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muscle atonia induced by carbachol infusion into the SLD re-
gion.8 To definitely resolve the issue of the chemical nature of 
PS-generating neurons, we compared the number of glutama-
tergic neurons activated in the SLD in control rats, rats deprived 
of PS for 72 h, and rats allowed to recover during 3 h from that 
deprivation. To this aim, we developed a new method combin-
ing immunodetection of Fos, a marker a neuronal activation, 
with in situ hybridization of the mRNA coding for vGLUT2.

METHODS
All experiments were conducted in accordance to the French 

and European Community guidelines for the use of research 
animals and approved by the institutional animal care and use 
committee of the University of Lyon 1 (protocols BH 2006-09 
and BH 2006-10). Sprague-Dawley male rats were housed in-
dividually in recording barrels under a constant 12h light-dark 
cycle (light on at 07:00). Room temperature was maintained at 
21 ± 1°C, and standard rodent food and water were available ad 
libitum throughout the experiment.

Surgery and Polygraphic Recordings
As previously described,6 12 rats (240-260g, Charles River, 

France) were implanted for electroencephalographic (EEG) and 
electromyographic (EMG) recordings. After 5 days recovery 
from surgery and 4 days habituation to the recording condi-
tions, rats were connected to a cable attached to a rotating con-
nector (Plastics One Inc., CT) to allow free movements of the 
animal within its home cage.

Paradoxical Sleep Deprivation and Recovery
PS deprivation was performed using the inverted flowerpot 

technique. Rats were divided in 3 groups: controls (PSC), de-
prived of PS (PSD), and PS hypersomniac (PSR) (n = 4 in each 
group). PSC animals remained in their standard cage through-
out the experiment. After a 48 h baseline recording, PSD and 

INTRODUCTION
Based on lesion, local pharmacological unit recordings, and 

Fos staining studies, it is now well accepted that paradoxical 
sleep (PS, also known as REM sleep) induction and mainte-
nance are due to the activation of neurons located in a small 
pontine nucleus named sublaterodorsal tegmental nucleus 
(SLD) in rats.1,2 However, the neurochemical nature of these 
PS-generating neurons is still a matter of debate. It was long 
thought that they were cholinergic,3 and it was more recently 
proposed that some of them might be GABAergic.4 However, 
we found that SLD neurons activated after PS hypersomnia ex-
press neither choline acetyltransferase, the enzyme of synthesis 
of acetylcholine,5 nor glutamate decarboxylase, that of GABA.6 
A few studies suggested that SLD PS-on neurons might in fact 
be glutamatergic. Indeed, neurons expressing the vesicular glu-
tamate transporter 2 (vGLUT2), a specific marker of glutama-
tergic neurons, were observed in the SLD.4 It was also shown 
that glutamate release is specifically increased during PS in the 
nucleus reticularis magnocellularis (Mc),7 known to receive 
projections from the SLD and to contain glycinergic premoto-
neurons responsible for muscle atonia during PS.1 Moreover, 
Lai and Siegel showed in cats that local application of gluta-
mate into the Mc induces muscle atonia in a dose-dependent 
manner. Finally, blockade of glutamatergic transmission by ap-
plication of kainate or NMDA antagonists into the Mc impaired 
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sections taken at 300 µm intervals (between AP -8,7 and -9,3 
from bregma). The number of Fos+ and Fos/vGLUT2+ plotted 
neurons per brainstem structure was automatically counted and 
exported using Mercator software (ExploraNova). For struc-
tures present on several sections, neurons counted on all sec-
tions were summed.

Statistical Analysis
Nonparametric analyses of variance (Kruskal-Wallis test) 

were performed on the vigilance states and on the number of 
labeled neurons for each structure across experimental condi-
tions (PSC, PSD, and PSR). Post hoc PLSD Mann-Whitney 
tests were used to identify significant pairwise differences (PSR 
or PSD vs PSC; PSR vs PSD). All statistics were performed us-
ing StatView software.

