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Abstract

The palladium(II) complex [(Rp,S)-COP-Cl]2 and its enantiomer catalyze the rearrangement of 

linear prochiral O-allyl carbamothioates under mild conditions to provide branched S-allyl 

carbamothioates in high yield and high enantiomeric purity.

Catalytic methods for enantioselective construction of C–S bonds are less well developed 

than those for forming C–C, C–O, and C–N linkages. Among the most powerful methods 

are enantioselective palladium(0)-catalyzed displacements of allylic ester or carbonate 

precursors with sulfinate, thiolate, and thiocarboxylate nucleophiles and mechanistically 

related rearrangements of O-allyl sulfinates and carbamothioates.1–3 However, these 

methods are only useful for accessing products derived from symmetrically substituted η3-

allylpalladium precursors because of low regioselection in the capture of unsymmetrical η3-

allylpalladium intermediates by sulfur nucleophiles.2c,3

The formation of allylic sulfur compounds by [3,3]-sigmatropic rearrangements of allylic 

thiocarbonyl compounds, promoted thermally4 or by metal-catalyzed cyclization-induced 

rearrangement mechanisms,5,6 typically is not complicated by issues of regioselection. 

However, to date, catalytic enantioselective variants of such rearrangements have not been 

reported. Herein, we disclose that the commercially available palladium(II) complex 

[(Rp,S)-COP-Cl]2 (1)7 and its enantiomer catalyze the rearrangement of linear prochiral O-

allyl carbamothioates to provide branched S-allyl carbamothioates in high yield and high 

enantiomeric purity, products that are readily transformed to the parent allylic thiols.3c,d
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Because of the success of palladium(II) complexes of the COP family for catalyzing 

enantioselective [3,3]-sigmatropic rearrangements of prochiral allylic imidates to allylic 

amides,8 we examined the complexes depicted in Figure 1 as catalysts for the rearrangement 

of (E)- and (Z)-O-2-hexenyl methylxanthates 6 and 7 (Table 1).7,9 Chloride-bridged dimer 

[(Rp,S)-COP-Cl]2 (1) proved to be the most effective catalyst. With a catalyst loading of 1 

mol %, S-methylcarbonodithioate 8 was formed in 66% ee and 90% conversion after 20 h at 

40 °C from E precursor 6 (entry 1).10 As expected for a cyclization-induced rearrangement,
8d the Z stereoisomer rearranged more slowly (entries 6–10).11 Again, COP complex 1 was 

the best of the catalysts surveyed in terms of both reaction rate and enantioselection (entry 

6).

To further optimize enantioselection, the nature of the thiocarbonyl substituent was varied. 

A series of (E)-O-2-hexenyl carbamothioates were prepared from (E)-2-hexenol (9),12,13 

and their rearrangement in the presence of 1 mol % of [(Rp,S)-COP-Cl]2 at 40 °C in CH2Cl2 

was examined (Table 2). Although no trend in reaction rate was apparent, enantioselectivity 

was highest in the rearrangements of O-carbamothioates containing the smallest nitrogen 

substituents: dimethylamino (10a) and 1-azetidinyl (10c) (entries 1 and 3). Subjection of 10a 
and 10c to the same reaction conditions in the absence of catalyst resulted in recovery of 

starting material, establishing that the thermal rearrangement of these substrates was 

negligible under these conditions.14

Having determined that O-allyl carbamothioates having dimethylamino or 1-azetinyl 

substituents rearranged with higher enantioselectivity, we turned our attention to developing 

an optimized general procedure for the [COP-Cl]2-catalyzed rearrangement of O-allyl 

methyl- and 1-azetinyl-carbamothioates. As expected, increasing the catalyst loading from 1 

to 5 mol % significantly reduced reaction times. However, the higher catalyst loadings 

complicated the purification of the transposed allyl S-carbamothioates, with traces of COP 

complexes contaminating the product. Simply adding ethylenediamine (0.5 equiv) to the 

crude reaction solution at the conclusion of the reaction15 allowed pure products to be 

isolated reproducibly in high yields.16,17

Using this optimized procedure, the catalytic asymmetric rearrangement of various O-allyl 

dimethyl- and 1-azetidinylcarbamothioates was surveyed (Table 3). The starting 1-

azetidinecarbamothioates 10c and 12 were prepared in good overall yields (54–97%) from 

