well as in the keratinized debris within the cysts, and staining of keratin 1 and keratin 5 was positive in multiple layers of cells surrounding the cysts (Fig. 2*D*, *arrowhead*). These results indicate that the cysts resulted from abnormal and mis-directional (inward) differentiation of epidermal keratinocytes in *PLA2G10*-Tg skin.

Hair and epidermal abnormalities are often associated with dysregulated balance of proteases and protease inhibitors (40-48). Indeed, quantitative RT-PCR showed that the expression levels of Klk6 (kallikrein 6), Klk7 (kallikrein 7), and Ctsl (cathepsin L), but not Klk8 (kallikrein 8), Mstp1 (matriptase/MT-SP1), and furin (a subtilisin family protease), were increased significantly in PLA2G10-Tg skin relative to control skin (supplemental Fig. S3A). Considering that the amino acid sequence of the N-terminal cleavage site in sPLA₂-X is similar to that cleaved by kallikreins or cathepsins (49), these inducible proteases identified thus far might contribute to the proteolytic activation of sPLA₂-X in Tg skin. It was also noted that expression of the cysteine protease inhibitor Cst6 (cystatin M/E) and the serine protease inhibitor Spink5/Lekt1, abnormalities of which are associated with ichthyosis (46, 47), was increased 22.8- and 2.6fold, respectively, in PLA2G10-Tg skin relative to control skin (supplemental Fig. S3B). These changes also reflect the hair and epidermal abnormalities in Tg mice.

Lipid Analysis of PLA2G10-Tg Skin-To identify the in vivo hydrolytic action of sPLA₂-X on phospholipids, we next carried out ESI-MS/MS analysis of phospholipids using skin from PLA2G10-Tg mice and littermate controls at P25. Precursor ion scanning of choline-containing phospholipid molecular species revealed that the skin from control mice contained PC species mainly with C16:0-C16:0 (32:0), C16:0-C18:1 (34:1), and C18:0-C18:2 (36:2) (Fig. 3A, right panel) and trace levels of lysophosphatidylcholine species with C16:0 and C18:0 (Fig. 3A, *left panel*). Although sPLA₂-X is the most potent sPLA₂ isoform capable of acting on PC-rich membranes (21), none of these PC and lysophosphatidylcholine molecules was changed appreciably in PLA2G10-Tg mice in comparison with control mice. In contrast, neutral loss scanning of ethanolamine-containing phospholipid molecular species demonstrated that, of the major PE species (C18:0-C18:2 (36:2), C18:0-C20:4 (38:4), C18: 1-C20:5 (38:6), and C18:0-C22:6 (40:6)), those with C18:0-C20:4 (38:4), C18:1-C20:5 (38:6), and C18:0-C22:6 (40:6) were reduced by \sim 50% in the skin of *PLA2G10*-Tg mice relative to that of controls (Fig. 3B, right panel). The marked reduction of these PE species was accompanied by a concomitant increase in C18:0 and C18:1 lysophosphatidylethanolamine species (Fig. 3B, left panel). The compositions of phosphatidylserine and phosphatidylinositol did not differ between the genotypes (supplemental Fig. S4). Thus, sPLA₂-X overexpressed in mouse skin preferentially hydrolyzed PE with polyunsaturated fatty acid (PUFA), including AA (C20:4), eicosapentaenoic acid (C20:5), and docosahexaenoic acid (C22:6).

We next performed LC-ESI-MS/MS analysis that was optimized for semiquantitative detection of various PUFAs and their oxygenated products (37). Consistent with the changes in PUFA-containing PE species, levels of free AA, eicosapen-

FIGURE 3. **Hydrolysis of skin phospholipids in PLA2G10-Tg skin.** Lipids were extracted from the skin of PLA2G10-Tg (X-Tg; lower panels) and control (upper panels) mice at P25 and subjected to ESI-MS (see "Experimental Procedures"). Precursor ion scanning of lysophosphatidylcholine (*m*/*z*: 400 –710; left panel) and PC (*m*/*z*: 670 – 880; right panel) (A) and neutral loss scanning of lysophosphatidylethanolamine (*m*/*z*: 450 – 650; left panel) and PE (*m*/*z*: 700 – 810; right panel) (B) molecular species were performed. Peaks for major molecular species, sphingomyelin (d18:1–16:0) (*SM*), and the internal standard (*i.s.*: C14:0-C14:0 PE) are indicated. Representative results of four independent experiments are shown. *Asterisks* indicate the peaks that were markedly altered in *X-Tg* mice compared with control mice.

taenoic acid, and docosahexaenoic acid were nearly doubled in Tg mice relative to control mice (Fig. 4A). Of the AA metabolites detected so far, the levels of PGE_2 and PGI_2 (6-keto- $PGF_{1\alpha}$ as a stable end-product) were increased substantially, those of PGD_2 and 12- and 15-HETEs were unchanged, and those of 5- and 8-HETEs were decreased in the skin of *PLA2G10*-Tg mice relative to the controls (Fig. 4B). The increased amount of PGE_2 in *PLA2G10*-Tg skin relative to control skin was confirmed by PGE_2 enzyme immunoassay (Fig. 4*C*), thus validating the LC-ESI-MS/MS approach.

Because the profile of eicosanoids can be determined not only by the supply of free AA by PLA_2s but also by the actions of downstream biosynthetic enzymes, we examined whether or not the expression of COXs, lipoxygenases (LOXs), and terminal synthases would be altered in *PLA2G10*-Tg skin. Quantitative RT-PCR showed 2~3-fold increases in the expression levels of COX-1 (Ptgs1) and microsomal PGE synthase-1 (mPGES-1) (Ptges) in PLA2G10-Tg skin compared with control skin, whereas the expression levels of COX-2 (Ptgs2) and two other PGE synthases (Ptges2 and Ptges3) were unchanged (Fig. 4D), suggesting that the increased PGE_2 production in *PLA2G10*-Tg skin (Fig. 4, *B* and *C*) may be derived mainly from the COX-1/mPGES-1 pathway. The expression levels of epidermal LOXs, including epidermal 12-LOX (Alox12e) and 12R-LOX (Alox12b), abnormalities of which have been shown to be associated with epidermal disorders (50, 51), were higher in PLA2G10-Tg skin than in control skin (Fig. 4*E*), consistent with the epidermal hyperplasia in Tg mice. Expression of 5-LOX (Alox5), an LOX isozyme responsible for leukotriene synthesis, was low, in agreement with the poor leukocyte infiltration (see above) and low 5-HETE production (Fig. 4B) in Tg skin.

FIGURE 4. Altered lipid mediator profiles in the skin of *PLA2G10-Tg* mice. Lipids were extracted from skins of *PLA2G10-Tg* (solid columns) and control (open columns) mice at P25 and subjected to LC-ESI-MS/MS (see "Experimental Procedures"). A and B, signal intensities for AA, eicosapentaenoic acid (*EPA*), docosa-hexaenoic acid (*DHA*; A), and AA metabolites (B) were counted and normalized with an internal control (d_8 -labeled AA). TXB₂, thromboxane B₂; *LXA*₄, lipoxin A₄. C, PGE₂ in the skin was quantified by enzyme immunoassay. Data are the mean \pm S.E. (n = 4). D, expression of the genes related to PGE₂ synthesis in the skins of *PLA2G10-Tg* mice (solid columns) and control mice (open columns) at P25 are shown. *E*, expression of genes related to the lipoxygenase pathways in the skin of *PLA2G10-Tg* mice (solid columns) and control mice (open columns) at P25 is shown. Data are the means \pm S.D. (n = 4). In *D* and *E*, the expression levels of individual genes were normalized with the expression of ribosomal RNA (18 S).

Gene Expression Microarray Profiling of PLA2G10-Tg Skin-Microarray gene profiling of skin from PLA2G10-Tg mice in comparison with that from control mice yielded further supportive data for explaining the overall tendency of Tg skin to show hair follicle distortion and epidermal hyperplasia associated with hyperkeratosis in the absence of inflammation (Fig. 5 and supplemental Table S2). In agreement with the histologic and quantitative RT-PCR data (Fig. 2), microarray analysis showed markedly increased expression of genes that are enriched in the well differentiated stratum corneum and granulosum layers (e.g. S100a9, Lor, Sprr, Flg1, Krt1, and Krt10), moderate increases of basal keratins (e.g. Krt5 and Krt14), and minimal changes in the expression of genes associated with the stratum spinosum and basale (e.g. Tgm, Dsg, and Lama5) in PLA2G10-Tg mice (Fig. 5), thus accounting for the accelerated terminal differentiation of epidermal keratinocytes. Furthermore, in line with the hairless phenotype, the expression of genes involved in differentiation of hair follicles and hair shafts (e.g. Shh, Bmp4, Msx2, Lef1, Foxn1, HoxC13, and Gata3) as well as those for various hair keratins and hair keratin-associated proteins was dramatically decreased in PLA2G10-Tg skin relative to control skin (Fig. 5). In addition, the expression of a subset of genes for transcription factors that have been implicated in hair germ cell fate at the bulge (e.g. Ctnnb1, Tcf3, and *Lhx2*) was substantially lower in *PLA2G10*-Tg skin than in control skin. Finally, in agreement with the histological absence of inflammatory cells in the skin of PLA2G10-Tg mice (see above), neither microarray gene profiling (supplemental Table S2) nor quantitative RT-PCR (data not shown) revealed significant

expression of proinflammatory cytokines, such as *Il1b, Il4, Il6, Il12a, Il12b, Ifng*, and *Tnf* (4, 5), in *PLA2G10*-Tg skin. Expression of a limited group of cytokines and chemokines reported to participate in skin biology, such as *Il18, Ccl19, Ccl21, Ccl27, Cxcl14*, and *Cxcl16* (4, 5), showed substantial changes in *PLA2G10*-Tg skin relative to control skin (supplemental Table S2).

Endogenous sPLA₂-X Is Spatiotemporally Expressed in Hair Follicles—On the basis of the aforementioned results, we speculated that endogenous sPLA2-X would be expressed somewhere in mouse skin, whose homeostasis is hampered by overexpression of this enzyme. However, expression of endogenous *Pla2g10* mRNA in whole mouse skin was only at a trace level (Fig. 1A), and we did not observe apparent abnormality in the gross appearance of coat hairs in $Pla2g10^{-/-}$ mice (data not shown). To determine any detectable changes in the skin of $Pla2g10^{-/-}$ mice, we attempted to compare overall gene expression in $Pla2g10^{-/-}$ skin with that in $Pla2g10^{+/+}$ skin by microarray gene profiling. We found that the expression levels of a panel of genes for hair keratins and hair keratin-associated proteins in the hair shaft were decreased 2~3-fold in $Pla2g10^{-/-}$ skin compared with $Pla2g10^{+/+}$ skin (Fig. 5). Expression of genes encoding several transcription factors for hair-associated genes, such as Foxn1, Hoxc13, Lef1, and Msx2, was also consistently lower in Pla2g10^{-/-} skin than in $Pla2g10^{+/+}$ skin. In contrast, expression of genes for the dermal papilla, hair germ, and epidermis as well as those related to inflammation (cytokines and chemokines) was mostly unaltered in $Pla2g10^{-/-}$ skin (Fig. 5 and supplemental Table S2).

