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Abstract
Metastasis-related recurrence often occurs in hepatocellular carcinoma (HCC) patients who
receive curative therapies. At present, it is challenging to identify patients with high risk of
recurrence, which would warrant additional therapies. In this study, we sought to analyze a
recently developed metastasis-related gene signature for its utility in predicting HCC survival
using two independent cohorts consisting of a total of 386 patients who received radical resection.
Cohort-1 contained 247 predominantly HBV-positive cases analyzed with an Affymetrix platform,
while cohort-2 contained 139 cases with mixed etiology analyzed with the NCI Oligo Set
microarray platform. We employed a survival risk prediction algorithm with training, test, and
independent cross-validation strategies and found that the gene signature is predictive of overall
and disease-free survival. Importantly, risk was significantly predicted independently of clinical
characteristics and microarray platform. In addition, survival prediction was successful in patients
with early disease, such as small (<5 cm in diameter) and solitary tumors, and the signature
predicted particularly well for early recurrence risk (<2 years), especially when combined with
serum alpha fetoprotein or tumor staging. In conclusion, we have demonstrated in two
independent cohorts with mixed etiologies and ethnicity that the metastasis gene signature is a
useful tool to predict HCC outcome, suggesting the general utility of this classifier. We
recommend the use of this classifier as a molecular diagnostic test to assess the risk that an HCC
patient will develop tumor relaps within 2 years after surgical resection, particularly for those with
early stage tumors and solitary presentation.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the most frequent malignant tumor in the liver and the
third leading cause of cancer-related deaths worldwide (1). HCC is most prevalent in
developing countries, but its incidence is increasing in developed countries due to chronic
infection with hepatitis C virus (HCV) and resulting liver cirrhosis(2). In the United States,
liver cancer has the fastest growing cancer death rate, even though, the overall cancer
mortality rate has declined during the past years (3). The poor outcome of HCC patients is
mainly caused by the high frequency of late-stage disease, metastasis and de novo tumor
formation in the diseased liver, the so-called “field effect” (4,5). Currently, surgery is the
most effective treatment, but the recurrence rate is high, mainly due to the dissemination of
malignant cells (6). Although early-stage tumors can be treated by resection, liver
transplantation or local ablation, few patients present with early-stage disease and many
patients still suffer from recurrence after treatment of early-stage tumors (7).

Metastasis contributes to 90% of all cancer related deaths, emphasizing the importance of
metastasis risk prediction (8). Unlike other tumor types, HCC metastasis occurs mainly
within the liver itself with new tumor colonies frequently invading into the major branches
of the portal vein or to other parts of the liver (9–11). It is believed that de novo
development of primary HCC in the remnant liver occurs with a lower frequency (12,13).
Recurrence by metastasis seems to occur mainly in an early period, i.e., within the first two
years after resection, whereas recurrence due to new primary lesions often occurs after a
longer period (5,14–17). Consistently, Chen et al. found that tumors that recurred late often
showed clonal origins different from the original tumors, suggesting a de novo second
primary HCC (18). The comparison of early and late recurrence of HCC after hepatectomy
revealed that early recurrence is associated with non-anatomical resection, microscopic
vascular invasion and high alpha fetoprotein (AFP) levels (14). In contrast, late recurrence is
associated with the level of chronic hepatitis, multi-nodularity, and tumor classification (14).

In a recent pilot study, we identified a metastasis signature consisting of 153 genes that
could distinguish HCC patients with portal venous metastases from those without (19). This
metastasis signature was developed based on cDNA microarray profiling of 20 well-defined
HCC cases, of which 10 presented with tumor thrombi in the major branches of the portal
vein at surgery while 10 were metastasis-free HCC patients at the time of surgery and at
follow-up. In this study, we used two independent cohorts consisting of a total of 386 HCC
patients to analyze the utility of this signature as a risk classifier for HCC recurrence and
survival.