(E)-allylic alcohol precursors by reaction of O-methylxanthate intermediates with azetidine 

hydrochloride and triethylamine at room temperature.18 O-Allyl dimethylcarbamothioates 

10a and 13 were prepared in one step and high yields by the reaction of dimethyl-

thiocarbamoyl chloride with the appropriate allylic alcohol.18 Yields of the branched S-allyl 

carbamothioate products were generally excellent (85–99%). Two exceptions were products 

14e and 14f that contain hydroxyl and Boc-protected aniline substituents, which were 

formed in lower yields (55–77% yield) (entries 8–10). Products containing linear or 

branched hydrocarbon substituents (entries 1–3), or homoallylic TBDMS- and TIPS-

protected alcohol substituents (entries 3–6), were obtained in high enantiomeric purities 

(80–88% ee). Enantioselectivity was somewhat reduced in rearrangements of substrates 

containing unprotected allylic alcohol or a keto substituent at C5 (entries 8 and 11). Carrying 

out the rearrangement reported in entry 1 with the [(Sp,R)-COP-Cl]2 (ent-1) provided 
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ent-11c in 83% ee and 98% yield. Although the reaction time was longer (67 h), the 

rearrangement of 10c (entry 1) with ent-1 could be readily carried out at room temperature, 

giving ent-11c in 82% ee and 96% yield. The catalyst loading could be reduced to 1 mol %, 

although the reaction had to be run for a longer time. For example, carrying out the 

rearrangement reported in entry 1 for 47 h at 40 °C at 1 mol % catalyst loading provided 11c 
in 76% ee and 95% yield. Absolute configurations of 11a–e were determined by chemical 

correlation with (R)-S-hex-1-yn-3-yl benzothioate, which was prepared by Mitsonobu 

reaction of (S)-hex-1-yn-3-ol with S-benzothiotic acid.18,19 The absolute configuration of 

other S-allyl carbamothioates products was assigned by analogy.

In summary, a new catalytic asymmetric method for preparing allylic thiol derivatives has 

been developed. It is the first catalytic asymmetric method that provides branched allylic 

thiol derivatives in high regioselectivity from prochiral linear allylic precursors. Attractive 

features of the method include the ready synthesis of (E)-S-allyl carbamothioates from 

allylic alcohol precursors, the high yields and good enantioselection observed in their 

catalytic asymmetric rearrangement with [COP-Cl]2, and the ability to transform the 

branched allyl S-carbamothioate product to the corresponding enantioenriched branched 

allylic thiol by reduction with lithium aluminum hydride.3c,d,18
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Figure 1. 
COP palladium(II) catalysts.
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Table 1

Performance of Various Palladium(II) COP Catalysts in the Enantioselective Rearrangement of O-2-Hexenyl 

Methylxanthates 6 and 7

entry xanthatea catalyst convn. %b ee %c

1 6 [COP-Cl]2 (1) 90 66

2 6 COP-acac (4) 75 50

3 6 [COP-OPiv]2 (3) 42 31

4 6 [COP-OAc]2 (2) 45 30

5 6 [COP-NHCOCl3]2 (5) 35 10

6 7 [COP-Cl]2 (1) 27 50

7 7 [COP-OPiv]2 (3) 14 49

8 7 [COP-OAc]2 (2) 14 35

9 7 COP-acac (4) 12 10

10 7 [COP-NHCOCl3]2 (5) 5 6

a
Substrate concentration = 0.25 M.

b
At 20 h, by GC analysis.

c
Determined by HPLC analysis using a chiral stationary phase.
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