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Click chemistry[1] has become one of the most important reactions in the field of
glycoscience enabling the rapid assembly under very mild conditions of a vast array of
glycoconjugates.[2] We were struck, however, by the absence of azidomethyl glycosides
which necessarily excludes the whole class of N-azidomethyl triazoles from the arsenal of
glycoconjugates accessible by Click chemistry.[3] Zhu and Schmidt addressed the problem
indirectly through the synthesis of a series of azidomethyl thioglycosides,[4] but to date the
more native O-glycosides have not been described.

Seeking to remedy this deficiency we prepared phenylthiomethanol 1[5] and investigated its
use as glycosyl acceptor. Activation of tetrabenzoyl mannopyranosyl bromide 2 with silver
triflate in the presence of 1 afforded the anticipated a-glycoside 3 in 61% yield (Scheme 1).
With the corresponding trichloroacetimidate donor 4[6,7] activation with catalytic silver
triflate in the presence of 1 gave 65% of 3. Interestingly even thioglycoside donors could be
applied provided that a preactivation protocol was employed. Thus, preactivation of a 4,6-O-
benzylidene protected p-mannopyranosyl donor 5 under our standard benzenesulfinyl
piperidine (BSP)/trifluoromethanesulfonic anhydride (Tf,0) conditions[8] resulted in the
formation of a B-glycoside 6 (Scheme 1).[9]

Activation of 3 and 6 with N-iodosuccinimide (NIS) and trifluoromethansulfonic acid in the
presence of azidotrimethylsilane resulted in conversion to the corresponding azidomethyl
glycosides 7 and 8 in good yield (Scheme 2) thereby affording the first examples of this
class of compound.

Employing the propargyl a-mannoside 9 as reaction partner, Click chemistry was
investigated with the azidomethyl glycoside 7 under “classical” copper(l) catalyzed
conditions,[1,2] leading preferentially to the 1,4-disubstituted triazoles, and with a more
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recent ruthenium-based system[10] that afforded the 1,5-isomer (Scheme 3). The application
of ruthenium catalysis in this manner, which, to our knowledge, has yet to be reported in
glycoconjugate synthesis, provides a closer structural analogue to a branched trisaccharide
motif than the more extended array obtained under the copper catalyzed conditions.[11,12]

We next investigated the reaction of these novel azidomethyl glycosides with thioacids, with
a view to the formation of amidomethyl glycosides. Perhaps not too surprisingly in view of
the relatively electron-rich nature of the azide,[13] the reaction of 7 with thioacetic acid
required prolonged microwave heating to afford the unusual amidomethyl glycoside 12 in
51% yield with some 25% of 7 recovered unchanged (Scheme 4).

Better success in the formation of amidomethyl glycosides was obtained by the Raines
variant[14] on the traceless Staudinger reaction.[15] Thus, a series of
diphenylphosphinylmethyl thioesters were prepared in the form of their borane adducts.
After transfer of the borane to diazabicyclooctane (DABCO) these substituted phosphines
were allowed to react with 7 and 8 resulting in the formation of novel amidomethyl
glycosides in high yield (Scheme 5).

Finally, in view of the successful conversion of 3 and 6 to the azidomethyl glycosides 7 and
8 we turned our attention to glycosidic bond formation. Simple “acetal glycosides” of this
type have been previously prepared by the reaction of trimethylsilyl glycosides with
formaldehyde acetals under catalysis by trimethylsilyl triflate, and by the reaction of
anomeric hemiacetals with methylthiomethyl ethers in the presence of N-iodosuccinimide,
when the products were obtained as mixtures of stereoisomers.[16] Pleasingly, reaction of
both 3 and 6 with NIS and TfOH in the presence of suitable acceptor alcohols provided the
corresponding “acetal glycosides” 15, 16 and 17 in excellent yield and as single anomers
(Scheme 6). Zemplen deacetylation of 16 gave the free “acetal glycoside” 18 in 91% yield
(Scheme 7). The phenylthiomethyl glycosides therefore provide a new convenient and
stereoselective means of entry into the “acetal glycosides”, an unusual and somewhat limited
class of compounds previously investigated for their potential as enzyme inhibitors.[17,18]
We note that the syntheses of both the azidomethyl glycosides (Scheme 2) and the acetal
glycosides (Scheme 6) likely proceed through a transient glycosyloxymethyl cation and that
this intermediate is trapped by the incoming nucleophile substantially more rapidly than it
undergoes decomposition to the glycosyl cation and formaldehyde. As has been previously
recorded[17a] the acetal glycosides are considerably less stable to aqueous acid than simple
glycosides, nevertheless we observed no difficulties in their purification by chromatography
over silica gel, either before or after removal of the protecting groups.