Listmution Variation of the interval o		Distrikution			Signal intensities			Signal intensities		
Epidemia Stocal Nu. 000114 Sp. 5047 Sp. 200 107 85 0.75 epidemia epidemia (m) Nu. 000412 107 0.83 0.11 0.11 0.05 0.01 0.02 107 0.05 0.01 0.02 10.01 0.01		Distribution		Accession No	Ct	Tg	Tg/Ct	WT	ко	KO/WT
Epidemis Image: bit with with with with with with with wi			S100a9	NM 009114	59	5947	100.80	107	85	0.79
Epidemia Terminal differentiation of epidemia keratinocytes Im M. 0.09412 170 380 182			Lor	NM_008508	32866	53029	1.61	38691	44315	1.15
Epidemia imagen (CC077741) 627 4693 100 1137 1323 1324 Epidemia (K11) MM 00660 31463 53660 77 2723 43643 100 1137 1323 1243 Stratum spinosum and basis (K10) MM 00273 1128 1141 0.80 697 618 122 123 134 1247 1249 1247 1249 1247 1249 1247 1249 1247 1247 1249 1247 1247 1247 1247 1247 1249 1247 124		Terminal differentiation of	Ivl	NM 008412	170	390	2.29	162	151	0.93
Epidemis Kriti MM.008473 1560 17116 0030 1106 1273 128 Stratum spinosum and basab Tomin MM.02831 128 131 2278 2484 135 Stratum spinosum and basab Tomin MM.01894 142 228 131 2278 248 131 Bagia ACC02244 188 782 280 131 2278 248 131 2278 248 131 2278 248 131 2278 248 131 2278 248 131 2278 248 131 2278 248 131 2278 248 131 2278 248 131 2278 248 131 2278 248 131 2278 248 131 238 442 131 236 442 131 336 424 131 336 424 131 336 424 131 336 424 436 436 436 436		epidermal keratinocytes	Filaggrin	LOC675741	657	4693	7.14	1416	1142	0.81
Epidemis Kri10 MM.010660 31483 53808 171 27230 43804 122 Stratum spinosum and basis Kri14 MM.016983 14820 22767 1888 8944 6376 100 Stratum spinosum and basis MM.002373 1285 1141 0.89 697 618 128 1141 0.89 697 618 128 1141 0.89 697 618 128 1141 0.89 697 618 128 1161 0.89 618 128 128 1141 0.89 618 128 128 1161 0.89 618 128 128 118 128 118 128 118			Krt1	NM_008473	1650	17019	10.32	1105	1373	1.24
Epidemis Kd5 MM.027011 40016 52235 131 2279 126 2279 186 Stratum spinosum and basis Tirli MJ.00278 1121 720 0.64 697 618 0.94 Dag15 MJ.00278 121 720 1734 1017 101 1017 101 1017 101 1017 101 1017 101			Krt10	NM_010660	31463	53869	1.71	27230	34936	1.28
Hair follicle Krift NML 016958 14820 27570 188 886 9376 10.93 Stratum spinosum and basis Tign 1 NML 016968 113 720 0.86 667 663 123 Dirit I NML 016968 113 720 0.86 667 663 123 Dirit I NML 016976 123 124	Epidermis	Stratum spinosum and basale	Krt5	NM_027011	40018	52235	1.31	22791	27064	1.19
Hair folicle Lamata XM. 203766 1121 T/20 0.66 657 0.16 0.17 Tgm1 NM. 009373 1285 1141 0.86 677 683 124 Dig1a AK.028224 161 128 124 616 643 124 144 144 144 144 144 144 144 144 144 144 144 144 143 143 143 143 143 144 144 143 144 144 143 144 144 143 144 144 144 144 144 144 144 144 144 145 145 144 145 145 144 145 144 144 145 144			Krt14	NM_016958	14820	27570	1.86	8940	9376	1.05
Hair follicle Stratum spinosum and basele Tagma? Tagma? MM. 009373 Tagma? MM. 009332 B84 608 070 083 4207 010 MM. 009373 Tagma? MM. 009333 Tagma? MM. 009333 Tagma? MM. 009373 Tagma?			Lama5	XM_203796	1121	720	0.64	657	618	0.94
Hair follicle Tanna MM. 000373 1285 1141 0.88 0.87 643 644 6			Tgm1	NM_019984	752	880	1.17	547	407	0.74
Hair follicle Use of the second			Tgm2	NM_009373	1285	1141	0.89	667	863	1.29
Bair folice Diag2 BC:034056 158 143 0.051 1073 192 0.85 Stem cells Chmist MM 0007614 2707 2121 0.66 1835 464 0.85 1734 1524 0.86 1886 2457 133 1524 0.86 1886 2457 133 1524 0.86 1886 2457 133 1524 0.86 1886 2457 133 1424 0.86 1186 0.86 1186 0.86 1186 0.86 1186 0.86 1176 1176 1176 1176 1176 1176 1176 1176 1176 1178 1188 <td< td=""><td></td><td>Dsg1a</td><td>AK029294</td><td>618</td><td>788</td><td>1.28</td><td>516</td><td>541</td><td>1.05</td></td<>			Dsg1a	AK029294	618	788	1.28	516	541	1.05
Stem cells Chinol MM.00714 2707 2121 0.78 1734 1524 0.88 Hair follicle Inde MM.00710 3533 3634 0.00 108 2734 1524 108 Hair follicle Iffed MM.00716 111 86 0.076 3835 402 101 MMC V320266 6454 3804 0.04 2738 2896 0.05 Sim<			Dsg2	BC034056	158	143	0.91	107	91	0.85
Stem cells Image: http://image: http://image.org/abs/abs/abs/abs/abs/abs/abs/abs/abs/abs		Stem cells	Ctnnb1	NM_007614	2707	2121	0.78	1734	1524	0.88
Stem cells Tri3 NM. 00332 864 608 0.70 355 402 113 Hair follicle differentiation hair hair shaft differentiation Shin NM. 00380 171 880 0.64 173 840 0.64 173 840 0.64 174 100 Hair follicle differentiation Shin NM. 003801 176 227 0.84 479 283 0.62 174 100 100 0.84 147 100 100 100 0.82 147 100 100 0.82 147 100 100 100 0.82 147 100 100 100 100 0.82 147 100			Lhx2	NM_010710	3431	2212	0.65	1880	2457	1.31
Hair folicic differentiation and hair shaft differentiatin and hair sh			Tcf3	NM_009332	864	608	0.70	385	402	1.04
Hair follicle Hinf X02780 5454 3904 0.64 2736 2680 0.85 Hair follicle differentiation Shh MM.003754 316 191 0.60 194 171 180 Hair shaft differentiation Mix2 MM.003001 768 227 0.38 477 328 0.67 Hair shaft differentiation Mix2 MM.010703 1084 0.62 1478 1328 0.62 Hort 1 MM.010703 1084 0.63 477 380 0.62 477 380 0.62 477 380 0.64 0.66 0.76 0.76 0.83 582 0.68 0.76 0.76 0.83 582 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.77 0.86 522 4.2 0.76 0.77 0.76 0.80 7.77 0.86 52 1.76 0.77 0.76 0.77 0.76 0.77 0.77 0.86 7.76 <			Tcf4	NM_013685	718	849	1.18	564	637	1.13
Hair follice differentiation and hair shaft differentiation Smpi A MM.00758 10 171 171 88 0.052 174 101 088 000 12976 1398 0.052 1479 1523 100 000 12976 1398 0.052 1479 1523 100 000 12976 1398 0.052 1479 1523 100 000 12976 1398 0.052 1479 1523 100 000 1297 0138 0479 1293 000 1197 170 0.08 000 1297 0138 0479 1293 000 1197 0100 1470 000 000 1297 0139 000 1297 0100 1470 000 000 1297 0100 1470 000 000 1297 010 1470 000 000 000 000 000 000 000 000 000			Mki67	X82786	5454	3504	0.64	2758	2698	0.98
Hair follicle differentiation hair shaft differentiation Heim M. 000554 Gata J. M. 008091 Fox1 M. 008031 Fox1 M. 008031 Fox1 M. 008033 Fox J. 279 0.36 0.22 1478 Fox1 M. 010233 Fox J. 279 0.36 0.22 1478 Fox1 M. 010233 Fox J. 279 0.36 0.22 1478 Fox J. 280 0.05 0.22 121 0.47 0.26 0.26 0.05 Fox J. 277 123 103 121 0.47 0.77 0.86 121 0.17 0.05 Fox J. 277 121 0.47 0.05 Fox J. 277 0.14 121 0.47 121 0.47 0.14 121 0.07 0.05 Fox J. 118 0.07 0.07 0.08 121 0.33 141 0.07 0.08 121 0.33 0.41 127 0.44 121 0.44 121 0.44 121 0.41 121 0.41 121 </td <td></td> <td>Shh</td> <td>NM_009170</td> <td>171</td> <td>88</td> <td>0.52</td> <td>73</td> <td>74</td> <td>1.01</td>			Shh	NM_009170	171	88	0.52	73	74	1.01
Hair follicle differentiation and hair shaft differentiation <u>Max</u> MM.03001 2676 1396 L473 1233 103 Max2 MM.013001 1064 305 0.29 4773 1283 103 Horiz MM.013001 1064 305 0.29 477 339 0.71 Foxn1 MM.002470 113 2217 047 44 399 326 252 100 Horiz MM.00447 161 2727 807 399 326 298 298 1398 1325 1224 100 110 516 106 118 542 100 118 516 217 118 516 217 118 516			Bmp4	NM_007554	316	191	0.60	194	171	0.88
Hair bale: built offerentiation Model: built offerentiation		Hair folligle differentiation and	Gata3	NM_008091	2676	1396	0.52	1478	1523	1.03
Hair Shan Qineremation Left NM. 010703 1064 305 0.28 477 339 0.71 Foxn1 NM. 00283 152 7.2 0.47 9.49 9.47 3.90 0.73 Hox13 NM. 002476 151 7.27 0.47 9.89 250 1.00 Krite NM. 004476 617 923 1.80 1.21 9.40 0.39 3.26 0.88 Krite NM. 010663 22175 26433 1.15 1.225 1.826 1.24 4.0 0.70 597 0.77 0.89 52 4.2 0.61 0.77 0.93 52 4.2 0.61 0.77 0.77 0.89 6.22 1.15 0.11 0.18 648 0.21 3.53 1.16 0.44 0.24 1.66 0.21 3.53 1.16 0.44 0.41 1.76 0.43 1.16 0.44 0.41 7.76 0.40 7.1 0.42 1.16 0.44 <		hair chaft differentiation	Msx2	NM_013601	768	279	0.36	479	288	0.60
Hair follicle Form1 NM.008238 fis2 T2 Qi X 94 64 04 00 Hox 13 NM.010464 78 30 0.38 55 369 32 0.58 Krt6b NM.000870 553 3487 389 250 250 120 Krt6b NM.010669 f51 272 3180 121 94 0.73 Krt75 NM.010659 1247 73 0.98 52 42 0.01 Krt73 NM.010059 1440 444 0.24 1570 659 0.42 Krt31 NM.0100586 1924 406 77 0.44 Krt33 NM.01168 223 3553 1442 041 Krt35 NM.0100586 1924 406 77 0.44 Krt35 NM.01010586 124 406 77 0.44 Krt35 NM.010686 1298 408 117 142 142 044 K		nair snan unterentiation	Lef1	NM_010703	1064	305	0.29	477	339	0.71
Hair follicle Hox:13 NM. 010464 78 30 38 54 32 0.58 Kritä NM. 010669 151 923 150 386 326 0.18 Kritä NM. 010669 151 923 150 396 326 0.18 Kritä NM. 010669 151 227 180 121 94 0.76 Kritä NM. 010669 1217 264.33 0.31 7001 8576 0.76 Kritä NM. 01069 1840 444 0.24 0.83 1757 659 0.33 7001 8576 0.76 Kritä NM. 027693 2890 541 0.18 4249 1677 0.44 5568 142 0.41 5568 142 0.41 5568 142 0.41 5568 142 0.41 5568 142 0.41 5568 142 0.41 5568 142 0.41 151 1424 0.42 0.47			Foxn1	NM_008238	152	72	0.47	94	64	0.68
Hair follicle Krité NM. 008470 953 3447 950 250 250 150 Heir follicle Kritbb NM. 001696 151 272 180 121 194 0.75 Kritb NM. 010696 151 272 180 121 194 0.75 Kritb NM. 010696 141 79 77 0.98 522 42 0.81 Kritb NM. 103675 14477 76538 0.39 177 167 0.42 177 659 0.42 178 659 0.42 177 644 333 0.44 167 0.44 167 0.44 167 0.44 167 0.44 167 0.44 167 0.44 167 0.44 178 1.42 0.44 167 0.44 178 1.42 0.44 1.15 0.44 1.15 0.44 1.15 0.44 1.15 0.44 1.15 0.44 1.15 0.44 1.16 <			Hoxc13	NM_010464	78	30	0.39	54	32	0.59
Hair follicle Krtba NM. 008476 617 923 150 389 328 0.88 Krtbb NM. 010963 1217 24.03 1.15 13256 13294 1.07 Krt17 NM. 010963 22175 26433 1.15 13256 13294 1.07 Krt31 NM. 002695 1840 444 0.24 1.075 669 0.24 Krt33 NM. 027695 1840 444 0.24 1.075 668 2161 0.23 Krt33 NM. 027695 2980 541 0.18 4249 1677 0.40 Krt34 NM. 027695 2980 541 0.18 4249 0.41 158 442 0.41 125 442 0.41 125 443 0.41 125 443 0.41 135 148 4249 115 148 256 141 0.41 123 0.22 135 144 0.41 123 149 123 144			Krt16	NM_008470	353	3487	9.88	250	250	1.00
