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ABSTRACT

In this article, we report on the facile and rapid syn-
thesis of conjugation polymer poly(p-phenylenedi-
amine) nanobelts (PNs) via room temperature
chemical oxidation polymerization of p-phenylene-
diamine monomers by ammonium persulfate in
aqueous medium. We further demonstrate the
proof-of-concept that PNs can be used as an effect-
ive fluorescent sensing platform for nucleic acid
detection for the first time. The general concept
used in this approach lies in the facts that the
adsorption of the fluorescently labeled single-
stranded DNA probe by PN leads to substantial
fluorescence quenching, followed by specific hy-
bridization with the complementary region of the
target DNA sequence. This results in desorption of
the hybridized complex from PN surface and subse-
quent recovery of fluorescence. We also show that
the sensing platform described herein can be used
for multiplexing detection of nucleic acid
sequences.

INTRODUCTION

The past years have witnessed the growing interest in
nucleic acid-based diagnostic tests. The intensive develop-
ment of systems allowing rapid, cost-effective sensitive
and specific detection of nucleic acid is motivated by
their various applications in many fields such as, gene
analysis, clinical disease diagnostics and treatment, fast
detection of biological warfare agents and forensic appli-
cations, etc. (1). The humanitarian and economic costs of
infectious diseases can be greatly reduced by accurate
diagnosis that enables prompt treatment. Detecting
genetic mutations at the molecular level opens up the pos-
sibility of performing reliable disease diagnostics in
clinical practice even before any symptom of a disease

appears. Until now, numerous optical and electrochemical
nucleic acid detection approaches based on the hybridiza-
tion between a target and its complementary probe have
been successfully established (2). The introduction of
simple methods for fluorescent labeling of nucleic acids
has opened the door that enables nucleic acid hybridiza-
tion probes to be used for research and development, and
indeed, in recent years, fluorescent probes have multiplied
at a high rate and the homogeneous fluorescence assays
based on fluorescence resonance energy transfer (FRET)
or quenching mechanism for nucleic acid detection have
been widely developed (3). Among such probes, Taqman
probes, molecular beacons (MBs) and Scorpions are
labeled with both a fluorescent reporter and a quencher
dye and the fluorescence is only released from the reporter
when the two dyes are physically separated after hybrid-
ization occurs. Although widely used for many applica-
tions (3–7), they require labeling at both ends with
specific dyes that suffer from low overall yield and are
not cost-effective (8). To solve these problems, single
fluorophore-labeled probe with only one fluorophore tag
has been developed; however, guanine bases (8) or
nanostructures (9) must be used as a ‘nanoquencher’ at
the same time to effectively signal target detection event. It
has been demonstrated that nanostructures can also be
used as a nanoquencher of the fluorophore (9,10).
Because the same nanostructure has the ability to
quench dyes of different emission frequencies, the selec-
tion issue of a fluorophore–quencher pair is eliminated
from the nanostructure-based system. In principal,
nanostructures suitable as an ideal platform for this
assay should satisfy the following two requirements: (i)
They have strong binding with single-stranded DNA
(ssDNA), but weak even when not binding with
double-stranded DNA (dsDNA) and (ii) they do not
fluoresce or only have weak fluorescence and quench dye
fluorescence very effectively at the same time. So far,
however, only limited nanostructures, including gold
nanoparticles (9,11–13), single-walled carbon nanotubes

*To whom correspondence should be addressed. Tel/Fax: +86 431 85262065; Email: sunxp@ciac.jl.cn

yDedicated to Prof. Shaojun Dong in honor of her 80th birthday.