MATERIALS AND METHODS
Study Cohorts and Patient Characteristics

Cohort-1 hepatic tissues were obtained from the Liver Cancer Institute (LCI) with informed
consent from patients who underwent radical resection between 2002 and 2003 at the Liver
Cancer Institute and Zhongshan Hospital (Fudan University, Shanghai, China). The study
was approved by the Institutional Review Board of the participating institutes. A total of 247
HCC patients were recruited. Cases were mainly from patients with a history of hepatitis B
virus (HBV) infection or HBV-related liver cirrhosis; all were diagnosed with HCC by two
independent pathologists, with detailed information on clinical presentation and pathological
characteristics. For 242 patients, disease-free survival and overall survival as well as the
cause of death were available.
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The gene expression data of cohort-2 has been published earlier (20,21). Briefly, gene
expression profiling of cohort-2 was performed by the Laboratory of Experimental
Carcinogenesis (LEC) and analyzed using NCI’s Human Array-Ready Oligo Set microarray
platform (GPL1528). The microarray data is publicly available at the Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo) with accession numbers GSE1898 and
GSE4024.

Tumor Samples and Microarray Processing
Total RNA was extracted from frozen tissues using TRIzol (Invitrogen, Carlsbad, CA)
according to the manufacturer's protocol. Only RNA samples with good RNA quality as
confirmed with the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA) and
agarose gel electrophoresis were included in the study. For microarray profiling, tumors, and
paired non-tumor tissues were profiled separately using a single channel array platform.
Gene expression profiling of 22 tumor samples was carried out on Affymetrix GeneChip
HG-U133A 2.0 arrays (Affymetrix, Santa Clara, CA) according to the manufacturer's
protocol. The fluorescent intensities were determined with an Affymetrix GeneChip Scanner
3000, controlled by GCOS Affymetrix software. The remaining 225 tumor samples were
processed on the 96 HT HG-U133A 2.0 microarray platform. The fluorescent intensities
were determined with an Affymetrix GeneChip HT Array Plate Scanner, controlled by
GCOS Affymetrix software. Quality controls included image inspection as well as Relative
Log Expression (RLE) and Normalized Unscaled Standard Error (NUSE) implemented in
the affyPLM package available at the Bioconductor (www.bioconductor.org). In accordance
with Minimum Information About a Microarray Experiment (MIAME) guidelines, we
deposited the microarray data and additional patient information into the GEO repository
with accession number GSE14520.

Affymetrix gene expression arrays obtained from different platforms were combined with
the matchprobes package in R (http://www.R-project.org)(22). Raw gene expression data
were normalized using the Robust Multi-array Average (RMA) method and global median
centering (23). For genes with more than one probe set, the mean gene expression was
calculated.

Statistical Analysis
Class comparison and survival risk prediction of the gene expression data was performed
with the BRB-Array Tools software (http://linus.nci.nih.gov/BRB-ArrayTools.html; Version
3.7.0). For survival risk prediction, we identified genes whose expression was significantly
related to survival by applying univariate Cox proportional hazards regression followed by
principal component analysis. Principal component analysis is a computational procedure
that transforms a number of possibly correlated variables into a significantly smaller number
of uncorrelated variables called principal components. This resulted in a regression
coefficient (weight) related to survival time based on two principal components. Next, to
compute a prognostic index, the weighted average of the principal component values was
calculated, using the regression coefficients derived from the Cox regression, described
above. Finally, this prognostic index was used to split samples into two groups of equal size
by the median of the prognostic index. Thereby, a high value of the prognostic index
corresponded to a high value of hazard of death (high risk), and consequently a relatively
poor predicted survival.

Kaplan-Meier survival curves for the predicted cases to have above average risk and the
cases predicted to have below average risk were plotted. In order to evaluate the predictive
value of the method, 10-fold cross-validation with 1000-fold random permutation of the
Cox-Mantel log-rank test was performed.
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For cross-validation of the LCI and LEC cohorts, we converted the gene expression data into
z-scores and then performed class prediction in BRB-Array Tools. First, we used the LEC
cohort for training/testing and predicted the outcome of the LCI cohort and then, we used
the LCI cohort for training/testing and predicted the outcome of the LEC cohort. Six class
prediction algorithms, Support Vector Machines (SVM), Nearest Centroid (NC), 3-Nearest
Neighbor (3-NN), 1-Nearest Neighbor (1-NN), Linear Discriminant Analysis (LDA) or
Compound Covariate Predictor (CCP), were used to determine whether mRNA expression
patterns could accurately discriminate good and poor survival HCC groups in an
independent data set. The accuracy of the prediction was calculated after 1000 repetitions of
this random partitioning process to control the number and proportion of false discoveries.