Hair follicle Kritb NM. 010669 151 272 180 121 94 0.73 Hair follicle Kritg NM. 008471 79 77 0.88 52 42 0.01 Kritg NM. 00857 1447 79 77 0.88 52 42 0.01 Kritg NM. 00859 1840 444 0.24 1579 6583 0.03 0.24 1579 6583 0.03 0.24 1579 6583 0.03 0.24 1579 6593 0.43 1579 6583 0.04 1573 6583 0.04 1573 6583 0.04 1588 2161 0.03 124 160 0.01 6585 0.03 171 0.04 156 0.03 1169 547 0.04 176 6184 0.03 125 0.04 1776 6139 0.03 155 0.03 1767 614 116 544 0.04 1728 10.04 0.03 <			Krt6a	NM_008476	617	923	1.50	369	326	0.88
Hair follicle Kit17 NM. 010663 22175 2543 0.16 13226 13224 1.00 Kit75 NM. 133357 114477 5538 0.39 7901 5976 0.76 Kit75 NM. 133357 114477 5538 0.39 7901 5976 0.76 Kit33 NM. 027693 6322 1159 0.18 7864 3032 116 1267 117 0.16 5868 2110 0.33 116 1267 116 547 116 547 116 547 116 547 116 547 116 547 116 547 116 547 116 547 116 547 116 547 116 547 116 547 116 547 116 547 116 547 116 547 116 547 104 116 553 547 104 116 553 558 1169 517 156 1169 55			Krt6b	NM_010669	151	272	1.80	121	94	0.78
Hair follicle Kn19 NM 008471 79 77 0.08 52 42 0.08 H K131 NM 010559 1840 444 0.24 1579 6533 0.30 42 K133 NM 027058 3322 1159 0.18 5864 2161 70 44 K133 NM 102759 4817 679 0.14 5868 2161 70 44 K133 NM 102759 4817 679 0.14 5868 2161 70 44 K133 NM 100665 1224 406 0.21 2539 1126 64 K163 NM 010665 1386 515 0.37 1166 547 647 K163 NM 010667 3208 60 0.32 1178 1034 0.02 1178 1034 0.02 1180 0.178 0.03 1180 0.03 1180 0.			Krt17	NM_010663	22175	25433	1.15	13256	13294	1.00
Hair follicle Kn75 NM, 133357 11477 5638 0.39 7901 5976 0.76 Hair keratin Kn33a NM, 027983 63322 1159 0.18 7894 3033 0.10 7794 0.14 5868 210 0.33 Kn33a XM, 027963 2960 641 0.18 4249 1067 108 5868 210 0.33 217 118 0.49 117 10.45 0.46 108 4249 10767 6333 1169 547 0.41 117 10.45 117 11.55 10.46 1148 0.41 11.55			Krt19	NM_008471	79	77	0.98	52	42	0.81
Hair follicle Kratin NM_010659 1840 444 0.24 1579 659 0.42 Hair keratin Kri33 NM_027693 6232 1159 0.14 5868 2161 0.33 Kri33 NM_027653 2260 541 0.14 5868 2161 0.33 Kri36 NM_0100867 2308 684 0.21 2358 1442 0.44 Kri36 NM_0100867 2308 684 0.21 2358 1442 0.44 Kri36 NM_010867 2308 684 0.21 0.358 142 0.44 Kri37 NM_010867 2308 684 0.21 0.358 142 0.44 Kri38 NM_010864 173 29 0.40 171 35 0.46 Kri82 NM_010864 97 37 0.38 85 36 0.42 Kri81 NM_010864 97 37 0.38 14843 8411 0.55			Krt75	NM_133357	14477	5638	0.39	7901	5976	0.76
Hair keratin Kri33a NM_027963 6322 118 7684 3303 0.42 Kri33b XM_126759 4417 679 0.18 7684 3303 0.42 Kri34 NM_027693 2960 541 0.18 4249 1677 0.40 Kri36 XM_0100866 1924 406 0.21 2539 1125 0.43 Kri32 NM_0106866 1924 406 0.21 3558 1442 0.44 Kri32 NM_010686 1939 515 0.37 1169 547 0.44 Kri32 NM_010686 12708 775 0.30 1728 1034 0.65 Kri81 NM_0106879 1275 775 0.38 11252 0.43 11690 0.56 Kri81 NM_010686 16214 6925 0.43 1463 841 10.23 1169 0.56 1169 0.51 1169 0.56 1169 0.59 155 0.56 </td <td>Krt31</td> <td>NM_010659</td> <td>1840</td> <td>444</td> <td>0.24</td> <td>1579</td> <td>659</td> <td>0.42</td>			Krt31	NM_010659	1840	444	0.24	1579	659	0.42
Hair keratin Kri33b XM 126759 4817 679 0.14 5868 2161 0.33 Hair keratin Kri36 XM 0618928 403 132 0.33 217 118 0.49 Kri36 NM 01003668 1924 406 0.21 2639 1125 0.43 Kri86 NM 0100867 320.8 684 0.21 2639 1125 0.44 Kri86 NM 0100867 320.8 684 0.21 2539 1442 0.44 Kri85 NM 010667 320.8 684 0.21 2539 1.45 0.44 Kri85 NM 016879 1215 775 0.38 179 74 0.44 Kri85 NM 010861 2157 775 0.38 1228 1039 0.65 Kri86 NM 010661 244 2819 1.15 1842 1629 0.85 Kri16 NM 00649 173 308 85 36 0.44 K			Krt33a	NM_027983	6322	1159	0.18	7864	3303	0.42
Hair keratin Kri36 XM NM 027653 2960 541 0.18 4249 1677 0.46 Kri36 XM 001003668 1924 406 0.21 3558 1442 0.41 Kri83 NM 010665 1398 515 0.31 1169 547 0.42 Kri35 NM<010667			Krt33b	XM_126759	4817	679	0.14	5868	2161	0.37
Hair keratin			Krt34	NM_027563	2960	541	0.18	4249	1677	0.40
Hair keratin Kr83 NM_00100368 1924 406 0.21 3253 1142 0.44 Kr86 NM_0010667 1398 515 0.37 1169 547 0.44 Kr32 NM_001687 1398 515 0.37 1169 547 0.44 Kr32 NM_001687 1398 515 0.31 1179 74 0.41 Kr32 NM_008474 73 29 0.40 71 35 0.48 Kr13 NM_010862 2454 2819 1.15 1842 1029 0.88 Kr13 NM_010662 2454 2819 1.15 1846 1860 0.56 Kr13 NM_010666 1973 7150 0.38 85 36 0.44 Kr171 NM_010666 1974 0.41 1169 0.31 21528 11960 0.56 Kr171 NM_003469 17359 14552 0.44 1139 69 050 <t< td=""><td></td><td rowspan="13">Hair keratin</td><td>Krt36</td><td>XM_618928</td><td>403</td><td>132</td><td>0.33</td><td>217</td><td>118</td><td>0.54</td></t<>		Hair keratin	Krt36	XM_618928	403	132	0.33	217	118	0.54
Hair keratin Kria2 NM 0106667 3208 684 0.21 3558 1442 0.44 Kri32 NM 0108667 1398 515 0.37 1198 547 0.47 Kri32 NM 016880 27089 7930 0.29 10767 6393 0.56 Kri82 NM 016867 2157 775 0.36 1723 1034 0.60 Kri84 NM 0108679 2157 775 0.36 1723 1034 0.60 Kri14 NM 010664 97 37 0.38 85 38 0.42 Kri14 NM 010664 97 37 0.38 85 38 0.44 Kri17 NM 010664 97 37 0.38 85 36 0.43 Kri17 NM 010664 97 37 0.38 85 0.33 0.41 10.51 1.64 0.83 0.41 10.51 1.64 0.83 0.50 57 0.50 2.77			Krt83	NM_001003668	1924	406	0.21	2639	1125	0.43
Hair follicle Kr33 NM 010885 1398 515 0.34 1199 547 0.04 Kr33 NM 016805 12089 7930 0.29 10767 6330 0.55 Kr182 NM 008474 73 29 0.40 71 35 0.44 Kr184 NM 008679 2157 775 0.36 1728 1034 0.60 Kr113 NM 010662 2454 2819 1.15 11642 1629 0.40 Kr114 NM 010666 97 37 0.38 25298 16989 0.55 Kr127 NM 010666 16214 6925 0.43 14463 8411 0.55 Kr14 NM 002669 17389 1.55 0.26 1079 1.51 Kr14 NM 002661 1214 6925 0.41 11120 16799 1.51 Kr14 NM 002661 1234 0.22 10.91 91 90 0.44 11120 16799	Hair follicle		Krt86	NM_010667	3208	684	0.21	3558	1442	0.41
Hair follicle 			Krt32	NM_010665	1398	515	0.37	1169	547	0.47
Hair follicle 			Krt35	NM_016880	27089	7930	0.29	10/6/	6393	0.59
Hair follicle 			K/182	NM_053249	192	65	0.34	1/9	/4	0.41
Hair follicle Krtds NM 010879 2157 1728 1024 0.00 Krt13 NM 010662 2454 2819 1.15 1842 1629 0.88 Krt13 NM 010664 97 37 0.38 85 36 0.42 Krt12 NM 013656 39149 15050 0.38 29298 169899 0.58 Krt27 NM 010666 16214 6925 0.43 11443 8411 0.56 Krt27 NM 010666 16214 6925 0.43 114463 8411 0.56 Krt3 NM 010666 16214 6927 0.33 0.41 139 69 0.55 Krt3 NM<025524			Krt84	NM_008474	73	29	0.40	/1	35	0.49
Hair follicle Important follogic 2434 2619 1.13 1642 10529 0.50 Krt13 NM 010662 2434 2619 1.13 1642 1059 0.56 Krt13 NM 010664 97 0.38 855 36 0.42 Krt17 NM 019666 16214 6925 0.43 14443 1860 0.56 Krt25 NM 010666 16214 6925 0.43 11443 1860 0.56 Krt18 NM 03170 108 42 0.39 59 35 0.55 Krt15 NM 00869 17359 14552 0.44 11120 16799 1.57 Krtap2-4 BY717224 80 0.26 500 287 0.75 Krtap3-3 NM 025613 582 134 0.23 710 327 0.46 Krtap5-1 NM 015008 2118 439 0.22 4593 1481 0.33 Krtap5-3 NM025613 582 134 0.23 <t< td=""><td>Krt85</td><td>NM_016879</td><td>2157</td><td>775</td><td>0.36</td><td>1/28</td><td>1034</td><td>0.60</td></t<>			Krt85	NM_016879	2157	775	0.36	1/28	1034	0.60
Kirlib Nill 010804 97 37 0.38 2028 16869 0.55 Kirl2 NM 133730 35952 11169 0.31 21528 11960 0.55 Kirl2 NM 010666 16214 6925 0.43 14463 8411 0.58 Kirl3 NM 0010469 17359 14552 0.84 11120 16799 1.55 Kirla NM 0010469 17359 14552 0.84 11120 16799 1.55 Kirlap3-1 XM 894811 1231 237 0.19 1919 807 0.42 Krtap3-1 XM 894811 1231 237 0.19 1919 807 0.42 Krtap3-1 XM 894811 1231 237 0.19 1919 807 0.42 Krtap3-1 XM 894811 1231 237 0.19 1919 807 0.42 Krtap5-1 NM 025612 157 35 0.22 275 1.91 Krtap5-1 NM 01670 1107 30 0.32 320 1.12 0.33			KIT13	NM_010662	2454	2819	1.15	1842	1629	0.88
Kitr1 Nitr 1			Killo Kit71	NM 010056	20140	15050	0.30	20209	16090	0.42
K123 NM 133730 13932 11103 12132 11800 0.30 K123 NM 130700 10866 1629 0.43 14463 8411 0.53 Krt8 NM 03170 108 42 0.39 59 35 0.55 Krt15 NM 00866 17359 14552 0.43 11120 16799 1.51 Krtap24 BY717254 80 33 0.41 139 69 0.50 Krtap3-1 XM.894811 1231 237 0.19 1919 807 0.42 Krtap3-1 NM.025524 157 35 0.22 275 1.13 0.41 Krtap5-1 NM.025524 157 0.32 320 112 0.33 Krtap5-2 NM.0276744 231 73 0.32 320 112 0.33 Krtap5-2 NM.027644 231 73 0.02 418 0.23 120 0.33 Krtap5-2 NM.010707 141 0.17 235 82 0.33			Kit/ 1	NM 122720	39149	11160	0.30	29290	11060	0.50
Kit2/ NM 010000 16214 0523 0143 14433 0411 0.33 Kit8 NM 0301700 102 1452 0.84 11120 16799 155 Krt15 NM 008469 17359 14552 0.84 11120 16799 155 Krtap2-4 BY717254 80 33 0.41 139 69 0.50 Krtap3-1 XM 894811 1231 237 0.19 1919 807 0.42 Krtap3-3 NM 025720 304 80 0.26 500 287 0.57 Krtap3-3 NM 025524 157 35 0.22 275 113 0.41 Krtap5-1 NM 015808 2118 439 0.21 3884 1266 0.33 Krtap5-2 NM 016809 2755 599 0.22 4593 1416 0.33 Krtap6-3 D8901 3319 423 0.13 6158 2166 0.33 Krtap6-3 NM 010672 1900 143 0.08 4110 0.32 <td< td=""><td>Kit25</td><td>NM 010666</td><td>16014</td><td>6025</td><td>0.31</td><td>21020</td><td>0411</td><td>0.50</td></td<>			Kit25	NM 010666	16014	6025	0.31	21020	0411	0.50
Kitto NM 003/H5 17359 1452 0.00 1330 0.03 Krtap24 BV717254 80 33 0.41 139 69 0.50 Krtap24 BV717254 80 33 0.41 139 69 0.50 Krtap32 NM 025720 304 80 0.26 500 287 0.57 Krtap32 NM 025524 157 35 0.22 275 113 0.41 Krtap5-1 NM 025624 157 35 0.22 275 113 0.41 Krtap5-1 NM 015608 2118 439 0.21 3884 1266 0.33 Krtap5-1 NM<010672			Krt8	NM_031170	10214	42	0.43	59	35	0.50
Kriap 24 BY717254 17333 17432 3.041 11120 101795 1.01 Krtap24 BY717254 1033 1231 237 0.19 1919 807 0.42 Krtap3-1 XM 894811 1231 237 0.19 1919 807 0.42 Krtap3-3 NM 025524 157 35 0.22 275 113 0.41 Krtap5-1 NM 025524 157 0.52 2275 113 0.41 Krtap5-2 NM 029613 582 134 0.23 710 327 0.46 Krtap5-2 NM 0297844 231 73 0.32 320 112 0.33 Krtap5-2 NM 015809 2759 599 0.22 4593 1481 0.32 Krtap6-1 NM 015807 2190 143 0.08 4160 1428 0.33 Krtap6-2 NM 010676 1194 325 0.22 24593 1420 666 0.44 Krtap6-1 NM 01571 316 116 0.37 576 299			Krt15	NM 008460	17350	14552	0.84	11120	16799	1.51