Published online 22 December 2010 Nucleic Acids Research, 2011, Vol. 39, No. 6 e37
doi:10.1093/nar/gkq1294

� The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



(SWCNTs) (10,14) and graphene (15,16) have been
demonstrated for such application. Although gold
nanoparticle is able to discriminate single-base mismatch,
its small size makes it hard for simultaneous adsorption of
multiple DNA probes labeled with different dyes on the
same particle surface and hence multiplexing nucleic acid
detection is difficult to achieve. For the SWCNT or
graphene system, it suffers from both SWCNT and
graphite powder used for producing graphene are usually
purchased from some sources on one hand, and an organic
solvent like N,N-dimethylformamide (DMF) is used to
disperse SWCNT by a period of several hours sonication
(14) or the graphene preparation by the Hummer’s method
is time-consuming and labor intensive (17). Accordingly, it
is crucially important to develop new nanostructures that
can be used as an effective fluorescent sensing platform for
multiplexing nucleic acid detection.
In this article, we report on the facile and rapid synthe-

sis of conjugation polymer poly(p-phenylenediamine)
(PPPD) nanobelts (PNs) via room temperature chemical
oxidation polymerization of p-phenylenediamine (PPD)
monomers by ammonium persulfate (APS) in aqueous
medium. As a proof of concept, we demonstrate for the
first time that PNs can be used as an effective fluorescent
sensing platform capable of discrimination of complemen-
tary and single-base mismatched target sequences. The
general concept used in this approach is based on the ad-
sorption of the fluorescently labeled ssDNA probe by PN,
which is accompanied by substantial fluorescence
quenching, followed by specific hybridization with its
target to form dsDNA. This results in desorption of the
hybridized complex from PN surface and subsequent
recovery of fluorescence. We further demonstrate that
the sensing platform described herein can be used for
multiplexing detection of nucleic acid sequences.
Scheme 1 presents a schematic diagram to illustrate the

fluorescence-enhanced nucleic acid detection using PPPD
nanobelt as a sensing platform. The zeta potential of the
nanobelt was measured to be about 1.06mV, meaning that
the nanobelt has an overall low positively charged surface.
Therefore, the electrostatic attractive interactions between
PN and negatively charged backbone of ssDNA contrib-
ute little to the binding of ssDNA to PN. PN is a p-rich
conjugation polymer and thus ssDNA can adsorb strongly
on the PN surface via p–p stacking interactions of DNA
bases on PN (18). In contrast, PN should have no binding
with dsDNA because there are no p-stacking effects
between them in the absence of free nucleobases and

nucleosides. The DNA detection is accomplished by two
steps: in the first step, the adsorption of fluorescent
carboxyfluorescein (FAM)-labeled ssDNA onto the
nanobelt leads to substantial fluorescence quenching due
to their close approximation. In the second step, the
specific hybridization of the dye-labeled DNA with its
target leads to fluorescence recovery because such hybrid-
ization will disturb the interaction between the dye-labeled
ssDNA and nanobelt and produces a dsDNA that
detaches from PN.

MATERIALS AND METHODS

All chemically synthesized oligonucleotides were
purchased from Shanghai Sangon Biotechnology Co.
Ltd (Shanghai, China). DNA concentration was estimated
by measuring the absorbance at 260 nm. All the other
chemicals were purchased from Aladin Ltd, (Shanghai,
China) and used as received without further purification.
The water used throughout all experiments was purified
through a Millipore system. The PNs were prepared as
follows: in brief, 0.9ml of 0.6M APS was added into
0.9ml of 0.2M PPD aqueous solution at room tempera-
ture under shaking. After that, a large amount of precipi-
tates gradually occurred within minutes. The resulting
precipitates were washed with water by centrifugation
twice first, and then redispersed in water and stored at
4�C for characterization and further used.
Oligonucleotide sequences used are listed below
(mismatch underlined):

(1) FAM dye-labeled ssDNA (PHIV):
50-FAM-AGT CAG TGT GGA AAA TCT CTA
GC-30

(2) Complementary target to PHIV (T1):
50-GCT AGA GAT TTT CCA CAC TGA CT-30

(3) Single-base mismatched target to PHIV (T2): 5
0-GCT

AGA GAT TGT CCA CAC TGA CT-30

(4) Non-complementary target to PHIV (T3):
50-TTT TTT TTT TTT TTT TTT TTT TT-30

(5) 50-TGG AAA ATC-30 (Ps)
(6) 50-GAT TTT CCA-30 (Ts1)
(7) 50-GAT TGT CCA-30 (Ts2)
(8) 50-TTT TTT TTT-30 (Ts3)
(9) ROX dye-labeled ssDNA (PHBV):