Kaplan-Meier survival analysis was performed using GraphPad Prism software 5.0
(GraphPad Software, San Diego, CA) and the statistical p values were generated by the Cox-
Mantel log-rank test. Cox proportional hazards regression was used to analyze the effect of
clinical variables on patient survival using STATA 9.2 (College Station, TX). Clinical
variables included age, gender, HBV active status, pre-resection AFP, cirrhosis, alanine
transferase (ALT), tumor size or size of the largest tumor when multiple tumors are present,
nodular type and the HCC prognosis staging systems Barcelona Clinic Liver Cancer
(BCLC), Cancer Liver Italian Program (CLIP) or Tumor Node Metastasis (TNM)
classification (24–26). An AFP cutoff of 300 ng/mL, ALT of 50 U/L and tumor size of 5cm
were used in Cox regression analysis and are clinically relevant values used to distinguish
patient survival. A univariate test was used to examine the influence of the ‘metastasis’ gene
predictor or each clinical variable on patient survival. A multivariate analysis was performed
to estimate the hazards ratio of the predictor while controlling for clinical variables that were
significantly associated with survival in the univariate analysis. Since tumor size and
nodular type were collinear with tumor staging, these variables were not included in the
multivariate analysis. It was determined that the final model met the proportional hazards
assumption. Receiver operating characteristic (ROC) curves were computed by using the
tumor expression level for compound covariate prediction and the ROCR package (27). The
statistical significance was defined as p <0.05.

Endpoints
We analyzed the overall survival, which was defined as time from surgery to death from any
disease, as well as the disease-free survival, which was defined as the time from surgery to
any recurrence, distant metastasis or death from any cause. The Kaplan-Meier estimator was
used to display time-to-event curves for these two endpoints.

RESULTS
Redefining the Metastasis Gene Signature

We reanalyzed the data from our pilot study on 20 well-defined HCC cases used to identify
our recently published 153 gene HCC metastasis signature with the updated gene annotation,
sequence data and software (19). Class comparison identified 181 differentially-expressed
cDNA probes (p < 0.001, FDR < 0.05). Thirty six of the 181 probes did not have any gene
annotation available in the original study (19). Alignment of the probe sequences to the
human genome (NCBI BLAST) resulted in the annotation information of 8 additional genes.
Therefore, 161 out of 181 probes matched to annotated genes (including all original 153
genes; Supplementary Table 1). This new 161 gene signature is referred to as a metastasis
risk classifier and was used for subsequent analysis.
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Predicting HCC Survival Using Two Independent Validation Cohorts
Next, we developed a strategy for testing the metastasis risk classifier by incorporating two
independent patient cohorts, i.e., LCI and LEC cohorts (Figure 1A). We aimed to determine
whether this classifier can predict survival, since HCC metastasis is the main causative
factor for poor outcome. The recruitment criteria of the LCI cohort were based on the
characteristics of the 40 original patients previously described (19). In addition to the two
different microarray platforms used, the LCI and LEC cohorts differed in their patient
characteristics (Table 1). The LCI cohort mainly consists of HBV positive Chinese patients
(95.6%), whereas, the LEC cohort is heterogeneous, containing a mixture of Chinese,
European and American patients with 41.7% HBV positive, 12.2% HCV positive and 23.0%
non-viral HCC. The two cohorts also differed in gender distribution, the number of patients
with underlying cirrhosis, tumor size and survival time (Table 1). The survival time of
patients in the LEC cohort was significantly shorter than in the LCI cohort which was
consistent with the larger tumor size of the LEC cohort.

We tested the genes of the metastasis risk classifier for their survival association. The
survival risk prediction based on 10-fold cross-validation classified patients into low and
high risk groups with a significant difference in survival as analyzed by Kaplan-Meier plot,
with log-rank p values of p < 0.0001 and p = 0.0005 in LCI and LEC cohorts, respectively
(Figure 1B and C top panel). The cross-validated misclassification rates were significantly
lower than expected by chance (permutation p < 0.01; Figure 1). Similar results were
observed when disease-free survival was used as an end point (Figure 1B and C bottom
panel). Thus, this signature was independently validated as a classifier to predict survival in
addition to metastasis.