Krap2-1 XM 904811 123 237 0.19 109 69 0.00 Krtap3-1 XM 804811 123 237 0.19 1919 807 0.42 Krtap3-2 NM 025720 304 80 0.26 500 287 0.57 Krtap3-3 NM 025524 157 35 0.22 275 113 0.41 Krtap4-7 NM 026513 582 134 0.23 710 327 0.46 Krtap5-1 NM 015808 2118 439 0.21 3884 1266 0.33 Krtap5-2 NM 015808 2118 439 0.21 3884 1266 0.33 Krtap5-4 NM 016809 2755 599 0.22 4593 1481 0.33 Krtap6-1 NM 010672 1900 143 0.08 4160 1428 0.33 Krtap6-1 NM 010673 104 18 0.17 235 82 0.35 Krtap6-1 NM 015741 316 116 0.37 576 299 0.52			Krtan2_4	BY717254	80	32	0.44	120	10100	0.50
Krap5.1 AM.037011 1201 201 1013 1013 001 0014 Krap3.2 NM.025720 304 80 0.26 500 227 0.51 Krap3.3 NM.025524 157 35 0.22 275 113 0.41 Krap4.7 NM.029613 582 134 0.23 710 327 0.46 Krap5.1 NM.015808 2118 439 0.21 3884 1266 0.33 Krap5.2 NM.015808 2718 439 0.22 4593 1481 0.32 Krtap5.4 NM.015809 2759 599 0.22 4593 1481 0.32 Krtap6.1 NM.010672 1900 143 0.08 4160 1428 0.34 Krtap6.3 D89901 3319 423 0.13 6158 2136 0.35 Krtap6.4 NM 010672 1190 101 140 530 0.38 Krtap6.1 NK10377 55 42 0.08 576 299 0.52 Krtap16.			Krtan3_1	XM 894811	1231	237	0.41	1010	807	0.30
Krtap5-2 100 207 00 207 0.07 Krtap5-3 NM 020522 157 35 0.22 275 113 0.41 Krtap5-3 NM 020513 582 134 0.23 710 327 0.48 Krtap5-1 NM 015808 2118 439 0.21 3884 1266 0.33 Krtap5-2 NM 0127844 231 73 0.32 320 112 0.35 Krtap5-2 NM 0107809 2759 599 0.22 4593 1481 0.32 Krtap6-1 NM 010673 1000 143 0.08 4160 1428 0.34 Krtap6-2 NM 010673 104 18 0.17 235 82 0.35 Krtap6-3 D89901 3319 423 0.13 6158 2136 0.35 Krtap6-1 NM 010676 1194 325 0.27 1420 666 0.44 Krtap11-1 NM 183189 442 192 0.43 606 241 0.44 Krtap15 NM 0			Krtan3-2	NM 025720	304	237	0.19	500	287	0.42
Krap-5-1 101 0.52 0.12 21/3 113 0.14 Krap-5-1 NM 0.20613 562 134 0.23 710 327 0.44 Krap5-1 NM 015808 2118 439 0.21 3884 1266 0.33 Krap5-2 NM 0027844 231 73 0.32 320 112 0.35 Krap5-4 NM 016509 2759 599 0.22 4593 1410 0.33 Krap6-1 NM 010673 100 143 0.08 4160 1428 0.33 Krap6-3 D89901 3319 423 0.13 6158 2136 0.33 Krap8-1 AK133727 1191 201 0.17 1400 530 0.38 Krap8-1 NM 015741 316 116 0.37 576 299 0.52 Krap14 NM 013713 50 16 0.32 89 32 0.33 Krap14 NM 013707 555 42 <			Krtan3-3	NM 025524	157	35	0.20	275	113	0.01
Krap 5-1 NM 0.15606 2118 439 0.21 3884 1266 0.33 Krtap 5-1 NM 0.168008 2118 439 0.21 3884 1266 0.33 Krtap 5-2 NM 027844 231 73 0.32 320 112 0.35 Krtap 5-1 NM 016809 2759 599 0.22 4593 1481 0.32 Krtap 5-1 NM 01672 1900 143 0.08 4160 1428 0.34 Krtap 6-1 NM 010673 104 18 0.17 235 82 0.36 Krtap 6-3 D89901 3319 423 0.13 6158 2136 0.38 Krtap 6-1 NM 010676 1194 325 0.27 1420 666 0.47 Krtap 1-1 NM 010576 1194 0.32 576 29 0.52 Krtap 1-1 NM 010670 117 29 0.25 204 50 0.25 Krtap 1-1 NM			Krtan4_7	NM 029613	582	134	0.22	710	327	0.46
Krap5-1 MM_010000 2110 +303 0.41 3004 1200 0.03 Krap5-2 NM_027844 231 73 0.32 320 112 0.33 Krap5-2 NM_010672 1900 143 0.08 4160 1428 0.34 Krap6-1 NM_010672 1900 143 0.018 4160 1428 0.34 Krap6-2 NM_010673 1004 18 0.17 235 82 0.35 Krap6-3 D89901 3319 423 0.13 6158 2136 0.35 Krap8-1 AK133727 1191 201 0.17 1400 530 0.38 Krap14 NM_010676 1194 325 0.22 204 50 0.22 Krap131-1 NM_183189 442 192 0.43 606 241 0.44 Krap15-1 NM_013713 50 16 0.33 89 32 0.33 Krap16-4 NM_130870 255 19 0.08 803 250 0.33			Krtap5-1	NM 015808	2118	430	0.23	3884	1266	0.40
Ktap5-2 IM 021047 201 13 002 350 112 0.33 Ktap5-4 IM 015809 2759 599 0.22 4593 1481 0.33 Ktap6-1 IM 010672 1900 143 0.08 4160 1428 0.34 Ktap6-2 IM 010673 104 18 0.17 235 82 0.35 Ktap6-3 D8901 3319 423 0.13 6158 2136 0.35 Ktap6-3 D8901 3319 423 0.17 1400 530 0.38 Ktap8-1 AK133727 1191 201 0.17 1400 530 0.38 Ktap8-1 NM 015741 316 116 0.37 576 299 0.52 Ktap12-1 NM 015741 316 116 0.37 576 299 0.52 Ktap14 NM 013713 50 16 0.32 89 32 0.38 Ktap16-1 NM 103070 255 1			Krtap5-2	NM 027844	2110	73	0.21	320	112	0.35
Ktap 6-1 NM<010672			Krtap5-4	NM 015809	2750	599	0.02	4593	1481	0.33
Ktap 6-2 NM 010073 1000 173 000 1410 1428 0.05 Ktap 6-2 NM 010673 104 18 0.17 235 82 0.33 Ktap 6-3 D89901 3319 423 0.13 6158 2136 0.38 Ktap 8-1 AK133727 1191 201 0.17 1400 530 0.38 Ktap 8-2 NM 010676 1194 325 0.27 1420 666 0.47 Ktap 8-2 NM 010676 1194 325 0.27 1420 666 0.47 Ktap 1-1 NM 015741 316 116 0.37 576 299 0.52 Ktap 1-2.1 NM 010676 1177 29 0.25 204 50 0.25 Ktap 1-2.1 NM 010707 555 42 0.08 751 216 0.29 Ktap 16-1 NM 130870 225 19 0.08 803 250 0.33 Ktap 16-1 NM 130877 287 26 0.09 639 225 0.35			Krtan6-1	NM 010672	1900	143	0.08	4160	1428	0.34
Krap6-3 D8901 3319 423 0.13 6158 2136 0.33 Krap6-1 AK133727 1191 201 0.17 1400 530 0.38 Krap8-1 AK133727 1191 201 0.17 1400 530 0.38 Krap8-1 NM<010676			Krtan6-2	NM 010673	104	18	0.00	235	82	0.35
Keratin associated protein Ktap8-1 AK13727 1191 201 0.17 1400 530 0.33 Ktap8-1 AK13727 1194 225 0.27 1420 666 0.47 Ktap8-1 AK13727 1194 325 0.27 1420 666 0.47 Ktap8-1 NM 010676 1194 325 0.27 1420 666 0.47 Ktap12-1 NM 010670 117 29 0.25 204 50 0.25 Ktap12-1 NM 010670 117 29 0.43 606 241 0.40 Ktap13-1 NM 103707 555 42 0.08 751 216 0.25 Ktap16-1 NM 130707 555 42 0.08 751 216 0.25 Ktap16-1 NM 130870 255 19 0.08 803 250 0.31 Ktap16-5 NM 130873 276 18 0.07 763 197 0.26			Krtap6-3	D89901	3319	423	0.13	6158	2136	0.35
Keratin associated protein Interpert Interper			Krtan8-1	AK133727	1191	201	0.17	1400	530	0.38
Krtap9-1 NM 015741 316 116 0.37 576 299 0.52 Krtap12-1 NM 0105741 316 116 0.37 576 299 0.52 Krtap12-1 NM 010670 117 29 0.25 204 50 0.25 Krtap13-1 NM 183189 442 192 0.43 606 241 0.40 Krtap14 NM 013707 555 42 0.08 751 216 0.25 Krtap16 NM 013707 555 42 0.08 803 250 0.31 Krtap16-1 NM 130870 255 19 0.08 803 250 0.33 Krtap16-4 NM 130873 276 18 0.07 763 197 0.26 Krtap16-5 NM 130875 237 287 26 0.09 639 225 0.33 Krtap16-8 NM 130875 636 74 0.12 1248 424 0.34 Krtap16		Keratin associated protein	Krtap8-2	NM 010676	1194	325	0.27	1420	666	0.47
Krtap12-1 NM 010670 117 29 0.25 204 50 0.25 Krtap13-1 NM 183189 442 192 0.43 606 241 0.40 Krtap14 NM 013707 555 42 0.08 751 216 0.25 Krtap15 NM 013707 555 42 0.08 751 216 0.25 Krtap15 NM 013713 50 16 0.32 89 32 0.36 Krtap16-1 NM 130870 255 19 0.08 803 250 0.31 Krtap16-5 NM 130877 287 26 0.09 639 225 0.35 Krtap16-6 NM 130857 287 26 0.09 639 225 0.35 Krtap16-7 NM 130876 1742 53 0.03 3771 1084 0.25 Krtap16-8 NM 130876 1742 53 0.03 3771 1084 0.25 Krtap16-10 NM 183296 3375 104 0.03 6041 1727 0.25			Krtap9-1	NM 015741	316	116	0.37	576	299	0.52
Krtap13-1 NM.183188 442 192 0.43 606 241 0.43 Krtap14 NM.013707 555 42 0.08 751 216 0.22 Krtap15 NM.013713 50 16 0.32 89 32 0.36 Krtap16-1 NM.130870 255 19 0.08 803 225 0.31 Krtap16-4 NM.130870 255 19 0.08 803 225 0.36 Krtap16-5 NM.130870 287 26 0.09 639 225 0.35 Krtap16-6 NM.130875 636 74 0.12 1248 424 0.34 Krtap16-7 NM.130876 1742 53 0.03 3771 1084 0.22 Krtap16-9 NM.130876 1742 53 0.03 3771 1084 0.22 Krtap16-10 NM.130296 3375 104 0.03 6041 1727 0.28 S2.0 :>1.5 :<0.75			Krtap12-1	NM 010670	117	29	0.25	204	50	0.25
Krtap14 NM 013707 555 42 0.08 751 216 0.29 Krtap15 NM 013707 555 42 0.08 751 216 0.29 Krtap16 NM 013707 555 42 0.08 751 216 0.29 Krtap16 NM 013713 50 16 0.32 89 32 0.36 Krtap16.4 NM 130870 225 19 0.08 803 250 0.31 Krtap16.4 NM 130873 276 18 0.07 763 197 0.26 Krtap16.5 NM 130875 287 26 0.09 639 225 0.35 Krtap16.6 NM 130875 636 74 0.12 1248 424 0.34 Krtap16.9 NM 130876 1742 53 0.03 3771 1084 0.28 Krtap16-10 NM 130876 1742 53 0.03 6041 1727 0.29 Xrtap16-10 NM 183296 3375 104 0.03 6041 1727 0.29			Krtap13-1	NM 183189	442	192	0.43	606	241	0.40
Krtap15 NM 013713 50 16 0.32 89 32 0.36 Krtap16-1 NM 130870 255 19 0.08 803 250 0.31 Krtap16-1 NM 130870 255 19 0.08 803 250 0.31 Krtap16-4 NM 130873 276 18 0.07 763 197 0.26 Krtap16-5 NM 130857 287 26 0.09 639 225 0.35 Krtap16-5 NM 130857 636 74 0.12 1248 424 0.34 Krtap16-8 NM 130876 1742 53 0.03 3771 1084 0.28 Krtap16-9 NM 130876 1742 53 0.03 3771 1084 0.28 Krtap16-10 NM 183296 3375 104 0.03 6041 1727 0.29 :>2.0 :>1.5 :<0.75			Krtap14	NM_013707	555	42	0.08	751	216	0.29
Krtap16-1 NM_130870 255 19 0.08 803 250 0.31 Krtap16-4 NM_130873 276 18 0.07 763 197 0.26 Krtap16-5 NM_130875 287 26 0.09 639 225 0.35 Krtap16-7 NM_130875 636 74 0.12 1248 424 0.34 Krtap16-7 NM_130876 924 41 0.04 1777 666 0.38 Krtap16-9 NM_130876 1742 53 0.03 3771 1084 0.26 Krtap16-10 NM_130876 1742 53 0.03 3771 1084 0.26 Krtap16-10 NM_183296 3375 104 0.03 6041 1727 0.28 :>2.0 :>1.5 :<0.75			Krtap15	NM_013713	50	16	0.32	89	32	0.36
Krtap16-4 NM_130873 276 18 0.07 763 197 0.26 Krtap16-5 NM_130857 287 26 0.09 639 225 0.38 Krtap16-67 NM_130875 636 74 0.12 1248 424 0.34 Krtap16-7 NM_130856 924 41 0.04 1777 666 0.38 Krtap16-9 NM_130876 1742 53 0.03 3771 1084 0.28 Krtap16-10 NM_130876 1742 53 0.03 6041 1727 0.28 Krtap16-10 NM_138296 3375 104 0.03 6041 1727 0.29 :>2.0 :>1.5 :<0.75			Krtap16-1	NM_130870	255	19	0.08	803	250	0.31
Krtap16-5 NM_130857 287 26 0.09 639 225 0.35 Krtap16-7 NM_130857 636 74 0.12 1248 424 0.34 Krtap16-8 NM_130856 924 41 0.04 1777 666 0.38 Krtap16-8 NM_130876 1742 53 0.03 3771 1084 0.28 Krtap16-10 NM_130876 1742 53 0.03 36041 1727 0.29 :>2.0 :>1.5 :<0.75			Krtap16-4	NM_130873	276	18	0.07	763	197	0.26
Krtap16-7 NM_130875 636 74 0.12 1248 424 0.34 Krtap16-8 NM_130856 924 41 0.04 1777 666 0.38 Krtap16-9 NM_130876 1742 53 0.03 3771 1084 0.29 Krtap16-10 NM_183296 3375 104 0.03 6041 1727 0.29 :>2.0 :>1.5 :<0.75			Krtap16-5	NM_130857	287	26	0.09	639	225	0.35
Krtap16-8 NM_130856 924 41 0.04 1777 666 0.38 Krtap16-9 NM_130876 1742 53 0.03 3771 1084 0.28 Krtap16-10 NM_183296 3375 104 0.03 6041 1727 0.28 :>2.0 :>1.5 :<0.75			Krtap16-7	NM_130875	636	74	0.12	1248	424	0.34
Krtap16-9 NM_130876 1742 53 0.03 3771 1084 0.28 Krtap16-10 NM_183296 3375 104 0.03 6041 1727 0.29 :>2.0 :>1.5 :<0.75			Krtap16-8	NM_130856	924	41	0.04	1777	666	0.38
<u>Ктар16-10</u> NM_183296 3375 104 0.03 6041 1727 0.29 :>2.0 :>1.5 :<0.75 :<0.50			Krtap16-9	NM_130876	1742	53	0.03	3771	1084	0.29
:>2.0 :>1.5 :<0.75 :<0.50			Krtap16-10	NM_183296	3375	104	0.03	6041	1727	0.29
:>2.0 :>1.5 :<0.75 :<0.50										
	:>2.0	:>1.5 :<0.75	:<0.50							