50-ROX-TAC CAC ATC ATC CAT ATA ACT
GA-30

Scheme 1. A schematic diagram (not to scale) to illustrate the fluorescence-enhanced nucleic acid detection using PPPD nanobelt as a sensing
platform.
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(10) Complementary target to PHBV (T4):
50-TCA GTT ATA TGG ATG ATG TGG TA-30

(11) Cy5 dye-labeled ssDNA (PK167):
50-Cy5-TCT GCA CAC CTC TTG ACA CTC
CG-30

(12) Complementary target to PK167 (T5):
50-CGG AGT GTC AAG AGG TGT GCA GA-30

Scanning electron microscopy (SEM) measurements were
made on a XL30 ESEM FEG SEM at an accelerating
voltage of 20 kV. Transmission electron microscopy
(TEM) measurements were made on a HITACHI
H-8100 EM (Hitachi, Tokyo, Japan) with an accelerating
voltage of 200 kV. Fluorescent emission spectra were
recorded on a PerkinElmer LS55 Luminescence
Spectrometer (PerkinElmer Instruments, UK). Zeta po-
tential measurements were performed on a Nano-ZS
Zetasizer ZEN3600 Instrument (Malvern Instruments
Ltd, UK).

RESULTS AND DISCUSSION

Figure 1 shows typical SEM and TEM images of the
products thus formed. Low magnification SEM image
shown in Figure 1a indicates that the products exclusively
consist of a large quantity of one-dimensional (1D) micro-
structures about tens of micrometers in length. A high
magnification SEM image shown in Figure 1b further
reveals that such 1D structure is belt in shape and about
several hundred-nanometers in width, which is also
evidenced by low magnification TEM image (Figure 1c).
A local magnification of a single belt by TEM shows that
it has perfectly smooth surface (Figure 1d). Although, we
failed to obtain the height information of the belts, their
transparent nature provides a clear piece of evidence to
support the formation of thin PPPD nanobelts (see
Supplementary Figure S1 for chemical analysis of
nanobelts).

We test the feasibility of the PN as a fluorescent sensing
platform for nucleic acid detection. Figure 2 shows the
fluorescence emission spectra (excitation at 480 nm) of
PHIV at different conditions. The fluorescence spectrum
of PHIV, the FAM-labeled probe, in Tris–HCl buffer in
the absence of PN exhibits strong fluorescence emission
due to the presence of the fluorescein-based dye (curve a).
However, in the presence of 40-ml PN sample (see
Supplementary Figure S2 for the optimization details of
the ratio between PNs and the oligonucleotide), up to
92% quenching of the fluorescence emission was
observed (curve c), indicating strong adsorption of the
ssDNA probe on PN and high fluorescence quenching ef-
ficiency of PN. On the other hand, the PHIV–PN complex
had significant fluorescence enhancement upon its incuba-
tion with complementary target T1 over a period of 1 h,
leading to a 55% fluorescence recovery (curve d). It should
be noted that the fluorescence of the free PHIV was,
however, scarcely influenced by the addition of T1 in the
absence of PN (curve b). We further measured the fluor-
escence intensity changes (F/F0�1) of PHIV–PN complex
upon addition of different concentrations of T1 ranging
from 30 to 300 nM, where F0 and F correspond to the

fluorescence intensities at 522 nm in the absence and the
presence of the target, respectively, and found that a good
linear relationship is obtained in the range of 30–300 nM
(inset). Also, note that the PN itself shows weak fluores-
cence emission (curve e), which also contributes to the
fluorescence intensity of each sample examined, so a back-
ground subtraction is performed for all PN-involved
samples measured.
We further studied the kinetic behaviors of PHIV and

