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Abstract: Development of effective methods to screen binary interactions obtained by rigid-body

protein–protein docking is key for structure prediction of complexes and for elucidating
physicochemical principles of protein–protein binding. We have derived empirical knowledge-

based potential functions for selecting rigid-body docking poses. These potentials include the

energetic component that provides the residues with a particular secondary structure and surface
accessibility. These scoring functions have been tested on a state-of-art benchmark dataset and

on a decoy dataset of permanent interactions. Our results were compared with a residue-pair

potential scoring function (RPScore) and an atomic-detailed scoring function (Zrank). We have
combined knowledge-based potentials to score protein–protein poses of decoys of complexes

classified either as transient or as permanent protein–protein interactions. Being defined from

residue-pair statistical potentials and not requiring of an atomic level description, our method
surpassed Zrank for scoring rigid-docking decoys where the unbound partners of an interaction

have to endure conformational changes upon binding. However, when only moderate

conformational changes are required (in rigid docking) or when the right conformational changes
are ensured (in flexible docking), Zrank is the most successful scoring function. Finally, our study

suggests that the physicochemical properties necessary for the binding are allocated on the

proteins previous to its binding and with independence of the partner. This information is encoded
at the residue level and could be easily incorporated in the initial grid scoring for Fast Fourier

Transform rigid-body docking methods.
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Introduction
Understanding the mechanisms of control, response,

and regulation of the cell implies a deep knowledge

on the relationships between the biochemical compo-

nents of a biological network. With further interest

on human health, protein interaction networks are a

useful tool for characterizing diseases caused by

malfunctions in genes or proteins1 and identifying

novel cancer gene candidates with differential

expression between the metastatic cells and their

parental cells.2–5 Protein interaction maps can be

used to infer the function of proteins,6 to calculate

the number of binding sites of a protein,7 and to

identify them on the protein surface.8,9 Knowledge

of the precise structures of macromolecules could

provide insights about quantitative parameters or

help to elucidate functional networks. Recent efforts

to gain knowledge on the structure of protein–pro-

tein complexes have been tackled at high-through-

put level.10,11 Mosca et al.10 provided models for over

3000 protein–protein interactions in the yeast inter-

actome and assessed the use of homology models for

computational docking experiments too.

Computational docking methods aim to eluci-

date the structure of a binary interaction of biomole-

cules (e.g., two proteins) when experimental data

regarding the structure of the complex are lacking

but is present for the interacting partners. Docking

methods were introduced in 1978.12 Since then,

docking algorithms have substantially improved,

with a breakthrough in algorithm speed given by

the introduction of the fast Fourier transform

(FFT)13,14 (e.g., FTDock,15 ZDock,16 and PIPER17)

and by some other very successful geometry-based

methods (e.g., FRODOCK,18 Hex,19 and MolFit13).

The general procedure for predicting the 3D

structure of a protein–protein interaction using

docking consists of an initial rigid-body exhaustive

search. In this step, one performs a screening of a

very large set of possible binary complex conforma-

tions obtained by rotating and translating one of the

proteins around the other and by not allowing atom

mobility. Next, a refinement step follows on some

selected structures,20 which accounts for changes in

the conformation of the two proteins. The final goal

is to provide a near-native structure, that is, a struc-

ture close to the native one.

Typically, a rigid-body docking algorithm

returns a long list of possible structures, which

includes many false interactions. Hence, a crucial

point after this initial step is the selection of a few

structures that will be further analyzed. A common

strategy is to re-rank the docking poses by means of

a scoring function. The accurate scoring of rigid-

body docking orientations represents one of the

major difficulties in protein–protein docking predic-

tion. Overall, good discrimination of near-native

docking poses from the very early stages of rigid-

body protein docking is an essential step before

applying more costly interface refinement to the

correct docking solutions. Some advances in this

direction include the use of desolvation to predict

the binding site area (e.g., pyDock21), the use of

Monte Carlo simulations,22,23 the use of low-fre-

quency normal modes, and side chain flexibility,24,25

or the use of energy evaluation during or after the

docking generation phase, like Haddock,26 ClusPro/

SmoothDock,27,28 RosettaDock,29 or ATTRACT.30

Scoring functions are usually built upon different

properties of protein–protein interactions observed in

known binary complexes. These properties include

physical and chemical characteristics of the binding

site, at the level of residue or atomic contacts. Among

these scoring functions, statistical potential is a term

that refers to a knowledge-based scoring function

that depends on specific properties of known protein–

protein interactions stored in some database. Their

common structure is the sum over all interacting

pairs of a score given to each pair of interacting resi-

dues or suitable atom types. This score is usually

based on chemical, physical, or biological properties.