FIGURE 5. **Microarray analyses of skins from** *PLA2G10-Tg* and *Pla2g10^{-/-}* mice in comparison with control mice. Total RNAs were isolated from skins of *PLA2G10-Tg* (*Tg*) and control mice (*Ct*) or *Pla2g10^{+/+}* (*Wt*) and *Pla2g10^{-/-}* (*KO*) mice at P25 (n = 4). Equal amounts of RNA (pooled from four mice for each genotype) were subjected to gene expression microarray, as described under "Experimental Procedures." A representative result of two independent and reproducible experiments is shown. Fluorescent intensity values and their ratios (*Tg/Ct* or *Ko/Wt*) are shown. Individual genes were sorted into groups corresponding to epidermal and hair follicular components.

These results suggest that $Pla2g10^{-/-}$ mice may have some abnormalities in hair follicles but not in other skin compartments including epidermis, dermis, and sebaceous glands.

Several previous studies have reported that $sPLA_2$ -X is expressed in epidermal keratinocytes of human and mouse skins (52, 53). However, despite considerable effort, we were

unable to detect sPLA₂-X in mouse epidermis. Although we performed immunohistochemistry using five distinct antisPLA₂-X antibodies, none of them showed epidermal localization of sPLA₂-X at P0. Indeed, all of the antibodies used so far stained the epidermis of both *Pla2g10^{+/+}* and *Pla2g10^{-/-}* mice equally (Fig. 6A), indicating that the epidermal staining was

FIGURE 6. Localization of endogenous sPLA₂-X in hair follicles. A and B, immunohistochemistry of sPLA₂-X in skin sections from Pla2g10^{+/+} and Pla2g10^{-/-} mice at the newborn (P0) (A) and mid-anagen (P8) (B) stages using an anti-sPLA₂-X antibody is shown. Boxed areas are magnified in the *right panels* (B). Specific staining for sPLA₂-X was associated with the ORS in hair follicles (arrows) of Pla2g10^{+/+} and Pla2g10^{-/-} mice. Nonspecific staining (*i.e.* seen in both Pla2g10^{+/+} and Pla2g10^{-/-} mice) of the epidermis (A) and hair shaft (B) is shown by asterisks. Bars, 100 µm. C, shown is quantitative RT-PCR analysis of the developmental expression of Pla2g10 mRNA in the skin of C57BL/6 mice. Expression of Pla2g10 at E17.5 relative to that of the house-keeping gene Gapdh is regarded as 1. Data are the mean \pm S.E. (n = 5).

nonspecific. We noticed that, besides this pseudo-positive epidermal staining, sPLA₂-X immunoreactivity was distributed in hair follicles of wild-type but not knock-out skin at P0 (Fig. 6A). Hair follicles appeared smaller in $Pla2g10^{-/-}$ mice than in $Pla2g10^{+/+}$ mice (Fig. 6A), in agreement with the microarray results (Fig. 5). At P8 (mid-anagen), sPLA₂-X immunoreactivity was localized in the outermost layer of hair follicles in $Pla2g10^{+/+}$ but not in $Pla2g10^{-/-}$ mice (Fig. 6B). Staining of the hair shaft was again nonspecific, as it was also obvious in $Pla2g10^{-/-}$ skin (Fig. 6B). Analyses of the developmental expression of Pla2g10 mRNA in mouse skin by quantitative RT-PCR revealed that its expression was low at E17.5 (hair folliculogenesis stage), increased to a maximum expression level by P10 (anagen), declined to the basal level at P15-20 (catagen to telogen), and again began to increase at P25 (re-entry into the next anagen) (Fig. 6C). These results suggest that the expression of sPLA₂-X is confined to hair follicles, being synchronized with

hair cycling exhibiting a pattern of increased expression during the hair-growing anagen phase and decreased expression during the hair-retracting/resting catagen to telogen phases.

To further verify the hair follicular localization of sPLA₂-X, hair follicles as well as epidermis were isolated by laser-capture microdissection from the mid-dorsal skin at P8 (Fig. 7A), a period of mid-anagen when the expression of sPLA₂-X reached a nearly maximal level (Fig. 6C). Pools from hair follicles and epidermis obtained thus far were then subjected to quantitative RT-PCR for several marker genes known to localize specifically in each skin compartment. Preferential enrichment of S100a9, Krt1, and Krt14 in the epidermis fraction and Krt71, Krt85, and Krt33a in the hair follicle fraction indicated that the microdissection of each skin compartment had been successful (Fig. 7B). Importantly, *Pla2g10* mRNA was detected in the hair follicle, but not in the epidermis, fraction (Fig. 7C), thus confirming the hair follicular localization of sPLA₂-X in mouse skin. We then reasoned that if sPLA2-X indeed exists in hair follicles, its expression would be compromised in the other mouse line with hair abnormality. To this end, we examined the expression of Pla2g10 mRNA in the skin of phospholipase Cδ1-deficient $(Plcd1^{-/-})$ mice, which exhibit postnatal distortion of hair follicles (30). As expected, the expression of Pla2g10 mRNA was hair cycle-dependent in $Plcd1^{+/+}$ skin (in agreement with Fig. 6*C*), whereas it was markedly reduced in $Plcd1^{-/-}$ skin at each postnatal point (supplemental Fig. S5).

It was notable in wild-type mice that the two COX isoforms COX-1 (*Ptgs1*) and COX-2 (*Ptgs2*) were distributed predominantly in the epidermis and hair follicles, respectively, and that mPGES-1 (*Ptges*) was detected in the epidermis in marked preference to hair follicles, whereas other PGE synthases (*Ptges2* and *Ptges3*) were evenly distributed in both fractions (Fig. 7*C*). These results suggest that the PGE₂-biosynthetic enzymes are spatially segregated in distinct skin compartments and that the epidermal distribution of COX-1 and mPGES-1 could account for their increased expression in *PLA2G10*-Tg mice (Fig. 4*C*), where the epidermis is highly hyperplasic (Fig. 2).

Hair Follicle Abnormality in $Pla2g10^{-/-}$ Mice—Given that the expression of Pla2g10 mRNA in hair follicles reached a maximum level during anagen (Fig. 6C), we reassessed the hair histology of $Pla2g10^{-/-}$ and $Pla2g10^{+/+}$ skins at the mid-anagen stage (P8). In contrast to the normal appearance of hair shafts in $Pla2g10^{+/+}$ mice, those in $Pla2g10^{-/-}$ mice were frequently bent (Fig. 8A), although the number of hair follicles was similar between the genotypes (Fig. 8B). Quantitative RT-PCR of the hair follicle fraction, which had been isolated by microdissection (Fig. 7), revealed that the expression of the hair keratin *Krt85*, but not *Krt6a* and *Krt17*, was substantially lower in $Pla2g10^{-/-}$ mice than in $Pla2g10^{+/+}$ mice (Fig. 8C), consistent with the microarray analysis (Fig. 5).

To further verify the ultrastructural abnormalities in hair follicles, we carried out transmission electron microscopy of mouse skin (Fig. 8, D–F). The hair follicle consists broadly of five distinctive layers: ORS, IRS, cuticle (Cu), hair cortex (Cx), and medulla (M) from the outermost to innermost layers. Each hair follicle has an ORS, which surrounds the follicle like a sleeve all the way to the bulb and is distinct from other epidermal components of the hair follicle. The cells of the ORS con-

FIGURE 7. **Compartmentalization of endogenous sPLA₂-X and PG-biosynthetic enzymes in mouse skin.** *A*, mouse skin sections (P8) before (*upper*) and after (*lower*) microdissection of hair follicles (*HF*) and epidermis (*E*) were stained with toluidine blue. Total RNAs were extracted from the microdissected hair follicle or epidermis fraction followed by quantitative RT-PCR of various genes. *B*, expression levels of marker genes associated with epidermal keratinocytes (*S100a9, Krt1*, and *Krt14*) and hair follicular compartments (*Krt71, Krt85, and Krt33a*) in the epidermis (*E*; *open columns*) and hair follicle (*HF*; *solid columns*) fractions are shown. *C*, expression levels of mRNAs for *Pla2g10* and PG-biosynthetic enzymes in the epidermis and hair follicle fractions are shown. Relative abundance of these transcripts was normalized against the constitutive expression of *Actb* (β -actin) mRNA. Data are the means \pm S.E. (n = 6; *, p < 0.05). *N.D.*, not detected.

tain clearly vacuolated cytoplasm because of the presence of large amounts of glycogen. The cells at the periphery are more vacuolated than those in the axial border, which show a relatively intact cytoplasm. The store of glycogen in the ORS is probably utilized as a local supply of energy and materials for bulbar cell activities. In contrast, the ORS in $Pla2g10^{-/-}$ mice was noticeably thinner than that in wild-type mice (Fig. 8D and supplemental Fig. S6). Many of the vacuoles in ORS cells of $Pla2g10^{-/-}$ mice were disorganized and small relative to those of $Pla2g10^{+/+}$ mice (Fig. 8*E*, *a* and *d*). Furthermore, in ORS cells of $Pla2g10^{-/-}$ mice, many of the mitochondria were swollen, and the pattern of tonofilaments was irregular (Fig. 8*E*, *d*). Because ORS cells at the mid-anagen stage are undergoing active cell division, the nuclei in ORS cells of $Pla2g10^{+/+}$ mice showed a euchromatin structure (Fig. 8E, a). In contrast, the nuclei in the *Pla2g10^{-/-}* ORS had a heterochromatin configuration, which is indicative of cell growth arrest or retardation (Fig. 8*E*, *d*). The companion layer, which is focally present in the innermost part of the ORS, is more flattened than the other cells of the ORS and does not contain glycogen. However, the border of the companion layer and ORS in the $Pla2g10^{-/-}$ follicles was vague compared with that in the $Pla2g10^{+/+}$ follicles (Fig. 8, *D* and *E*, *a* and *d*). The IRS of the hair follicle constitutes a layered structure that extends from the base of the bulb to the isthmus, consisting of three distinct layers of epithelial cells known as Henle's layer (*He*), Huxley's layer (Hx), and IRS cuticle (Ci). The ultrastructure of these IRS layers did not differ between the genotypes (Fig. 8*E*, *b* and *e*). The hair shaft (cuticle, cortex, and medulla) is the cylindrical, keratinized, and often pigmented filament that can be seen in the upper skin, consisting mainly of dead cells that have turned into keratin filaments and binding material together with small amounts of water. Although structural abnormalities of the hair shaft were barely seen in $Pla2g10^{-/-}$ mice, melanin granules in the cortex were

fewer in $Pla2g10^{-/-}$ mice than in $Pla2g10^{+/+}$ mice (Fig. 8*E*, *c* and *f*). The bulb is a deep, bulbous portion of the follicle that surrounds the dermal papilla. Although the dermal papilla is responsible for directing and dictating the embryonic generation of a hair follicle, the bulb is the structure of actively growing cells that eventually produce the long fine hair cylinder. There were no morphologic differences in the hair bulb between the genotypes (Fig. 8*F*). Thus, even though endogenous sPLA₂-X is dispensable for the central pathway for hair development, its absence in hair follicles results in ORS hypoplasia leading to modest hair shaft abnormality.