We performed Cox proportional hazards regression analysis to determine whether the
metastasis gene signature was confounded by the underlying clinical parameters. In
univariate Cox analysis, the unadjusted hazard ratio for the overall survival in the high risk
versus the low risk patient groups in the LCI cohort was 2.25 (95% CI = 1.48–4.5). The Cox
analysis was stratified by several clinical factors and revealed that the AFP serum levels,
underlying liver cirrhosis, tumor size, microscopic vascular invasion and tumor staging such
as Barcelona Clinic Liver Cancer (BCLC), Cancer Liver Italian Program (CLIP) or Tumor
Node Metastasis (TNM) were associated with overall survival (Table 2) (24–26).
Multivariate Cox regression analysis accounting for the prognostic clinical factors that were
significant in the univariate analysis revealed that the gene signature is an independent
predictor of survival (Table 2). Only limited clinical information was available for the Cox
regression analysis in the LEC cohort (Table 1). Analysis of the LEC cohort showed that the
gene signature was a strong prognostic factor for patient survival with a hazard ratio of 2.59
(95% CI = 1.61–4.17). The univariate Cox regression analysis of the available
clinicopathological data of the LEC cohort did not result in any significant clinical factor
and thus no further multivariate analysis was performed (data not shown).

Performance of the metastasis risk classifier
It has been suggested that there are two biologically different forms of HCC recurrence, i.e.,
early and late recurrence (5,14–17). Early recurrence is believed to occur within the first two
years after HCC treatment, mainly contributed by dissemination of metastatic HCC cells. In
contrast, late recurrence is thought to originate de novo in the at risk liver and early
recurrence is generally more common than late recurrence (18,28). Consistently, when we
analyzed the cumulative recurrence in the LCI cohort, we found that the HCC recurrence
rate is biphasic (Figure 2A–B). The cumulative recurrence rate was 20.35% per year during
the first two years after diagnosis, whereas, from the rate beyond two years after diagnosis
decreased to 6.77% per year (Figure 2A). In agreement with these data, the recurrence rate
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peaked during the first year and persisted through the following years (Figure 2B). We did
not analyze the LEC cohort due to the lack of sufficient recurrence data in this cohort.

To study the prognostic capacity of the metastasis risk classifier with respect to the time of
recurrence, we compared the hazards ratios of patient groups with early and late recurrence.
The metastasis risk classifier significantly predicted overall survival and disease-free
survival only in patients with early, but not with late recurrence (Figure 2C–F). In addition,
the classifier was not affected by postoperative adjuvant therapy and was able to predict
overall survival within the first two years in patients with small solitary tumors (tumor size
≤ 5cm; Figure 2D). These results are consistent with the hypothesis that early and late
recurrence differ in their gene expression profiles and indicate that the metastasis risk
classifier is only applicable to metastasis-related relapse and can be used to classify early
HCC recurrence.

Independent Cross-Validation and Analysis of Sensitivity and Specificity
In order to determine if the signature has any practical measure, we performed a new sample
assignment/prediction simulation strategy by independently cross-validating the two cohorts.
We converted the gene expression data of both cohorts into z-scores. The resulting survival
risk prediction was then used for unbiased cross-validation of both cohorts. We used six
class prediction algorithms, Support Vector Machines (SVM), Nearest Centroid (NC), 3-
Nearest Neighbor (3-NN), 1-Nearest Neighbor (1-NN), Linear Discriminant Analysis (LDA)
or Compound Covariate Predictor (CCP), to predict good and poor survival HCC subgroups.
To assess outcome prediction, we used one of the cohorts as a template and the second
cohort as an independent validation set and vice versa. After using the LEC cohort as the
template cohort and the LCI cohort as the validation cohort, Cox proportional hazards
regression analysis showed that five out of the six prediction algorithms were able to
significantly predict outcome (Figure 3A). Next, we used the LCI cohort as template and the
LEC cohort as validation cohort and found that all six prediction algorithms significantly
predicted the patient outcome (Figure 3B). Therefore, even though the two cohorts differed
in their patient characteristics and were analyzed on two different microarray platforms, the
metastasis risk classifier was consistently able to predict the survival. Of note, both cohorts
could prospectively serve as templates for patient classification in the future. Receiver
operating characteristic (ROC) curves showed that the predictive accuracy of the Compound
Covariate Predictor had high sensitivity (i.e. a low probability of falsely classifying a patient
as low risk; The sensitivity is 0.760 and 0.839 for the LCI and LEC cohort, respectively.)
and good specificity (i.e. a low probability of falsely classifying a patient as high risk; The
specificity is 0.603 and 0.649 for the LCI and LEC cohort, respectively.) in both cohorts
(Figure 3C and D).