Overall, the phenylthiomethyl glycosides may be obtained from thioglycosides and or
trichloroacetimidates by reaction with phenylthiomethanol under typical glycosylation
conditions. They are stable compounds that on activation of the phenylthiomethyl moiety
provide direct access to the azidomethyl methyl glycosides and the “acetal glycosides”. As
the anomeric carbon is not implicated in these transformations the anomeric stereochemistry
of the phenylthiomethyl glycosides is completely retained. The azidomethyl glycosides take
part in “Click” reactions with alkynes under copper or ruthenium-catalyzed conditions
providing access to new classes of 1,4- and 1,5-triazoles. Finally, the azidomethyl
glycosides take part readily in traceless Staudinger reactions enabling the formation of
amidomethyl glycosides.
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Experimental Section

Preparation of phenylthiomethyl tetra-O-benzoyl-a-D-mannopyranoside (3)

2,3,4,6-Tetra-O-benzoyl-a-D-mannopyranosyl bromide (2.24 g, 3.41 mmol),
phenythiomethanol (1.91 g, 13.6 mmol) and activated 4A powdered molecular sieves (900
mg) were mixed in dichloromethane (17 mL) and stirred at room temperature for 10 min
before AgOTT (964 mg, 3.75 mmol) was added at 0 °C. The reaction mixture was allowed to
warm to room temperature until TLC showed that the donor had been consumed (2—4 h).
Saturated aqueous NaHCO3 then was added at 0°C, and the reaction mixture was filtered,
and the filtrate was washed with brine. The organic layer was dried and concentrated under
reduced pressure and the product was isolated by silica gel column chromatography (eluent:
hexane/ethyl acetate from 20/1 to 10/1) to give 3 (1.58 g, 61%) as a white foam. [o]p23
+42.0° (c, 2.6, CHCI53); IH NMR (500 MHz, CDCls) &: 8.15-8.13 (m, 2H), 8.11-8.10 (m,
2H), 7.99-7.97 (m, 2H), 7.88-7.86 (m, 2H), 7.64-7.59 (m, 4H), 7.54-7.51 (m, 1H), 7.47-7.43
(m, 5H), 7.41-7.37 (m, 4H), 7.34-7.29 (m, 3H), 6.17 (t, J = 10.0 Hz, 1H), 5.96 (dd, J = 3.5,
J =10.5Hz, 1H), 5.75 (m, 1H), 5.62 (d, J = 1.5 Hz, 1H), 5.27 (d, J = 12.0 Hz, 1H), 5.18 (d,
J=12.0Hz, 1H), 4.72 (dd, J = 2.5, J = 12.5 Hz, 1H), 4.50 (dd, J = 4.5, J = 12.0 Hz, 1H),
4.41 (m, 1H); 13CNMR (125 MHz, CDCls) &: 166.4, 165.74, 165.68, 165.6, 134.8, 133.81,
133.75, 133.5, 133.4, 131.3, 130.2, 130.1, 130.0, 129.5, 129.3, 129.2, 128.9, 128.8, 128.7,
128.6, 127.8,94.9, 72.6, 70.6, 70.2, 69.9, 67.1, 63.0; ESIHRMS Calcd. for C41H34010S [M
+Na]* 741.1770, found 741.1738.
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