RESULTS

Quantification of Sleep
During the last 150 min before sacrifice, rats deprived of 

PS for 72 h by the inverted flower pot method (PSD animals) 
showed almost no PS (2.3% ± 2.3%), whereas controls (PSC 
animals) and animals allowed to recover from the deprivation 
(PSR animals) spent respectively 7.1% ± 1.8% and 37.4% ± 
3.2% of their time in PS. PSR animals spent significantly more 
time in PS than PSC (P = 0.0209) and PSD (P = 0.0209) ani-
mals, and PSD rats spent significantly less time in PS than PSC 
rats (P = 0.0433). PSR animals displayed less waking (16.1% ± 
5.7%) than PSC (49.4% ± 8.5%; P = 0.0433) and PSD (66.8% 
± 4.6%; P = 0.0209) animals. No difference in SWS quantities 
was observed between the 3 groups of animals (PSC: 43.6% ± 
7.0%; PSD: 31.7% ± 3.1%; PSR 46.5% ± 4.5%) (Figure S1).

Localization of the Single-Labeled Fos+ and Fos/vGLUT2+ 
Double-Labeled Neurons

We focused our analysis on the brainstem level containing 
the SLD. In agreement with our previous results,5,6 the lateral 
parabrachial nucleus (LPB) was the only structure containing 
significantly more Fos+ neurons in PSD (106.6 ± 22.5) and 
PSR animals (82.4 ± 9.4) compared to PSC ones (33.0 ± 11.2) 
(Table S1). In addition, 3 structures, namely the laterodorsal 
tegmental nucleus (LDTg), the caudal part of the pontine retic-
ular nucleus (PnC), and the SLD contained significantly more 
Fos+ neurons in PSR than in PSD and PSC animals (Figure 1F 
and Table S1).

The number of Fos/vGLUT2+ double-labeled cells was sig-
nificantly increased in the LPB after PS deprivation (72.0 ± 
15.4) and PS recovery (55.9 ± 4.8) compared to control (17.0 ± 
6.4). These double-labeled cells constituted for both conditions 
68% of the total number of Fos+ cells.

In the LDTg and SLD, the number of Fos/vGLUT2+ neu-
rons increased specifically in the PSR condition compared to 
the PSC and PSD conditions (Table S1). Within the SLD, the 
number of Fos/vGLUT2+ neurons increased from 2.3 ± 0.8 in 
PSC and 2.6 ± 0.4 in PSD to 35.6 ± 3.8 in PSR (Figure 1A-C, G 
and Table S1). Double-labeled cells constituted 84% and 46% 
of the total number of Fos+ neurons in the SLD and LDTg, re-
spectively. Interestingly, as illustrated in Figure 1E, vGLUT2+ 
neurons of the SLD that expressed Fos after PS recovery were 

PSR rats were placed (10:00) on a platform surrounded by 2 
cm of water for 72 h preventing rats from entering PS. The last 
day, PSR animals were removed from the platform (10:00) and 
were replaced on a dry bed of woodchips to allow PS recovery. 
All animals were anesthetized for perfusion at approximately 
13:00. PSR rats were anesthetized 150 min after the appearance 
of the first PS episode, occurring approximately 30 min after 
the animals were put back in their home cage.

Perfusion, Fixation, and Section
Rats were perfused with a Ringer’s lactate solution contain-

ing 0.1% heparin, followed by 500 ml of a fixative solution 
composed of 4% paraformaldehyde in 0.1 M phosphate buf-
fer (PB, pH 7.4). Brains were removed and stored at 4°C for 1 
night in the fixative solution and then for 3 days at 4°C in 30% 
sucrose in 0.1 M PB. Brains were rapidly frozen in methyl-
butane cooled with dry ice, and 30-µm-thick coronal sections 
were cut on a cryostat (Microm, France). Free-floating sections 
were collected and stored at −20°C in an RNase free cryopro-
tectant solution.

