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Abstract
Hallucinogenic drugs, including mescaline, psilocybin and lysergic acid diethylamide (LSD), act
at serotonin 5-HT2A receptors (5-HT2ARs). Metabotropic glutamate receptor 2/3 (mGluR2/3)
ligands show efficacy in modulating the responses induced by activation of 5-HT2ARs. The
formation of a 5-HT2AR-mGluR2 complex suggests a functional interaction that affects the
hallucinogen-regulated cellular signaling pathways. Here, we tested the cellular and behavioral
effects of hallucinogenic 5-HT2AR agonists in mGluR2 knockout (mGluR2-KO) mice. Mice were
intraperitoneally injected with the hallucinogens DOI (2 mg/kg) and LSD (0.24 mg/kg), or
vehicle. Head-twitch behavioral response, expression of c-fos, which is induced by all 5-HT2AR
agonists, and expression of egr-2, which is hallucinogen-specific, were determined in wild type
and mGluR2-KO mice. [3H]Ketanserin binding displacement curves by DOI were performed in
mouse frontal cortex membrane preparations. Head twitch behavior was abolished in mGluR2-KO
mice. The high-affinity binding site of DOI was undetected in mGluR2-KO mice. The
hallucinogen DOI induced c-fos in both wild type and mGluR2-KO mice. However, the induction
of egr-2 by DOI was eliminated in mGlu2-KO mice. These findings suggest that the 5-HT2AR-
mGluR2 complex is necessary for the neuropsychological responses induced by hallucinogens.
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Hallucinogenic drugs, such as mescaline, psilocybin and lysergic acid diethylamide (LSD)
induce profound alterations of human consciousness, emotion and cognition [12,16,27].
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Inactivation of serotonin 5-HT2AR signaling by either genetic or pharmacological
approaches results in markedly reduced behavioral responses to hallucinogenic drugs in both
rodent models [10,18,34] and humans [33]. Thus, although hallucinogens bind other
receptor subtypes [16], the 5-HT2A receptor is considered as necessary for the unique
behavioral activity of these chemicals.

Metabotropic glutamate receptors mGlu2/3 have been the target of considerable attention
regarding the molecular mechanism underlying psychosis [1,6,23,25]. We have recently
reported that 5-HT2AR and mGluR2 are co-expressed in the same population of cortical
neurons [14]. We found that 5-HT2AR and mGluR2 form a receptor complex in mouse and
human brain, and activation of mGluR2 inhibits hallucinogen-specific neuronal signaling
pathways [14]. Based on this and other findings [1,17,31], it has been proposed that mGluR2
agonists modulate, through a mechanism that requires the 5-HT2AR-mGluR2 complex, the
signaling pathways induced by hallucinogenic 5-HT2AR agonists. Here we demonstrate that
mice with disrupted mGluR2 signaling capacity (mGluR2-KO mice) are insensitive to the
cellular and behavioral effects of hallucinogens. This observation suggests that the 5-
HT2AR-mGluR2 complex, and not the 5-HT2AR alone, is the molecular target responsible
for the actions of hallucinogenic drugs.

Experiments were performed on adult (10–14 weeks old) male 129S6/SvEv mice. 5-HT2A
mice have been previously described [18,19]. mGluR2-KO mice were obtained from the
RIKEN BioRe-source Center, Japan (see [26,36] for details). mGluR2-KO mice were
backcrossed for at least ten generations onto a 129S6/SvEv background. All subjects were
offspring of heterozygote breeding. Animals were housed at 12 h light/dark cycle at 23 °C
with food and water ad libitum. The Institutional Animal Use and Care Committee approved
all experimental procedures. 1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI;
Sigma–Aldrich) was dissolved in saline and injected intraperitoneally (i.p.). Lysergic acid
diethylamide (LSD; Sigma-Aldrich) was injected i.p. after suspension in a minimal amount
of DMSO and made up to volume with normal saline.

Head-twitch behavior is known to be reliably and robustly elicited by hallucinogenic 5-
HT2AR agonists in rodents [18,19]. We first assayed the head-twitch response induced by
DOI and LSD in wild type and mGluR2-KO mice (Fig. 1). Two-way ANOVA indicated a
statistical significance for the effects of the treatment [F(2,19) = 31.05; p < 0.001] and
genotype [F(1,19) = 74.10; p < 0.001]. Significance was also found for the interaction
between treatment and genotype [F(2,19) = 20.05; p < 0.001]. The post hoc analysis
revealed that DOI and LSD activated a significant head-twitch response in wild type mice (p
< 0.001). Notably, no significant head-twitch response was detected in mGluR2-KO mice
for any of these two agonists (p > 0.05).