Improving Prediction by Combining Clinical Prognostic Factors and the Metastasis Risk
Classifier

Currently, the only clinically available marker for HCC is alpha fetoprotein (AFP), whose
serum levels have been linked to HCC prognosis (20,29) (Table 2 and Figure S1). We
sought to determine whether prognostic prediction of the LCI cohort (Figure 4A) and the
LEC cohort (Figure 4B) could be improved by combining AFP and the metastasis risk
classifier. We divided patients into subgroups based on an AFP level cutoff of 300 ng/mL
and the survival risk determined by the metastasis risk classifier (Figure 4). This resulted in
three outcome groups (low risk, high risk and discordant). While the low and high risk
patients were both classified into the same outcome groups by AFP and the gene classifier, it
appeared that there was a subset of patients misclassified by both methods (discordant cases,
i.e., high risk according to the metastasis risk classification and low risk prediction by AFP
or vice versa). Kaplan-Meier survival analysis showed that patients with discordant risk
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prediction have poorer outcome than low risk patients and therefore, might benefit from
more rigid therapies. Stratification of discordant cases revealed that neither the gene
signature nor AFP is a stronger predictor but that the combination of the gene signature
classifier with AFP may improved prediction outcome (Figure S2).

We also sought to determine if the gene classifier can improve BCLC staging as both were
independent predictors of HCC survival. BCLC staging, which includes tumor size and liver
function, is frequently used in the clinic to determine treatment options. BCLC stage A
includes early stage HCC patients with single tumors or three tumors smaller than 3 cm and
Child-Pugh class A–B. Patients with BCLC stage A are suitable for radical therapies such as
resection, transplantation or percutaneous treatments. We only performed analyses on the
LCI cohort since the LEC cohort lacks BCLC staging data. Similarly to the results obtained
with AFP, we found that the metastasis risk classifier improved survival prediction when
combined with BCLC (Figure 5A). Importantly, the gene signature was capable of
significantly stratifying patients into low and high risk groups, especially among those with
early stage HCC as defined by BCLC stage A (Figure 5B and Figure S3). Therefore, these
results confirmed that the gene signature can significantly improve BCLC recurrence risk
assessment. Taken together, combination of the recurrence-risk classifier with clinical
staging as a molecular diagnostic test might be clinically useful to improve recurrence risk
prediction and to determine treament modality, particularly for those with early stage tumors
and solitary presentation.

DISCUSSION
Recurrence is a common post-surgical event contributing to the poor prognosis of HCC
patients. Currently there are few effective therapeutic options to reduce metastasis-related
recurrence. This is due, in part, to our inability to identify in advance the subgroup of HCC
patients that are at high risk of developing metastatic disease. Risk stratification is
particularly important for those patients with early stage of HCC who do not have vascular
invasion and regional tumor cell dissemination at the time of diagnosis. This problem has
hindered our ability to identify a specific therapeutic regimen that could improve the
outcome of HCC since no ‘one-size-fits-all’ therapeutic strategy has been shown to be
effective. Recent findings from two phase III randomized control trials on the use of
Sorafenib as a therapeutic agent for advanced HCC are encouraging, but the survival benefit
appears modest and its value in the prevention and treatment of postoperative metastatic
recurrence are still under investigation (30,31). There is an urgent need to develop genetic
profiling tools to stratify patients with respect to prognosis and response to therapy, an
essential step towards personalized medicine-based cancer management. For this purpose,
we recently identified miR-26 as a biomarker to predict HCC survival and response to
adjuvant IFN therapy (32).