Fos Immunohistochemistry Combined with vGLUT2 mRNA In 
Situ Hybridization

The antisense and sense digoxigenin-labeled probe against 
vGLUT2 mRNA were synthesized from a recombinant linear-
ized plasmid containing the vGLUT2 cDNA using a nonradio-
active RNA labeling kit (Roche Diagnostic, Switzerland). As 
described before,6,9 brain sections were successively incubated 
with a rabbit antiserum to Fos (1:3000; Merck, Germany), a 
biotinylated goat anti-rabbit IgG solution (1:1000; Vector Lab-
oratories, Burlingame, CA) and an ABC-HRP solution (1:1000; 
Elite kit, Vector Laboratories). Then sections were immersed 
for around 15 min in 3,3-diaminobenzidine-4 HCl (DAB, Sig-
ma-Aldrich, St. Louis, MO) and 0.003% H2O2. They were then 
rinsed in PBST containing 10 mM dithio-threitol (DTT, Sigma-
Aldrich) and in standard saline citrate solution (SSC 2X). Sec-
tions were then placed overnight at 65°C in the hybridization 
buffer containing 0.5 µg/mL of the digoxigenin-labeled probe. 
Sections were washed in SSC 1X, 50% formamide, 0.1% 
Tween-20 and treated with RNase A (USB Corporation, Cleve-
land, OH). Sections were then incubated with an anti-digoxi-
genin antibody conjugated to alkaline phosphatase (1:2000, 
Roche Diagnostic). Staining was revealed using nitroblue tet-
razolium (NBT) and 5-bromo-4-chloro-3-indolyl-phosphate 
(BCIP) (Roche Diagnostic). Controls in the absence of primary 
antibodies (anti-Fos and anti-digoxigenin) or with the sense 
probe were run to ensure the specificity of the labeling.

Analysis of Sleep-Wake State Data
Vigilance states were discriminated using EEG and EMG 

data as previously described.6 For each rat, the last 150 min of 
EEG/EMG recordings before perfusion were analyzed by 5 sec 
epochs in order to determine quantities of W, SWS, and PS.

Analysis of Double Labeling
Drawings of double-labeled sections were made with an Ax-

ioscope microscope (Carl Zeiss AG, Germany) connected to a 
computerized image analysis system (Mercator; ExploraNova, 
France). Single- and double-labeled neurons were plotted on 
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presence of PS-on neurons has been reported in the SLD both 
in cats14 and in rats.15 However, a direct demonstration using for 
example juxtacellular labeling would be required. It is also well 
accepted that vGLUT2 is a specific marker of the glutamatergic 
neurons located in the brainstem.16 We performed in situ hy-
bridization rather than immunohistochemistry of vGLUT2 be-
cause it specifically and strongly labels cells bodies’ cytoplasm, 
whereas immunohistochemistry only labels terminals.

SLD PS-On Neurons Are Glutamatergic
The results reported here that SLD PS-on neurons are gluta-

matergic are in line with our previous results showing that they 
are neither cholinergic nor GABAergic in nature. Indeed, we 
previously showed that Fos+ neurons located in the SLD after 
PS hypersomnia are not immunoreactive to choline acetyltrans-
ferase, the enzyme of synthesis of acetylcholine.5 In addition, 
we previously reported that 15% of Fos+ neurons located in the 

of small size, whereas large vGLUT2+ neurons almost never 
expressed Fos.

DISCUSSION
Here, we show for the first time that nearly all Fos+ neu-

rons (84%) localized in the SLD after PS hypersomnia express 
vGLUT2 mRNA. These results strongly suggest that SLD neu-
rons responsible for the generation of PS are glutamatergic in 
nature.

Methodological Considerations
Even if one could argue that Fos expression is not strictly 

correlated to neuronal discharge, we believe that our results 
convincingly show that SLD PS-on neurons are glutamatergic. 
Indeed, when unit recordings have been performed in areas re-
ported to contain Fos+ labeled cells after PS hypersomnia,1,5,6,9 
PS-on neurons have always been recorded.10-13 In particular, the 