PN, as well as of the PHIV–PN complex with T1 by col-
lecting the time-dependent fluorescence emission spectra.
Figure 3a shows the fluorescence quenching of PHIV in the
presence of PN as a function of incubation time. In the
absence of the target, the curve exhibits a rapid reduction
in the first 15min and reaches gradually equilibrium
within the following 15min, indicating that ssDNA ad-
sorption on PN is much faster than on SWCNT (65min)
but slower than on graphene (2min) (10,15). Figure 3b
shows the fluorescence recovery of PHIV–PN by T1 as a
function of time. In the presence of the target T1, the curve
shows a fast increase in the first 10min, followed by a slow
enhancement over a period of 45min. The best fluores-
cence response was obtained after about 1 h of incubation
time. Therefore, the kinetics of the hybridization of the
probe adsorbed on PN to its target and the subsequent
release of the dsDNA thus formed from PN is also slower
than on graphene (30min) but faster than on SWCNT
(65min) (10,15). We also investigated the influence of tem-
perature on the kinetic behaviours of these two processes.
Supplementary Figure S3 shows the corresponding results
obtained at 50�C, indicating that only about 10min is
required to reach equilibrium for both the quenching
and the subsequent recovery process. It should be noted
that FAM-ssDNA only exhibits slight fluorescence
decrease at increased temperature. The observed
decrease of FAM fluorescence intensity at elevated tem-
perature in our present study can be attributed to hybrid-
ization stringency conditions that do not favour duplex
formation between short single strands (19), leading to
decreased hybridization and thus fluorescence recovery
efficiency.
Figure 4a shows the fluorescence responses of PHIV–PN

complex toward complementary target T1, single-base
mismatched target T2 and non-complementary target T3.
The F/F0 value obtained upon addition of 300 nM of T2 is
about 91.2% of the value obtained upon addition of
300 nM of T1 into PHIV–PN complex at room temperature
of 25�C (where F0 and F are the fluorescence intensity
without and with the presence of target, respectively).
However, only very small fluorescence enhancement was
observed for the PHIV–PN upon addition of 300 nM T3,
indicating that the observed fluorescence enhancement in
our present system is indeed due to the base pairing
between probe and its target. Compared to the comple-
mentary target T1, the mismatched target T2 should have
lower hybridization ability toward the adsorbed
dye-labeled ssDNA probe. As a result, a decreased hybrid-
ization and thus fluorescence recovery efficiency was
expected. Figure 4a inset presents the corresponding fluor-
escence intensity histograms with error bar, indicating the
results obtained exhibits good reproducibility. We also
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performed hybridization experiments at elevated tempera-
ture of 50�C and found that the F/F0 value obtained upon
addition of T2 is about 81% of the value obtained upon
addition of T1 into PHIV–PN complex. Figure 4b

compares the fluorescence signal enhancement of PHIV–
PN complex upon incubation with T1 and T2 at 25 and
50�C, respectively. All the above observations indicate
that the present nucleic acid detection system can distin-
guish complementary and mismatched nucleic acid
sequences and its discriminating ability increases with
increased temperature, which makes the hybridization

Figure 1. Low magnification SEM (a) and TEM (c) images of the products thus formed. (b and d) Indicates the corresponding high magnification
images.

Figure 2. Fluorescence emission spectra of PHIV (50 nM) at different
conditions: (a) PHIV; (b) PHIV+300 nM T1; (c) PHIV+PN; (d)
PHIV+PN+300 nM T1. Curve e is the emission spectra of PN. Inset:
linear relationship between F/F0�1 (where F0 and F are the fluores-
cence intensity without and with the presence of T1, respectively) and
T1 concentration ranging from 30 to 300 nm. Excitation was at 480 nm,
and the emission was monitored at 522 nm. All measurements were
done in Tris–HCl buffer in the presence of 5mM Mg2+ (pH: 7.4).