The traditional tumor evolution model suggests that a primary tumor is initially benign and
over time acquires mutations that give a few tumor cells the ability to metastasize (8,33). If a
tumor is detected and treated before it spreads, the chances of long-term survival should be
increased (34). Therefore, early detection is crucial to improve patient outcome. However,
recent publications show that even if tumors are detected early, they might have already
completed most of the steps on their way to metastasis (35). For example, genome analyses
of primary colon tumors and paired metastases suggest that the genetic machinery that
causes metastases may be hard-wired into the tumor from the beginning (36). Similarly,
copy number analysis of prostate cancers and their metastasis revealed that lethal metastatic
prostate cancer is of monoclonal origin and that most metastatic cancers arise from a single
cell (37). Consistently, our recent studies revealed that global gene expression patterns are
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very similar between primary HCCs and their paired metastases (19). These results provide
a rationale for profiling primary tumors to predict patient prognosis.

In this study, we have validated our recently identified metastasis risk classifier by profiling
primary HCC tissues in two independent cohorts with mixed etiologies as a tool to predict
recurrence and survival attributed to metastatic HCC. Multivariate analyses including
various clinical risk factors and clinical staging indicate that the molecular classifier is an
independent prognostic predictor, especially applicable to early recurrence, a poor
prognostic factor mainly associated with metastatic dissemination of HCC cells, but not late
recurrence, an outcome contributed mainly by high carcinogenic activities of diseased livers.
These results indicate that early and late recurrences differ in their molecular profile.
Importantly, the gene classifier could predict poor outcome in patients with small solitary
tumors, which has been traditionally viewed as having low risk for tumor recurrence.
Therefore, the metastasis risk classifier adds independent prognostic value to the recurrence
risk assessment, especially in early stage HCC patients where current clinical staging fails to
provide an accurate assessment. The ability to identify patients with high risk for recurrence
in advance would reduce unnecessary economic burden and side effects for those low risk
patients who may not benefit from these treatments.

Since our molecular signature is independent of other prognostic clinical factors, we also
tested whether an improved prediction can be achieved by combining the signature with
clinically relevant serum AFP or tumor staging (38,39). Our data confirmed this hypothesis
in two independent cohorts when the gene signature was combined with AFP. Encouraging
results were also obtained in the LCI cohort in which the gene classifier improves HCC
survival prediction when combined with BCLC staging, especially for those with early stage
HCC. These data require further validation in additional cohorts as tumor staging data was
not available in the LEI cohort. As the combination of the metastasis risk classifier and
either AFP or BCLC staging leads to the identification of discordant cases which have
poorer outcome than low risk cases we suggest that patients with discordant risk prediction
should receive more rigid therapies.

It should be noted that osteopontin (OPN) was the top ranked gene in our classifier (i.e. the
most highly over expressed in metastatic HCC) (19). Further studies indicated that OPN
may be a potential therapeutic target for metastatic HCC as inhibition of OPN by
neutralizing antibody, small peptides or lentivirus-mediated RNA interference can block
HCC cell invasion in vitro and inhibited pulmonary metastasis in mice (19,40,41). Further
studies are warranted to determine whether the application of the metastasis risk classifier in
combination with novel agents such as inhibitors of OPN can improve HCC outcome.

For other cancer types, there are already gene classifiers used in the clinic. For breast cancer,
there are two commercial reference laboratory tests based on gene-expression profiling
(MammaPrint® and Oncotype DX®) that are either agency-approved or widely-accepted by
the oncology community (42–44). The Oncotype DX®assay measures the expression of 16
genes by qRT-PCR and requires a routinely processed formalin-fixed paraffin embedded
tumor tissue block. The MammaPrint® assay measures the expression of 70 genes with a
microarray and requires snap frozen tumor tissue or fresh tumor tissue procured in a special
buffer. Therefore, we suggest that the metastasis gene signature, similarly to the
MammaPrint® assay, can be used as an assay in the clinic since we showed that the
metastasis gene signature can be applied to different microarray platforms.