Figure 1—SLD neurons expressing Fos after PS-recovery are mostly glutamatergic. (A-C) Schematic distribution of Fos+ (gray dots) and Fos-vGLUT2+ (red 
dots) neurons on coronal sections taken at 300 µm intervals through the full rostro-caudal extent of the SLD in a representative PSR animal. Rostro-caudal 
localization of each section is indicated from Bregma at the bottom left corner of each drawing. (D-E) Photomicrographs showing Fos (brown nuclear staining) 
and vGLUT2 (blue diffuse cytoplasmic staining) double staining at SLD level. (E) is a higher magnification of the rectangular box in D. Note the dense cluster 
of double-labeled neurons into the SLD of a PSR rat. Interestingly, most of the large glutamatergic SLD neurons do not express Fos after PS hypersomnia 
(black arrows). Conversely, double-labeled neurons after PS hypersomnia are rather of small size (red arrowheads). Only one neuron labeled for Fos after 
PS-hypersomnia does not express vGLUT2 mRNA (black arrowhead). (F-G) Number of Fos+ and Fos/vGLUT2+ neurons in the SLD in control (PSC), PS 
deprived (PSP) and PS recovery (PSR) conditions. Values are mean ± SEM. *P < 0.05.
4V, 4th ventricle; CGPn, central gray of the pons; DTg, dorsal tegmental nucleus; LDTg, laterodorsal tegmental nucleus; LPB, lateral parabrachial nucleus; 
me5, mesencephalic trigeminal tract; Mo5, motor trigeminal nucleus; MPB, medial parabrachial nucleus; PnC, pontine reticular nucleus, caudal part; PnO, 
pontine reticular nucleus, oral part; scp, superior cerebellar peduncle; SLD, sublaterodorsal tegmental nucleus; su5, supratrigeminal nucleus; VTg, ventral 
tegmental nucleus.
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Table S1—Number of Fos+ and Fos/vGLUT2+ neurons in controls (PSC), PS-deprived (PSD) and PS-recovery (PSR) rats

Fos+ total Fos/vGLUT2+
n PSC PSD PSR PSC PSD PSR

CGPn 3 19.8 ± 4.6 47.1 ± 17.8 55.3 ± 8.3 4.4 ± 1.5 8.5 ± 2.2 13.0 ± 2.7
DTg 3 0.5 ± 0.2 1.9 ± 0.7 9.9 ± 4.6 0.1 ± 0.1 1.0 ± 0.5 4.6 ± 2.7
KF 2 14.0 ± 6.6 15.9 ± 1.7 18.3 ± 2.3 5.9 ± 3.2 9.3 ± 1.5 13.4 ± 2.2
LDTg 2 6.5 ± 2.9 11.6 ± 3.2 33.3 ± 6.4*# 2.6 ± 1.4 3.3 ± 0.8 15.3 ± 1.5*#

LPB 3 33.0 ± 11.2 106.6 ± 22.5*# 82.4 ± 9.4* 17.0 ± 6.4 72.0 ± 15.4* 55.9 ± 4.8*
MPB 3 7.3 ± 3.8 15.6 ± 5.3 15.3 ± 6.1 3.8 ± 1.8 7.9 ± 1.7 11.0 ± 4.2
PnC 2 11.3 ± 4.0 26.4 ± 5.9 39.9 ± 7.7* 3.3 ± 1.4 8.9 ± 2.8 16.4 ± 4.6
PnO 1 3.1 ± 0.7 4.9 ± 1.9 16.0 ± 5.2*# 0.9 ± 0.4 2.4 ± 1.0 8.0 ± 3.6
SLD 3 4.8 ± 1.4 13.5 ± 7.0 42.6 ± 4.5*# 2.3 ± 0.8 2.6 ± 0.4 35.6 ± 3.8*#

Neurons were counted on 3 sections taken at 300µm interval through the full rostrocaudal extension of the SLD. Displayed values are mean (± 
sem) of 4 animals in each group of all Fos labelled neurons (Fos+ Total) and Fos/vGLUT2 double-labelled neurons (Fos/vGLUT2+) counted on 
one or several sections (column n) depending on the rostrocaudal extent of the structures. *P < 0.05 compared to PSC, #P < 0.05 compared to 
PSD. CGPn, central gray of the pons; DTg, dorsal tegmental nucleus; KF, Kölliker-Fuse nucleus; LDTg, laterodorsal tegmental nucleus; LPB, 
lateral parabrachial nucleus; MPB, medial parabrachial nucleus; PnC, pontine reticular nucleus, caudal part; PnO, pontine reticular nucleus, 
oral part; SLD, sublaterodorsal tegmental nucleus.

Figure S1—Time spent in waking, slow-wave sleep and paradoxical sleep. Percentage of time spent in waking 
(WK), slow-wave sleep (SWS) and paradoxical sleep (PS) scored by 5sec epochs during the last 150 min before 
sacrifice for control (PSC), PS-deprived (PSD) and PS-recovery (PSR) rats (n = 4 in each group). Graphs represent 
means with standard errors. *P < 0.05 compared to PSC, #P < 0.05 compared to PSD.