The decreased head-twitch response following administration of hallucinogens led us to
examine the level of expression of 5-HT2AR in mGluR2-KO mice. Equilibrium binding
saturation experiments were performed to determine the binding affinity (KD) and receptor
density (Bmax) of 5-HT2ARs in wild type and mGluR2-KO mouse frontal cortex membrane
preparations (Fig. 2; for experimental details, see [14]). Neither Bmax nor KD values of the
binding of [3H]ketanserin, a 5-HT2AR antagonist, were significantly changed in mGluR2-
KO mice, which demonstrates that level of expression of 5-HT2AR is not affected in the
absence of mGluR2 (Bmax:wild type, 724.5±93 fmol/mg protein;mGluR2-KO, 701.5±80
fmol/mg protein. KD: wild type, 2.27±0.8 nM;mGluR2-87 KO, 2.30±0.71 nM).

We next determined the affinity of the mGlu2/3 agonist LY379269 displacing
[3H]LY341495 in wild type and 5-HT2AR-KO mice (Fig. 3A), and that of the 5-HT2AR
agonist DOI displacing [3H]ketanserin binding in wild type and mGluR2-KO mice (Fig. 3B;
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for experimental details, see [14]). Competition binding experiments of [3H]LY341495 were
best described by a two-site model in wild type mouse frontal cortex membrane preparations
[F(2,28) = 4.71; p < 0.05]. However, displacement of [3H]LY341495 binding by LY379268
was best described by a one-site model in 5-HT2AR-KO mice [F(2,16) = 0.62; p = 0.55].
The low affinity binding site for LY379268 did not differ between wild type and 5-HT2AR-
KO mice (Fig. 3A). Similarly, competition binding experiments of [3H]ketanserin were best
described by a two-site model in wild type mouse frontal cortex membrane preparations
[F(2,79) = 19.05; p < 0.001]. Interestingly, displacement of [3H]ketanserin binding by DOI
was best described by a one-site model in mGluR2-KO mice [F(2,79) = 0.89; p = 0.41]. The
low affinity site for DOI did not differ between the wild type and mGluR2-KO mice (Fig.
3B). The changes in high-affinity binding suggested that the cellular responses induced
hallucinogenic 5-HT2AR agonists may be altered in mGluR2-KO mice. This hypothesis was
tested by measuring the gene response to hallucinogens in mouse frontal cortex.

We have previously demonstrated that hallucinogenic 5-HT2AR agonists induce a unique
pattern of gene expression in mouse cerebral cortex that predicts the behavioral effect of the
tested ligand [18,19]. Here we examined the role of mGluR2 in the cellular responses
induced by hallucinogens in mouse frontal cortex, a region involved in acute psychotic
episodes [17]. As previously shown [18,19], the hallucinogen DOI induced expression of c-
fos and egr-2 in wild type mice (Fig. 3C; for primer pair sequences, see [14]). In mGluR2-
KO mice, we found that DOI also induces the expression of c-fos, whereas regulation of
egr-2 was abolished (Fig. 3C).

This study demonstrates that mGluR2 is necessary for at least some of the cellular and
behavioral responses induced by hallucinogenic 5-HT2AR agonists. We found that the head-
twitch response was not produced by the hallucinogens DOI and LSD in mGluR2-KO mice.
We also demonstrated that the hallucinogenic gene response signature required the
expression of mGluR2, and that the high-affinity binding sites for LY379268 and DOI were
undetectable in the absence of 5-HT2AR or mGluR2, respectively, in mouse frontal cortex.
Although mouse models of neuropsychiatric disturbances have limitations [3,12], these
findings suggest that the 5-HT2AR requires the expression of mGluR2 to induce
hallucinogenic-dependent psychoactive states.

5-HT2AR and mGluR2 are members of the G protein-coupled receptor (GPCR)
superfamily, also referred to as seven transmembrane receptors [28,29]. The ternary
complex model (receptor [R], agonist, and G protein [G]) has typically been the most
commonly used pharmacological model to describe the mechanism of activation of GPCRs
[16,21]. In this model, the receptor exists in two conformational states: an inactive state, R,
and an active state R*G. Agonists show a higher affinity for R*G than for R, whereas
neutral antagonists show roughly equal affinities for the two states [21]. According to the
ternary complex model, agonists present a biphasic pattern displacing radiolabeled
antagonists (see also Fig. 3A and B), and the fraction of high-affinity binding site is
decreased when R*G complexes are uncoupled by the non-hydrolyzable analog of
guanosine triphosphate GTPγS [14,15]. However, recent findings provide evidence
indicating that GPCR dimers lead to positive and negative ligand-dependent cooperative
binding [2,4,20,24,32], for which theoretical pharmacological models have proposed GPCRs
as dimeric/oligomeric structures [8,11,13]. We have previously demonstrated that mGluR2
activation increases the affinity of 5-HT2AR agonists, while, by contrasts, 5HT2AR
activation decreases the affinity of mGluR2 agonists in mouse brain cortex and tissue culture
preparations ([14]; similar results were obtained in the present study–data not shown). In
frontal cortex membrane preparations, hereweshow that the biphasic displacement curve of
[3H]ketanserin by DOI became monophasic in mGluR2-KO mouse, and that the biphasic
displacement curve of [3H]LY341495 by LY379268 became monophasic in 5-HT2AR-KO
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mouse. Although further investigation is necessary, concurrently these binding data support
the expression of 5-HT2AR and mGluR2 as a GPCR heterocomplex in mouse frontal cortex,
and provide an explanation for the functional crosstalk observed between the components of
the receptor complex.