In conclusion, we have validated the metastasis risk classifier as a tool to predict HCC
outcome in two independent cohorts with mixed etiologies and ethnicity, suggesting the
general utility of this classifier. In addition, the gene classifier was able to predict disease-
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free survival and early recurrence. In combination with serum AFP levels or BCLC staging,
the gene classifier may improve survival risk prediction. Thus, we recommend the use of
this classifer as a molecular diagnostic test to assess the recurrence risk of HCC patients,
particularly those with early stage after curative resection.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Survival risk prediction analysis and application of the metastasis gene signature. (A)
Schematic overview of the study design. (B) Kaplan-Meier survival curves showing the
overall survival (top panel; N = 242) and the disease-free survival (bottom panel; N = 242)
of the predicted high and low risk groups in the LCI cohort. (C) Kaplan-Meier survival
curves showing the overall survival (top panel; N = 113) and the disease-free survival
(bottom panel; N = 64) of the predicted high and low risk groups in the LEC cohort.
Displayed are the Cox-Mantel log-rank, the permutation p-values and the number of patients
at risk for each Kaplan-Meier survival curve.
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Figure 2.
Analysis of the performance of the survival risk prediction dependent on HCC tumor
recurrence over time after surgery. (A) Cumulative HCC recurrence rate over time. (B)
Smoothed recurrence rate per month over time. (C) Forest plots showing Hazard Ratios for
high risk patients in the indicated clinical groups of patients. Hazard Ratios are shown for
the overall survival at 5 years, (D) the overall survival at 2 years, (E) the disease-free
survival at 5 years and (F) the disease-free survival at 2 years of follow-up of the high risk
subgroup as compared with the low risk group. Hazard ratios above 1.0 indicate
significantly worse outcome. ND, not determined.
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Figure 3.
Unbiased cross-validation of the survival risk prediction and analysis of the sensitivity and
specificity by Receiver Operating Characteristic (ROC) curves. (A) Six class prediction
algorithms, i.e., Support Vector Machines (SVM), Nearest Centroid (NC), 3-Nearest
Neighbor (3-NN), 1-Nearest Neighbor (1-NN), Linear Discriminant Analysis (LDA) or
Compound Covariate Predictor (CCP) were used to predict good and poor survival HCC
groups in the independent validation data set. Forest plots show Hazard Ratios for high risk
patients in clinical groups of patients. Hazard Ratios are shown for the overall survival for
the LCI cohort at 5 years using the LEC cohort as a training/test set and predicting outcome
in the LCI cohort. (B) Hazard Ratios of the LEC cohort are shown using LCI as the training/
test set and prediction of the LEC cohort are depicted. (C) ROC curve of the LCI cohort and
(D) ROC curve of the LEC cohort applying the compound covariate predictor. AUC; area
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under the curve. SVM, Support Vector Machines, NC, Nearest Centroid, 3-NN, 3-Nearest
Neighbor, 1-NN, 1-Nearest Neighbor, LDA, Linear Discriminant Analysis. CCP, Compound
Covariate Predictor.
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Figure 4.
Combination of survival risk prediction applying the Compound Covariate Predictor (CCP)
and AFP (300 ng/mL cutoff) to stratify patient subgroups. (A) The Kaplan-Meier curves
show overall survival of the LCI cohort (N = 238) and (B) LEC cohort (N = 104) sub-
grouped by survival risk prediction and AFP. Disconc.: cases with discordant risk
assessments, i.e., high risk according to the metastasis risk classification and low risk
prediction by AFP, i.e. AFP less than 300 ng/mL.
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Figure 5. A
Patient stratification using survival risk prediction and BCLC staging. (A) Kaplan-Meier
curves are showing overall survival of the LCI cohort (N = 225) by sub-grouping according
to CCP class prediction of good or poor prognosis and BCLC stage 0-A or B–C. (B) Kaplan-
Meier curves of patients with BCLC staging A (N = 153) stratified by CCP survival risk
prediction. Disconc.: cases with discordant risk assessments, i.e., high risk according to the
metastasis risk classification and early stage prediction by BCLC.
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Table 1

Clinical Characteristics of Patients in the LCI and LEC Cohort at the Time of Surgery.

Clinical variable LCI
(N=247)

LEC
(N=139) P valuea

Etiology (HBV/HCV/HBV+HCV/non-viral/NAb) (236/ 0/ 5/ 2/ 4) (58/ 17/ 4/ 32/ 28) <0.0001