Figure 3. (a) Fluorescence quenching of PHIV (50 nM) by PN and
(b) fluorescence recovery of PHIV–PN by T1 (300 nM) as a function
of incubation time. Excitation was at 480 nm, and the emission was
monitored at 522 nm. All measurements were done in Tris–HCl
buffer in the presence of 5mM Mg2+ (pH: 7.4).
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harder for probe and mismatched target. It is important to
note that the use of shorter oligonucleotide can distinctly
improve the mismatch discrimination ability of our
present sensing system. Figure 5 shows the fluorescence
responses of FAM-labeled, 9-nt ssDNA probe Ps

(50 nM) toward complementary target Ts1, single-base
mismatched target Ts2 and non-complementary target
Ts3 at room temperature, in the presence of PN. The F/
F0 value obtained upon addition of 300 nM of Ts2 is about
64.2% of the value obtained upon addition of 300 nM of
Ts1 into Ps–PN complex.

Multiplexing detection of nucleic acid sequences is a
challenging task for many assays because of the need of
eliminating probe set/target set cross -reactivity,
minimizing non-specific binding and designing spectro-
scopically and chemically unique probes (20), which
prompted us to explore the feasibility of using the
platform described herein to detect multiple DNA

targets simultaneously. To this end, we chose
FAM-labelled PHIV and another two probes PHBV and
PK167 labelled with ROX and Cy5 (cyanine 5), respect-
ively, as model systems. Because these three dyes were
individually excited at 480, 587 and 643 nm to emit at
522, 606 and 665 nm, respectively, significant dye-to-dye
energy transfer was avoided. In the presence of PN, the
fluorescence of all dyes in the probe mixture was heavily
quenched, suggesting that PN can effectively quench dyes
of different emission frequencies. Figure 6 shows the fluor-
escence intensity histograms of the probe mixture toward
different target combinations in the presence of PN under
excitation/emission wavelengths of 480/522, 587/606 and
643/665 nm/nm. It is clearly seen that the addition of T1

gives only one strong emission peak at 522 nm when
excited at 480 nm. However, the target combination of
T1+T5 gives two strong emission peaks at 522 and
665 nm when excited at 480 and 643 nm, respectively,
and three strong emission peaks are observed for the
T1+T4+T5 target combination at 522, 606 and 665 nm
when excited at 480, 587 and 643 nm, respectively. Based
on all the above observations, it can be concluded that this
sensing platform can be used for multiplexing detection of
nucleic acid sequences.
In conclusion, conjugation polymer PNs were facilely

synthesized for the first time via chemical oxidation poly-
merization method. As a proof of concept, we demon-
strate the use of such nanobelts as an effective sensing
platform for fluorescence-enhanced nucleic acid detection
capable of discrimination of complementary and
single-base mismatched target sequences. Furthermore,
we show that this approach can be used for multiplexing
detection of nucleic acid sequences. Our present observa-
tions are significant because it not only provides us a facile
method for the synthesis of conjugation polymer
nanobelts for nucleic acid detection and other applica-
tions, but also will open the door to explore the use of
conjugated or p-rich nanostructures as a promising,

Figure 4. (a) Fluorescence emission spectra of PHIV (50 nM) at differ-
ent conditions: (a) PHIV–PN complex; (b) PHIV–PN complex+300 nM
T1; (c) PHIV–PN complex+300 nM T2; (d) PHIV–PN complex+300 nM
T3. Inset: fluorescence intensity histograms with error bar. (b)
Fluorescence signal enhancement of PHIV–PN complex upon incubation
with T1 and T2 at 25 and 50�C, respectively. Excitation was at 480 nm,
and the emission was monitored at 522 nm. All measurements were
done in Tris–HCl buffer in the presence of 5mM Mg2+ (pH: 7.4).

Figure 5. (a) Fluorescence emission spectra of Ps (50 nM) at different
conditions: (a) Ps–PN complex; (b) Ps–PN complex+300 nM Ts1; (c)
Ps–PN complex+300 nM Ts2; (d) Ps–PN complex+300 nM Ts3. Inset:
fluorescence intensity histograms with error bar.
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universal and effective sensing platform for a
fluorescence-enhanced detection sensitive and selective to
the target molecule studied.
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