Unusual Up-regulation of PGE₂ Synthesis in Hair Follicle of $Pla2g10^{-/-}$ Mice—Having established that sPLA₂-X is a hair follicular sPLA₂ that participates in the control of hair follicle homeostasis, we anticipated that the absence of this enzyme would decrease the level of hair follicular prostanoids. Unexpectedly, however, the level of PGE₂ in the microdissected hair follicle fraction was unusually increased rather than decreased in $Pla2g10^{-/-}$ mice in comparison with $Pla2g10^{+/+}$ mice (Fig. 9A). To gain insight into this unexpected elevation of PGE_2 in Pla2g10^{-/-} hair follicles, we examined the expression of enzymes in the PGE₂ biosynthetic pathway in the microdissected hair follicle fraction by quantitative RT-PCR. Remarkably, the expression levels of COX-2 (Ptgs2) and to a lesser extent mPGES-1 (Ptges), but not other PGE synthases (Ptges2 and Ptges3) and the hair follicle PGE receptor EP4 (Ptger4), were increased in hair follicles of $Pla2g10^{-/-}$ mice relative to those of $Pla2g10^{+/+}$ mice (Fig. 9B). In contrast, the expression of COX and PGES enzymes (Fig. 9C) as well as the level of PGE₂ (Fig. 9A) in the epidermis fraction was similar between the genotypes. These results suggest that, unlike sPLA₂-X overexpressed ectopically at a superphysiological level in PLA2G10-Tg mice (Fig. 4), endogenous sPLA₂-X restricted to the anagen hair follicles is not linked to local PGE₂ synthesis;

SBMB

FIGURE 8. *Pla2g10^{-/-}* mice harbor hair follicle abnormality. A, histology of hair follicles in $Pla2g10^{+/+}$ and $Pla2g10^{-/-}$ mice at P8 is shown. Abnormal hair follicles are shown by *arrows*. *Bars*, 500 μ m. *B*, hair follicular density was similar between *Pla2g10^{+/+}* and *Pla2g10^{-/-}* mice. *C*, reduced hair keratin (Krt85) expression in the hair follicle fraction from $Pla2g10^{-/-}$ mice relative to Pla2g10⁺⁷ ⁺ mice, as assessed by quantitative RT-PCR, is shown. D–F, transmission electron microscopies of hair follicles in $Pla2g10^{+/+}$ and $Pla2g10^{-/-}$ skins are shown. D, five distinct layers (ORS, IRS, cuticle (Cu), cortex (Cx), and medulla (M)) as well as the companion layer (Cp) (a single layered band of flat and vertically oriented cells between the ORS and IRS) are indicated. As compared with the ORS layer of $Pla2g10^{+/+}$ mice, that of $Pla2g10^{-/-}$ mice was mice was thin. Boxed areas in D are magnified in E. Bars, 10 μ m. E, ORS cells in Pla2g10^{+/+} mice contained nutrient-rich cytoplasmic vacuoles (asterisks) and the nucleus (Nu) in a euchromatin configuration (a), whereas those cells in Pla2q10^{-/-} mice had smaller vacuoles, heterochromatin nucleus, and swollen mitochondria (*Mt*) (*d*). *Arrows* indicate tonofilaments. Although the structures of the IRS and hair shaft appeared similar between $Pla2g10^{+/+}$ (*b* and *c*) and $Pla2g10^{-/-}$ (e and f) mice, there were fewer melanin granules in the medulla of the null mice than in that of the wild-type mice. Bars, 2 µm. He, Henle's layer; Hx, Huxley's layer; Ci, IRS cuticle. F, the ultrastructure of the hair bulb appeared normal in *Pla2q10^{-/-}* mice. *Bars*, 10 μ m.

rather, it may negatively regulate the expression of the PGE_2 biosynthetic components (COX-2 and mPGES-1) through an unknown mechanism (see "Discussion"). Accordingly, the absence of sPLA₂-X in hair follicles causes exaggerated PGE₂ signaling, which may in turn perturb hair follicle homeostasis. This event seems to be compatible with hair defects observed in skin-specific COX-2-Tg mice (10, 11).

FIGURE 9. Increased COX-2 expression and PGE₂ synthesis in hair follicles of *Pla2g10^{-/-}* mice. *A*, hair follicle and epidermis fractions were isolated by laser-capture microdissection from the skins of *Pla2g10^{-/-}* (*open columns*) and *Pla2g10^{-/-}* (*solid columns*) mice (n = 6). PGE₂ contents in the isolated hair follicle or epidermis fractions were quantified by enzyme immunoassay. *B* and *C*, quantitative RT-PCR of various mRNAs for PGE₂ synthesis and its receptor in hair follicles (*B*) and epidermis (*C*) is shown. Relative abundance of their transcripts was normalized relative to the constitutive expression of *Actb* mRNA. Data are the means \pm S.E. (n = 6).

DISCUSSION

The hair cycle relies on an elegant and coordinated balance of stimulatory and inhibitory signals, which are spatially and temporally regulated in the hair follicle niche through orchestrated actions of various growth or differentiation factors and their inhibitors, transcription factors, and lipids (1-3). Clarification of the molecular mechanisms underlying hair regulation by these factors would provide opportunities for new therapeutic approaches to the treatment of individuals with hair loss, which can cause considerable psychological distress in most of those affected. In this study we have provided evidence that sPLA₂-X is expressed in hair follicles in synchrony with the postnatal hair cycle and participates in hair quality control. To our knowledge, this is the first demonstration that this particular sPLA₂ isoform plays a homeostatic role in a highly specialized skin compartment, i.e. the hair follicle, in addition to its reported roles in diverse pathophysiological events including asthma, ischemic myocardial injury, aneurysm, adiposity, adrenal steroid secretion, and fertility (17, 18, 23-28).

PLA2G10-Tg Mice Display Alopecia as Well as Epidermal Hyperplasia—Probably, the most striking evidence for the potential role of sPLA₂ in the skin has been gained from studies employing *PLAG2A*-Tg mice, which exhibit almost total alopecia with no signs of inflammation (19), although the C57BL/6 mouse strain intrinsically lacks sPLA₂-IIA as a result of a frameshift mutation of its gene (20). Although several previous studies have reported expression and localization of various sPLA₂s in skin or cultured keratinocytes (52–55), variations in detection methodology and incomplete functional assessments have cast doubt on the specific roles of sPLA₂s in complex skin niches.

In this study we found that Tg overexpression of sPLA₂-X leads to alopecia (Figs. 1 and 2). This observation seems important as, unlike sPLA2-IIA that is absent from mouse skin, sPLA₂-X is expressed endogenously in mouse hair follicles (Figs. 6 and 7). However, although PLA2G2A-Tg mice are permanently alopecic (19), the hairless phenotype of *PLA2G10*-Tg mice is evident only over a period corresponding to the catagen to telogen phase of the postnatal hair cycle. In contrast to the group II subfamily of sPLA₂s, which are catalytically active once synthesized, sPLA₂-X has an N-terminal propeptide that has to be removed before its activation (22, 49). Interestingly, the PLA₂ enzymatic activity in skin homogenates of *PLA2G10*-Tg mice is transiently elevated before the hair loss, in accordance with the appearance of the mature form of sPLA₂-X protein (Fig. 1), suggesting that proteolytic activation of sPLA₂-X occurs in mouse skin during the early hair cycle. This temporary activation of sPLA₂-X, as opposed to constitutive expression of active sPLA₂-IIA, may account for the transient versus permanent appearance of skin abnormalities in PLA2G10- and PLA2G2A-Tg mice, respectively. In contrast to the remarkable skin phenotype, many other tissues in PLA2G10-Tg mice displayed no apparent histological abnormalities (supplemental Fig. S1), probably because the overexpressed sPLA₂-X remains as an inactive zymogen unless inflammation occurs (29). Thus, mouse skin may have some particular protease machinery that leads to proteolytic processing of sPLA₂-X under physiological conditions. In fact, unique and highly regulated protease/protease inhibitor networks are present in the skin, and disturbance of their balance could lead to faulty processing of hair follicle development and epidermal differentiation (40-48). Although the skin proteases responsible for sPLA₂-X activation remain to be identified, kallikreins may be a candidate, as Tg overexpression of kallikreins leads to a similar skin phenotype (41), expression of kallikreins is markedly increased in PLA2G10-Tg skin (supplemental Fig. S3), and the propeptide sequence of sPLA₂-X can be cleaved by kallikrein family proteases.

Our previous studies of Tg overexpression of sPLA₂ isoforms in mice in combination with a lipidomics approach have led to the identification of potential *in vivo* actions of sPLA₂-V on lung surfactant PC (29) and sPLA₂-III on lipoprotein PC (32). However, although sPLA₂-X is the most potent sPLA₂ isoform with the ability to hydrolyze PC in intact mammalian cell membranes (56, 57), levels of PC as well as phosphatidylinositol and phosphatidylserine were unchanged in the skin of *PLA2G10-Tg* mice. Strikingly, hydrolysis of particular PE species giving rise

to free AA, eicosapentaenoic acid, and docosahexaenoic acid, as well as C18:0 and C18:1 lysophosphatidylethanolamine, occurred in PLA2G10-Tg mice (Figs. 3 and 4), suggesting that sPLA₂-X can preferentially hydrolyze PUFA-containing PE species in mouse skin. Given that sPLA₂-X can hydrolyze both PC and PE equally *in vitro* (21, 56) and that PE usually resides in the inner leaflet of the plasma membrane, our results suggest that a pool of PUFA-containing PE species possibly secreted into the skin microenvironment or enriched in a particular membrane microdomain may become available for sPLA₂-X-directed hydrolysis. Because PE is also a good substrate for sPLA₂-IIA (6, 7), the shared skin phenotype between PLA2G2A-Tg and PLA2G10-Tg mice might primarily result from increased PE hydrolysis. Importantly, because no biochemical analysis of the alopecic phenotype of PLA2G2A-Tg mice has been conducted (19), the present study has provided the first biochemical insights into sPLA₂-triggered phospholipid metabolism in the context of skin biology.

The AA produced by overexpressed sPLA₂-X can be further converted to biologically active metabolites in the skin. Indeed, we found a notable increase of PGE₂, a major COX metabolite produced by keratinocytes (55), in PLA2G10-Tg mice (Fig. 4). It has been reported that Tg overexpression of COX-2 in mouse skin results in increased PGE₂ generation accompanied by hair loss as well as by abnormal epidermal differentiation leading to hyperplasia and dysplasia with little sign of inflammation (9), events that are strikingly similar to those observed in PLA2G10-Tg mice. PGE₂ directly promotes keratinocyte proliferation in culture via EP2, a G protein-coupled PGE receptor, and Tg overexpression of EP2 also results in epidermal abnormality (59). Another PGE receptor, EP4, is expressed in the ORS of anagen hair follicles (8, 9), and elevated expression of EP4 as well as COX-2 is associated with human scarring alopecia (12). On the basis of these observations, it is likely that the overwhelming majority of PGE₂ signaling may be linked, at least partly, with the hair follicle and epidermal abnormalities observed in PLA2G10-Tg mice. Additionally, coordinated increases in the expression of epidermal-type LOX enzymes, whose mutations or deletions cause epidermal abnormalities such as ichthyosis (50, 51), may be associated with epidermal hyperplasia in PLA2G10-Tg mice.

*Pla2g10-deficient Mice Reveal the Intrinsic Role of sPLA*₂-X in Hair Follicle Homeostasis-The marked skin abnormalities manifested in PLA2G10-Tg mice prompted us to examine whether endogenous sPLA₂-X would act as an intrinsic regulator of skin homeostasis. Our present studies employing immunohistochemistry as well as real-time RT-PCR analyses combined with a microdissection technique have provided evidence that it is in the hair follicle and not in the epidermis, as has been reported previously (52, 54), where sPLA₂-X is intrinsically expressed. This is supported by the following observations. (i) immunohistochemical staining of sPLA₂-X in mouse skin is distributed solely in the outermost layers of hair follicles, whereas it is absent in $Pla2g10^{-/-}$ mice (Fig. 6, A and B). (ii) Expression of *Pla2g10* mRNA in mouse skin shows a pattern synchronized with hair cycling (Fig. 6C). (iii) In the skin of $Plcd1^{-/-}$ mice, which have distorted hair follicles (30), Pla2g10mRNA expression is markedly reduced (supplemental Fig. S5).

asembl

(iv) After laser-capture microdissection, *Pla2g10* mRNA is enriched in the hair follicle fraction but not in the epidermis fraction (Fig. 7). (v) *Pla2g10^{-/-}* mice display notable, albeit mild, abnormalities in hair follicles but not in the epidermis (Figs. 5, 8, and 9). Our finding that sPLA₂-X is expressed in a restricted compartment within the skin niche (*i.e.* the ORS of hair follicles) in correlation with hair cycling, showing high expression during anagen and low expression during catagen-telogen, highlights an unexplored physiological role of this particular sPLA₂ subtype in hair follicle homeostasis.