AVR-CCc (Yes/No/NA) 62/ 179/ 6 NA NA

Gender (Male/Female/NA) 214/ 31/ 2 102/ 37/ 0 0.0008

Age (>=50years/<50years/NA) 136/ 109/ 2 92/ 47/ 0 0.0515

AFP (>300ng/mL/<=300ng/mL/NA) 111/ 130/ 6 55/73/ 11 0.5844

ALT (>50U/L/<=50U/L/NA) 101/ 144/ 2 NA NA

Cirrhosis (Yes/No/NA) 224/ 21/ 2 69/ 70/ 0 <0.0001

Tumor size (>5cm/<=5cm /NA) 89/ 155/ 3 72 /67/ 0 0.0038

Multinodular (Yes/No /NA) 52/ 193/ 2 NA NA

Encapsulation (No/Yes/NA) 114/ 129/ 4 NA NA

Microscopic vascular invasion (Yes/No/NA) 107/ 90/ 50 NA NA

BCLC staging (B-C/A-0/NA) 53/ 174/ 20 NA NA

CLIP staging (1–5/0/NA) 128/ 99/ 20 NA NA

TNM staging (II-III/I/NA) 130/ 97/ 20 NA NA

Survival at 60 Months (Events/Censored/NA) 95/ 147/ 5 67/ 46/ 26 <0.0001d

a
Fisher’s exact test

b
NA: not available

c
AVR-CC: active viral replication chronic carrier

d
Log-rank test
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Table 2

Univariate and multivariate Cox regression analysis of clinical factors associated with overall survival of the
LCI cohort (N=242)a

Clinical variable Hazard Ratio (95% CIb) P value

Univariate Analysisc

  Predictor (high vs low risk) 2.25 (1.48–4.5) <0.001

  Gender (Male vs Female) 1.86 (0.90–3.83) 0.094

  Age (>= 50 years vs < 50 years) 0.80 (0.53–1.19) 0.209

  AFP (> 300ng/mL vs <= 300ng/mL) 1.64 (1.10–2.45) 0.016

  ALT (> 50U/L vs <= 50U/L) 1.15 (0.77–1.73) 0.483

  Cirrhosis (Yes vs No) 5.09 (1.25–20.7) 0.023

  Tumor size (> 5cm vs <= 5cm) 2.01 (1.35–3.01) 0.001

  Multinodular (Yes vs No) 1.65 (1.06–2.57) 0.025

  Encapsulation (No vs Yes) 0.76 (0.50–1.14 0.181

  Microscopic vascular invasion (Yes vs No) 1.97 (1.26–3.09) 0.003

  HBV (AVR-CC vs CC)d 1.36 (0.85–2.16) 0.196

  BCLC staging (B–C vs A-0) 3.69 (2.38–5.73) <0.001

  CLIP staging (1–5 vs 0) 2.19 (1.38–3.48) 0.001

  TNM staging (II-III vs I) 3.08 (1.88–5.05) <0.001

Multivariate Analysise

  Predictor (high vs low risk) 1.64 (1.03–2.60) 0.038

  AFP (> 300ng/mL vs <= 300ng/mL) 1.31 (0.84–2.03) 0.237

  Cirrhosis (Yes vs No) 3.91 (0.96–16.0) 0.058

  TNM staging (II-III vs I) 2.72 (1.64–4.51) <0.001

Multivariate Analysisf

  Predictor (high vs low risk) 1.91 (1.22–2.99) 0.005

  AFP (> 300ng/mL vs <= 300ng/mL) 0.74 (0.42–1.29) 0.289

  CLIP staging (1–5 vs 0) 2.38 (1.29–4.40) 0.006

Multivariate Analysisg

  Predictor (high vs low risk) 1.79 (1.14–2.82) 0.012

  AFP (> 300ng/mL vs <= 300ng/mL) 1.16 (0.75–1.80) 0.542

  BCLC staging (B–C vs A-0) 3.43 (2.19–5.36) <0.001

Bold indicates significant P values.

a
Analysis was performed on the entire gene expression cohort.

b
95% CI, 95% confidence interval.

c
Univariate analysis, Cox proportional hazards regression.

d
AVR-CC (active viral replication chronic carrier); CC (chronic carrier).

e
Multivariate analysis, Cox proportional hazards regression adjusting for AFP status, cirrhosis and TNM staging.

Cancer Res. Author manuscript; available in PMC 2011 December 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Roessler et al. Page 21

f
Multivariate analysis, Cox proportional hazards regression adjusting for AFP status and CLIP staging.

g
Multivariate analysis, Cox proportional hazards regression adjusting for AFP status and BCLC staging.
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