The G protein subtypes activated by 5-HT2AR and mGluR2 are mainly Gq/11 and Gi/o,
respectively [5,7]. However, some reports have implicated pertussis toxin-sensitive Gi/o
proteins in the cel1lular responses mediated by 5-HT2AR activation [22,30]. In mouse
cortical primary neurons, we previously discovered that the signaling elicited by
hallucinogen and non-hallucinogen 5-HT2AR agonists causes induction of c-fos and
requires Gq/11-dependent signaling [18]. However, the signaling of hallucinogenic 5-
HT2AR agonists also induces egr-2, which is Gi/o-dependent [18]. Our data now
demonstrate that the induction of c-fos by DOI was not affected. In contrast, the induction of
egr-2 was abolished in mGluR2-KO mice, which provide the first demonstration that the
hallucinogen-specific signaling signature is affected in the absence of mGluR2 in whole
animal models, and suggest that the 5-HT2AR-mGluR2 complex is necessary for the
responses induced by LSD-like drugs. It is important to note that the level of expression of
5-HT2AR as determined by [3H]ketanserin binding saturation curves was unaffected in
mGluR2-KO mouse frontal cortex, which further supports the hypothesis that expression of
mGluR2 is necessary for the cellular and behavioral effects induced by hallucinogenic 5-
HT2AR agonists. Our data do not exclude the possibility that the closely related mGluR3
also plays a role in the unique effects induced by LSD-like hallucinogens. Thus,
althoughmGluR2, and not mGluR3, has been shown to be responsible for the antipsychotic
like responses induced by the mGlu2/3 agonists LY379268 [35] and LY404039 [9], further
investigation is necessary to determine the pharmacological and behavioral effects of
hallucinogens in wild-type and mGluR3-KO mice.

In conclusion, we have shown that the behavioral responses to hallucinogenic 5-HT2A
agonists are absent inmGlu2-KOmice. The cognitive and perceptual changes induced by
hallucinogenic drugs exhibit similarities with the endogenous psychosis of schizophrenia
[12,17]. The level of expression of 5-HT2A and mGlu2 has been found to be dysregulated in
postmortem human brain of untreated schizophrenic subjects [14]. Deciphering the
molecular mechanism of action of hallucinogens should provide new inquiries to understand
the molecular and cellular mechanisms that underlie the complex clinical phenotype of
schizophrenia.
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Fig. 1.
Behavioral response to hallucinogens DOI and LSD. Wild type and mGluR2-KO mice (n =
4–5 per treatment group) were injected with vehicle, DOI (2 mg/kg) or LSD (0.24 mg/kg),
and the head-twitch response was scored 15 min after injection for 30 min. ***p < 0.001;
Bonferroni's post hoc test of two-way ANOVA. Data are means ± S.E.M.
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Fig. 2.
Expression of 5-HT2AR in mGluR2-KO mice. [3H]Ketanserin binding saturation curves in
wild type (black) and mGluR2-KO (white) mouse frontal cortex membrane preparations (n
= 6 per group).
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Fig. 3.
Cellular response to hallucinogenic 5-HT2AR agonist DOI. (A) LY379268 displacement of
[3H]LY341495 binding was performed in wild type (black) and 5-HT2AR-KO (white)
mouse frontal cortex membrane preparations. Competition curves were analyzed by
nonlinear regression to derive dissociation constants for the high and low affinity states of
the receptor. One-site model or two-site model as a better description of the data was
determined by F test. Two-site model, p < 0.001. A two-site model provided a better
description of the data in wild type mice. Wild type mice: Ki-high (logM), −9.51±0.45; Ki-low
(logM), −7.95±0.26; % high-affinity binding sites, 36.6±1; and 5HT2AR-KO mice: Ki-low
(logM), −7.60±0.07 (n = 3–5). (B) DOI displacement of [3H]ketanserin binding was
performed in wild type (black) and mGluR2-KO (white) mouse frontal cortex membrane
preparations. A two-site model provided a better description of the data in wild type mice.
Wild type mice: Ki-high (logM), −8.56±0.28; Ki-low (logM), −6.31±0.16; % high-affinity
binding sites, 35.9±4; and mGluR2-KO mice: Ki-low (logM), −6.72±0.08 (n = 5–6). (C)
Cellular response in mouse frontal cortex assayed by qRT-PCR. Wild type or mGluR2-KO
mice were injected with vehicle (white) or DOI (black; 2mg/kg). Changes in expression
levels are reported as fold change over vehicle. *p < 0.05; ***p < 0.001; Bonferroni's post-
hoc test of two-factor ANOVA (n = 5–6 per group). Data are means±S.E.M.
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