Interestingly, similar hair cycle-related expression profiles in the ORS or IRS of hair follicles have also been observed for several other hair-regulating factors that participate in the regulation of anagen-catagen or telogen-anagen transition and thereby in proper hair growth (60-67). Indeed, even though the hair phenotype of *Pla2g10^{-/-}* mice appeared mild, our results revealed substantial reductions in a panel of genes encoding hair keratins and keratin-associated proteins as well as genes encoding the hair shaft-regulatory transcription factors (Fig. 5), suggesting delayed hair growth. In contrast, genes for the epidermis were unaffected by the lack of sPLA₂-X, in agreement with the intrinsic distribution of this enzyme in the follicular ORS but not in the interfollicular epidermis. Moreover, in mid-anagen, the ORS above the hair bulb of $Pla2g10^{-/-}$ mice was thin, contained swollen mitochondria and fewer nutrient-rich vacuolar components, and showed evident growth retardation, perhaps causing focal twisting of subdermal hairs (Fig. 8). This is in contrast with the ORS of PLA2G10-Tg mice, which was strikingly hyperplasic (Fig. 2). Thus, sPLA₂-X may contribute to the homeostasis of hair follicular ORS by promoting the proper growth of ORS keratinocytes. Perturbed growth and survival of ORS cells ultimately lead to the deficit in hairs (68).

Our present analysis employing laser-capture microdissection has demonstrated distinct compartmentalization of COX-1 and COX-2 in the epidermis and hair follicles, respectively, in mouse skin under physiological conditions (Fig. 7C). This finding is consistent with a previous study showing that COX-1 is localized predominantly in the interfollicular spinous and granular layers of the epidermis but not in follicular epithelial cells of cycling hair follicles, whereas COX-2 expression is hair cycling-dependent, becoming apparent in elongated hair germs and hair pegs in the course of pelage hair follicle morphogenesis, later on in the ORS of the distal and proximal hair follicles, declining in catagen and telogen, and then being re-induced in the ORS of anagen hair follicles (9). Because the expression of sPLA₂-X in the ORS is also hair cycling-dependent (Fig. 6C), we had anticipated that sPLA₂-X and COX-2 at the same location would be functionally coupled to provide a hair follicular pool of PGE₂. Surprisingly, however, the level of hair follicular PGE₂ was elevated rather than reduced by the absence of sPLA₂-X. Consistent with this unexpected finding, the hair follicular expression of COX-2 and to a lesser extent mPGES-1 was substantially higher in $Pla2g10^{-/-}$ mice than in $Pla2g10^{+/+}$ mice (Fig. 9). These results led us to conclude that endogenous sPLA₂-X is not coupled with PGE₂ synthesis in hair follicles; rather, its deficiency results in aberrant COX-2 expression leading to increased PGE₂ synthesis, thereby mimicking the situation in skin-specific COX-2 Tg mice, which display hair abnormality (9, 58). Therefore, the mechanisms underlying hair abnormalities resulting from overexpression *versus* deletion of $sPLA_2$ -X appear to be distinct.

Although the molecular mechanism whereby deficiency of sPLA₂-X leads to dysregulated COX-2 expression in hair follicles is still unclear, it is tempting to speculate that some lipid product(s) produced by sPLA₂-X in this particular skin compartment may facilitate local induction of COX-2 and thereby overproduction of PGE₂. LPA may be such a candidate, as mutations in the human P2Y5 gene (encoding LPA₆ receptor) cause autosomal recessive wooly hair with hypotrichosis, although this speculation argues against the fact that the absence of LPA₆ signaling perturbs the IRS rather than the ORS (7). It has been recently reported that sPLA₂-X negatively regulates liver X receptor (LXR) or peroxisome proliferator-activating receptor (PPAR) signaling through production of PUFA in macrophages, adrenal cells, and adipocytes (26, 27, 69). Considering that the liver X receptor/peroxisome proliferator-activating receptor signaling pathway can diversely affect COX-2/ mPGES-1-dependent PGE_2 production (70-72) and that dysregulation of hair follicular PPAR γ is linked to alopecia (12), sPLA₂-X-dependent lipid product(s) might modulate PGE₂ signaling through the lipid-sensing nuclear receptors in hair follicles. Alternatively, because sPLA₂-X can potently hydrolyze lipoproteins (32) and because lipoprotein abnormality can cause hair loss (74), deficiency of sPLA₂-X might locally perturb lipoprotein-mediated lipid transport within a hair follicle niche, thereby causing atrophy of nutrient-rich vacuoles in the ORS. Nevertheless, future identification of the sPLA₂-X-regulated lipid pathway linked to ORS homeostasis would increase our understanding of the importance of lipids in skin biology. As an associated finding, we observed a notable decrease of melanin granules in hairs of $Pla2g10^{-/-}$ mice (Fig. 8). This may reflect the observation that sPLA₂-X facilitates melanin synthesis and pigmentation through production of lysophosphatidylcholine in vitro (75). Alternatively, in view of the hypothetical sPLA₂-X/lipid-sensing nuclear receptor connection mentioned above, regulation of melanin synthesis by PPAR γ (76, 77) might underlie the decreased pigmentation of $Pla2g10^{-/-}$ hairs.

Future Prospects—Given that sPLA₂-X essentially works as a hair modulator in anagen hair follicles, what is the significance of the abnormalities in the epidermis and sebaceous glands in PLA2G10-Tg mice? Lipids produced by epidermal keratinocytes and sebaceous glands play additional important roles in skin homeostasis (13, 14). Terminally differentiated epidermal keratinocytes secrete neutral lipids and fatty acids into the intercellular spaces of cornified envelopes, where they form a skin permeability barrier that prevents water loss from the body and also provides protection from invading pathogens and environmental toxins. Particularly, free fatty acids in the skin are important for acidification, integrity, and barrier function of the stratum corneum, and hydrolysis of phospholipids by certain sPLA₂(s) has been proposed to be crucial for the supply of fatty acids into the interspace of corneocytes (78-80). Sebaceous glands produce and secrete lipid-rich sebum into the hair canal that empties out to the skin surface. In fact, expression of several lipogenic genes such as *Elovl3* and *Scd1*, mutations of

which result in cutaneous phenotypes (13, 14), was also elevated in PLA2G10-Tg skin (data not shown), suggesting a connection between sPLA₂-directed perturbation of the lipid milieu and epidermal or sebaceous gland disorders. However, neither sPLA₂-X (this study) nor sPLA₂-IIA (9) is endogenously expressed in the epidermis or sebaceous glands of C57BL/6 mice, raising a question about the physiological relevance of the epidermal and sebaceous gland hyperplasia induced by Tg overexpression of a particular sPLA₂ isoform.

The following possibilities are considered. First, considering that the hair follicle, epidermis, and sebaceous gland are contiguous, primary action of the overexpressed sPLA₂-X on hair follicles might eventually alter the differentiation fate of skin stem cells at the bulge into upward (epidermal and sebaceous gland keratinocytes) rather than downward (follicular keratinocytes) directions, thereby altering the gene balance toward terminal epidermal differentiation over hair development. Indeed, hair abnormalities caused by deletion or mutations of various genes are often accompanied by epidermal and sebaceous gland abnormalities as well (73, 81, 82). Second, even though sPLA₂-X is undetectable in the epidermis under sterile conditions, it might be induced in the epidermis under certain pathologic conditions such as dermatitis, infection, and cancer, where it might play some unidentified roles through modulation of epidermal phospholipid metabolism. Third, although the results of sPLA₂-X overexpression on skin are not reciprocated by those of sPLA₂-X deficiency (*i.e.* the defects in the knock-out mice are very modest compared with the effects in the Tg mice), the weak phenotype of sPLA2-X deficiency might be due to compensation by other sPLA₂(s) expressed in mouse skin (52, 54). Indeed, the epidermal phenotype of PLA2G10-Tg mice might mirror the function of other $sPLA_2(s)$ that is intrinsically expressed in the epidermis, as we have recently found that a particular sPLA₂ subtype (distinct from sPLA₂-X) is highly expressed in mouse epidermis and that manipulation of its gene in mice causes striking epidermal abnormalities with dysregulated lipid signaling and epidermal barrier function, which are now under investigation.⁴

Finally, in view of previous reports showing that several sPLA₂s including sPLA₂-X are expressed in human epidermal keratinocytes (52, 53), sPLA₂-X might participate in the homeostatic control of lipid machinery in the epidermis of humans. Nevertheless, the spatiotemporal expression profile of a full set of sPLA₂s in healthy or diseased human skin would need careful reevaluation in the context of hair cycling, epidermal proliferation and differentiation, dermal inflammation, and wound healing. As a matter of fact, the spatiotemporal localization of sPLA $_2$ s in human hair follicles is entirely unknown. Given that millions of people suffer from hair loss that can be caused by various factors including genetic mutations, hormonal imbalances, immunological abnormalities, environmental exposures, or psychological stresses, full elucidation of the lipid networks regulated by sPLA₂s in humans would be helpful for a novel strategy for treatment of alopecia.

Acknowledgments—We thank Dr. Michael Gelb (University of Washington, Seattle, WA) and Dr. Shinji Hatakeyama (Novartis Pharma, Tsukuba, Japan) for providing rabbit polyclonal and mouse monoclonal anti-human sPLA ₂-X antibodies, respectively.

REFERENCES

- 1. Alonso, L., and Fuchs, E. (2006) J. Cell Sci. 119, 391-393
- 2. Fuchs, E. (2007) Nature 445, 834-842
- 3. Blanpain, C., and Fuchs, E. (2009) Nat. Rev. Mol. Cell Biol. 10, 207-217
- 4. Kupper, T. S., and Fuhlbrigge, R. C. (2004) Nat. Rev. Immunol. 4, 211-222
- 5. Lowes, M. A., Bowcock, A. M., and Krueger, J. G. (2007) Nature 445, 866-873
- Colombe, L., Vindrios, A., Michelet, J. F., and Bernard, B. A. (2007) *Exp.* Dermatol. 16, 762–769
- Pasternack, S. M., von Kügelgen, I., Aboud, K. A., Lee, Y. A., Rüschendorf, F., Voss, K., Hillmer, A. M., Molderings, G. J., Franz, T., Ramirez, A., Nürnberg, P., Nöthen, M. M., and Betz, R. C. (2008) *Nat. Genet.* 40, 329–334
- Torii, E., Segi, E., Sugimoto, Y., Takahashi, K., Kabashima, K., Ikai, K., and Ichikawa, A. (2002) *Biochem. Biophys. Res. Commun.* 290, 696–700
- Müller-Decker, K., Leder, C., Neumann, M., Neufang, G., Bayerl, C., Schweizer, J., Marks, F., and Fürstenberger, G. (2003) *J. Invest. Dermatol.* 121, 661–668
- Neufang, G., Furstenberger, G., Heidt, M., Marks, F., and Müller-Decker, K. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 7629–7634
- Bol, D. K., Rowley, R. B., Ho, C. P., Pilz, B., Dell, J., Swerdel, M., Kiguchi, K., Muga, S., Klein, R., and Fischer, S. M. (2002) *Cancer Res.* 62, 2516–2521
- Karnik, P., Tekeste, Z., McCormick, T. S., Gilliam, A. C., Price, V. H., Cooper, K. D., and Mirmirani, P. (2009) J. Invest. Dermatol. 129, 1243–1257
- Westerberg, R., Tvrdik, P., Undén, A. B., Månsson, J. E., Norlén, L., Jakobsson, A., Holleran, W. H., Elias, P. M., Asadi, A., Flodby, P., Toftgård, R., Capecchi, M. R., and Jacobsson, A. (2004) J. Biol. Chem. 279, 5621–5629
- Zheng, Y., Eilertsen, K. J., Ge, L., Zhang, L., Sundberg, J. P., Prouty, S. M., Stenn, K. S., and Parimoo, S. (1999) *Nat. Genet.* 23, 268–270
- Cordeddu, V., Di Schiavi, E., Pennacchio, L. A., Ma'ayan, A., Sarkozy, A., Fodale, V., Cecchetti, S., Cardinale, A., Martin, J., Schackwitz, W., Lipzen, A., Zampino, G., Mazzanti, L., Digilio, M. C., Martinelli, S., Flex, E., Lepri, F., Bartholdi, D., Kutsche, K., Ferrero, G. B., Anichini, C., Selicorni, A., Rossi, C., Tenconi, R., Zenker, M., Merlo, D., Dallapiccola, B., Iyengar, R., Bazzicalupo, P., Gelb, B. D., and Tartaglia, M. (2009) *Nat. Genet.* **41**, 1022–1026
- Klar, J., Schweiger, M., Zimmerman, R., Zechner, R., Li, H., Törmä, H., Vahlquist, A., Bouadjar, B., Dahl, N., and Fischer, J. (2009) *Am. J. Hum. Genet.* 85, 248–253
- 17. Lambeau, G., and Gelb, M. H. (2008) Annu. Rev. Biochem. 77, 495-520
- Murakami, M., Taketomi, Y., Girard, C., Yamamoto, K., and Lambeau, G. (2010) *Biochimie* 92, 561–582
- Grass, D. S., Felkner, R. H., Chiang, M. Y., Wallace, R. E., Nevalainen, T. J., Bennett, C. F., and Swanson, M. E. (1996) *J. Clin. Invest.* 97, 2233–2241
- MacPhee, M., Chepenik, K. P., Liddell, R. A., Nelson, K. K., Siracusa, L. D., and Buchberg, A. M. (1995) *Cell* 81, 957–966
- Murakami, M., Kambe, T., Shimbara, S., Higashino, K., Hanasaki, K., Arita, H., Horiguchi, M., Arita, M., Arai, H., Inoue, K., and Kudo, I. (1999) *J. Biol. Chem.* 274, 31435–31444
- Masuda, S., Murakami, M., Takanezawa, Y., Aoki, J., Arai, H., Ishikawa, Y., Ishii, T., Arioka, M., and Kudo, I. (2005) *J. Biol. Chem.* 280, 23203–23214
- Henderson, W. R., Jr., Chi, E. Y., Bollinger, J. G., Tien, Y. T., Ye, X., Castelli, L., Rubtsov, Y. P., Singer, A. G., Chiang, G. K., Nevalainen, T., Rudensky, A. Y., and Gelb, M. H. (2007) *J. Exp. Med.* **204**, 865–877
- Fujioka, D., Saito, Y., Kobayashi, T., Yano, T., Tezuka, H., Ishimoto, Y., Suzuki, N., Yokota, Y., Nakamura, T., Obata, J. E., Kanazawa, M., Kawabata, K., Hanasaki, K., and Kugiyama, K. (2008) *Circulation* **117**, 2977–2985
- Escoffier, J., Jemel, I., Tanemoto, A., Taketomi, Y., Payre, C., Coatrieux, C., Sato, H., Yamamoto, K., Masuda, S., Pernet-Gallay, K., Pierre, V., Hara, S., Murakami, M., De Waard, M., Lambeau, G., and Arnoult, C. (2010) *J. Clin. Invest.* 120, 1415–1428
- Shridas, P., Bailey, W. M., Boyanovsky, B. B., Oslund, R. C., Gelb, M. H., and Webb, N. R. (2010) J. Biol. Chem. 285, 20031–20039

⁴ K. Yamamoto and M. Murakami, unpublished observation.

- Li, X., Shridas, P., Forrest, K., Bailey, W., and Webb, N. R. (2010) FASEB J. 24, 4313–4324
- Zack, M., Boyanovsky, B. B., Shridas, P., Bailey, W., Forrest, K., Howatt, D. A., Gelb, M. H., de Beer, F. C., Daugherty, A., and Webb, N. R. (2011) *Atherosclerosis* 214, 58–64
- Ohtsuki, M., Taketomi, Y., Arata, S., Masuda, S., Ishikawa, Y., Ishii, T., Takanezawa, Y., Aoki, J., Arai, H., Yamamoto, K., Kudo, I., and Murakami, M. (2006) J. Biol. Chem. 281, 36420–36433
- Nakamura, Y., Ichinohe, M., Hirata, M., Matsuura, H., Fujiwara, T., Igarashi, T., Nakahara, M., Yamaguchi, H., Yasugi, S., Takenawa, T., and Fukami, K. (2008) *FASEB J.* 22, 841–849
- Murakami, M., Koduri, R. S., Enomoto, A., Shimbara, S., Seki, M., Yoshihara, K., Singer, A., Valentin, E., Ghomashchi, F., Lambeau, G., Gelb, M. H., and Kudo, I. (2001) *J. Biol. Chem.* 276, 10083–10096
- Sato, H., Kato, R., Isogai, Y., Saka, G., Ohtsuki, M., Taketomi, Y., Yamamoto, K., Tsutsumi, K., Yamada, J., Masuda, S., Ishikawa, Y., Ishii, T., Kobayashi, T., Ikeda, K., Taguchi, R., Hatakeyama, S., Hara, S., Kudo, I., Itabe, H., and Murakami, M. (2008) *J. Biol. Chem.* 283, 33483–33497
- Murakami, M., Masuda, S., Shimbara, S., Ishikawa, Y., Ishii, T., and Kudo, I. (2005) *J. Biol. Chem.* 280, 24987–24998
- 34. Bligh, E. G., and Dyer, W. J. (1959) Can. J. Biochem. Physiol. 37, 911-917
- Houjou, T., Yamatani, K., Nakanishi, H., Imagawa, M., Shimizu, T., and Taguchi, R. (2004) *Rapid Commun. Mass. Spectrom.* 18, 3123–3130
- Taguchi, R., Houjou, T., Nakanishi, H., Yamazaki, T., Ishida, M., Imagawa, M., and Shimizu, T. (2005) *J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci.* 823, 26–36
- Sato, H., Taketomi, Y., Isogai, Y., Miki, Y., Yamamoto, K., Masuda, S., Hosono, T., Arata, S., Ishikawa, Y., Ishii, T., Kobayashi, T., Nakanishi, H., Ikeda, K., Taguchi, R., Hara, S., Kudo, I., and Murakami, M. (2010) *J. Clin. Invest.* **120**, 1400–1414
- Ikeda, K., and Taguchi, R. (2010) Rapid Commun. Mass Spectrom. 24, 2957–2965
- Candi, E., Schmidt, R., and Melino, G. (2005) Nat. Rev. Mol. Cell Biol. 6, 328–340
- Klucky, B., Mueller, R., Vogt, I., Teurich, S., Hartenstein, B., Breuhahn, K., Flechtenmacher, C., Angel, P., and Hess, J. (2007) *Cancer Res.* 67, 8198-8206
- Hansson, L., Bäckman, A., Ny, A., Edlund, M., Ekholm, E., Ekstrand, Hammarström, B., Törnell, J., Wallbrandt, P., Wennbo, H., and Egelrud, T. (2002) *J. Invest. Dermatol.* **118**, 444–449
- Kishibe, M., Bando, Y., Terayama, R., Namikawa, K., Takahashi, H., Hashimoto, Y., Ishida-Yamamoto, A., Jiang, Y. P., Mitrovic, B., Perez, D., Iizuka, H., and Yoshida, S. (2007) *J. Biol. Chem.* 282, 5834–5841
- Leyvraz, C., Charles, R. P., Rubera, I., Guitard, M., Rotman, S., Breiden, B., Sandhoff, K., and Hummler, E. (2005) J. Cell Biol. 170, 487–496
- 44. Benavides, F., Starost, M. F., Flores, M., Gimenez-Conti, I. B., Guénet, J. L., and Conti, C. J. (2002) *Am. J. Pathol.* **161**, 693–703
- 45. List, K., Szabo, R., Wertz, P. W., Segre, J., Haudenschild, C. C., Kim, S. Y., and Bugge, T. H. (2003) *J. Cell Biol.* **163**, 901–910
- Zeeuwen, P. L., van Vlijmen-Willems, I. M., Olthuis, D., Johansen, H. T., Hitomi, K., Hara-Nishimura, I., Powers, J. C., James, K. E., op den Camp, H. J., Lemmens, R., and Schalkwijk, J. (2004) *Hum. Mol. Genet.* 13, 1069–1079
- Descargues, P., Deraison, C., Bonnart, C., Kreft, M., Kishibe, M., Ishida-Yamamoto, A., Elias, P., Barrandon, Y., Zambruno, G., Sonnenberg, A., and Hovnanian, A. (2005) *Nat. Genet.* 37, 56–65
- 48. Zeeuwen, P. L. (2004) Eur. J. Cell Biol. 83, 761-773
- Cupillard, L., Koumanov, K., Mattéi, M. G., Lazdunski, M., and Lambeau, G. (1997) J. Biol. Chem. 272, 15745–15752
- Yu, Z., Schneider, C., Boeglin, W. E., and Brash, A. R. (2005) *Biochim. Biophys. Acta* 1686, 238–247
- Eckl, K. M., Krieg, P., Küster, W., Traupe, H., André, F., Wittstruck, N., Fürstenberger, G., and Hennies, H. C. (2005) *Hum. Mutat.* 26, 351–361
- Haas, U., Podda, M., Behne, M., Gurrieri, S., Alonso, A., Fürstenberger, G., Pfeilschifter, J., Lambeau, G., Gelb, M. H., and Kaszkin, M. (2005) *J. Invest. Dermatol.* **124**, 204–211
- 53. Schadow, A., Scholz-Pedretti, K., Lambeau, G., Gelb, M. H., Fürstenberger,

G., Pfeilschifter, J., and Kaszkin, M. (2001) J. Invest. Dermatol. 116, 31-39

- Gurrieri, S., Fürstenberger, G., Schadow, A., Haas, U., Singer, A. G., Ghomashchi, F., Pfeilschifter, J., Lambeau, G., Gelb, M. H., and Kaszkin, M. (2003) *J. Invest. Dermatol.* **121**, 156–164
- 55. Rys-Sikora, K. E., Pentland, A. P., and Konger, R. L. (2003) J. Invest. Dermatol. 120, 86–95
- Hanasaki, K., Ono, T., Saiga, A., Morioka, Y., Ikeda, M., Kawamoto, K., Higashino, K., Nakano, K., Yamada, K., Ishizaki, J., and Arita, H. (1999) *J. Biol. Chem.* 274, 34203–34211
- Bezzine, S., Koduri, R. S., Valentin, E., Murakami, M., Kudo, I., Ghomashchi, F., Sadilek, M., Lambeau, G., and Gelb, M. H. (2000) *J. Biol. Chem.* 275, 3179–3191
- Muller-Decker, K., Neufang, G., Berger, I., Neumann, M., Marks, F., and Furstenberger, G. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 12483–12488
- Sung, Y. M., He, G., Hwang, D. H., and Fischer, S. M. (2006) Oncogene 25, 5507–5516
- Hébert, J. M., Rosenquist, T., Götz, J., and Martin, G. R. (1994) Cell 78, 1017–1025
- Hansen, L. A., Alexander, N., Hogan, M. E., Sundberg, J. P., Dlugosz, A., Threadgill, D. W., Magnuson, T., and Yuspa, S. H. (1997) *Am. J. Pathol.* 150, 1959–1975
- Botchkarev, V. A., Welker, P., Albers, K. M., Botchkareva, N. V., Metz, M., Lewin, G. R., Bulfone-Paus, S., Peters, E. M., Lindner, G., and Paus, R. (1998) Am. J. Pathol. 153, 785–799
- Foitzik, K., Lindner, G., Mueller-Roever, S., Maurer, M., Botchkareva, N., Botchkarev, V., Handjiski, B., Metz, M., Hibino, T., Soma, T., Dotto, G. P., and Paus, R. (2000) *FASEB J.* 14, 752–760
- Cho, Y. M., Woodard, G. L., Dunbar, M., Gocken, T., Jimènez, J. A., and Foley, J. (2003) *J. Invest. Dermatol.* **120**, 715–727
- Yuhki, M., Yamada, M., Kawano, M., Iwasato, T., Itohara, S., Yoshida, H., Ogawa, M., and Mishina, Y. (2004) *Development* 131, 1825–1833
- Vauclair, S., Nicolas, M., Barrandon, Y., and Radtke, F. (2005) *Dev. Biol.* 284, 184–193
- 67. Tong, X., and Coulombe, P. A. (2006) Genes Dev. 20, 1353-1364
- Pena, J. C., Kelekar, A., Fuchs, E. V., and Thompson, C. B. (1999) *EMBO J.* 18, 3596 – 3603
- Shridas, P., Bailey, W. M., Gizard, F., Oslund, R. C., Gelb, M. H., Bruemmer, D., and Webb, N. R. (2010) Arterioscler Thromb. Vasc. Biol. 30, 2014–2021
- 70. Xu, L., Han, C., Lim, K., and Wu, T. (2006) Cancer Res. 66, 11859-11868
- Ninomiya, Y., Yasuda, T., Kawamoto, M., Yuge, O., and Okazaki, Y. (2007) J. Steroid Biochem. Mol. Biol. 103, 44–50
- Li, N., Rivéra-Bermúdez, M. A., Zhang, M., Tejada, J., Glasson, S. S., Collins-Racie, L. A., Lavallie, E. R., Wang, Y., Chang, K. C., Nagpal, S., Morris, E. A., Flannery, C. R., and Yang, Z. (2010) *Proc. Natl. Acad. Sci. U.S.A.* 107, 3734–3739
- 73. Glotzer, D. J., Zelzer, E., and Olsen, B. R. (2008) Dev. Biol. 315, 459-473
- Jong, M. C., Gijbels, M. J., Dahlmans, V. E., Gorp, P. J., Koopman, S. J., Ponec, M., Hofker, M. H., and Havekes, L. M. (1998) *J. Clin. Invest.* 101, 145–152
- Scott, G. A., Jacobs, S. E., and Pentland, A. P. (2006) *J. Invest. Dermatol.* 126, 855–861
- Kang, H. Y., Chung, E., Lee, M., Cho, Y., and Kang, W. H. (2004) Br. J. Dermatol. 150, 462–468
- 77. Lee, J. S., Choi, Y. M., and Kang, H. Y. (2007) Exp. Dermatol. 16, 118-123
- 78. Mao-Qiang, M., Jain, M., Feingold, K. R., and Elias, P. M. (1996) *J. Invest. Dermatol.* **106**, 57-63
- Fluhr, J. W., Kao, J., Jain, M., Ahn, S. K., Feingold, K. R., and Elias, P. M. (2001) J. Invest. Dermatol. 117, 44–51
- Fluhr, J. W., Behne, M. J., Brown, B. E., Moskowitz, D. G., Selden, C., Mao-Qiang, M., Mauro, T. M., Elias, P. M., and Feingold, K. R. (2004) *J. Invest. Dermatol.* **122**, 320–329
- Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G., and Birchmeier, W. (2001) Cell 105, 533–545
- Nakamura, Y., Fukami, K., Yu, H., Takenaka, K., Kataoka, Y., Shirakata, Y., Nishikawa, S., Hashimoto, K., Yoshida, N., and Takenawa, T. (2003) *EMBO J.* 22, 2981–2991