They have been used, with different degree of suc-

cess, as ranking scoring functions.16,17,31 Initially,

statistical potentials were derived in order to distin-

guish a correct protein fold (i.e., near-native) of a

model from a plethora of generated solutions. A vast

amount of statistical potentials have been described

and tested.32 Specific potentials were derived for the

interaction between macromolecules in order to

assess protein–protein interactions (e.g., M-TASSER,33

MULTIPROSPECTOR,34 and InterPrets35) or DNA-

protein interactions.36�38

In a recent work, we provided a decomposition of

knowledge-based potentials for protein folds into dif-

ferent energy terms that reflected different levels of

detail of the residue-residue interactions.39 This

decomposition allowed for a better characterization of

the structural features that contribute to the greatest

extend of highly discriminative potentials. We derive

and split here empirical potential functions39 for pro-

tein–protein interactions. The purpose is, in the first

place, to elucidate the properties of the standard resi-

due-pair potential that account for its success in

ranking docking poses, and, in the second place, to

obtain a new ranking of poses that improves current

near-native selection success rate. We are eager to

uncover the most important features that character-

ize the native binding interface in comparison to the

other a priori possible binding modes.

We have obtained four new statistical potentials,

depicting the geometry of the interaction and the

energetic component of placing some residues in a

particular secondary structure and surface accessi-

bility. Their success has been evaluated in two dif-

ferent databases (the benchmark dataset and a set

of permanent interactions) and from different points
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of view. We have considered in the first place their

ability to select near-native poses, that is, structures

differing from the native one at most 2.5 Å [com-

puted in terms of interface root mean square

deviation (I-RMSD)]. Second, we have analyzed the

number of top-ranked false interactions (by means of

ROC curves), and, finally, we have studied their

capacity to top-rank the best pose available in the set.

Results

Split statistical potentials

The interaction between two residues can be statisti-

cally described by means of a potential of mean

force.40,41 Given two interacting proteins, several

statistical potentials are defined by considering

potentials of mean force reflecting different charac-

teristics of the residue–residue interaction. These

statistical potentials are obtained by summing the

potential of mean force PMF for each pair of inter-

acting residues a, b of the two proteins A and B:

E ¼
X
a;b

PMFða;bÞ (1)

Let kB denote the Boltzmann constant and let T be

the standard temperature (300 K).

A residue condition is a triplet of the form

h ¼ ðSecondary structure; polar character;

degree of exposureÞ:

In this text, we consider the following potentials

of mean force:

PMFpairða;bÞ ¼ �kBT log
Pða;bjdabÞ

PðaÞPðbÞPðdabÞ
� �

PMFlocalða;bÞ ¼ kBT log
PðajhaÞPðhaÞ

PðaÞ
� �

þ kBT log
PðbjhbÞPðhbÞ

PðbÞ
� �

PMF3Dða;bÞ ¼ kBT logðPðdabÞÞ

PMF3DCða;bÞ ¼ kBT log
Pðha; hbjdabÞ
Pðha; hbÞ

� �

PMFS3DCða;bÞ ¼ �kBT log
Pða;bjdab; ha; hbÞPðha; hbÞ
Pða;bjha; hbÞPðha; hbjdabÞ

� �

(see the Supplementary Material for details). Here,

dab is the distance between the residues a and b

(defined as the minimum of the distances between

all pairs of atoms of the residues) and ya is the con-

dition of residue a. The terms P(�) denote the proba-

bilities of observing interacting pairs with some

given characteristics. For instance, P(a,b|dab) is the

conditional probability that residues a, b interact at

distance smaller than or equal to dab, and P(dab) is

the probability of finding any pair of residues inter-

acting at distance smaller than or equal to dab. The

other probabilities are defined similarly, and the

details are given in the Supplementary Material. All

probabilities P(�) are obtained from the relative fre-

quencies in the selected database [3D interacting

domains (3DID) in our case, see Methods].

The statistical potentials Epair, Elocal, E3D,

E3DC, and ES3DC are defined using formula (1), with

corresponding subindexes between E_ and PMF_. It

was shown39 that Epair admits a decomposition of

the form

Epair ¼ ES3DC � E3DC þ E3D � ELocal þ Ecmp;

where Ecmp is a residual energy term depending

only on the conditions of the interacting residues

that accounts for the reference state. This equation

was initially derived for the scoring of protein folds,

but it remains valid when applied to the residues in

the interface between two interacting proteins.

Note that the statistical potential ES3DC is a

refinement of the residue-pair statistical potential

Epair, in the sense that it takes into account not

only the residues that interact but also the condition

in which each of them sits. On the contrary, the sta-

tistical potential E3DC depends on the occurrence of

interacting conditions, disregarding the specific

interacting residues. The score Elocal is distance in-

dependent and it reflects the probability of placing a

residue on a specific condition. Moreover, it splits

into two terms, each of them depending only on the

probability of placing a certain residue in some con-

dition, for each chain separately. The energy term

E3D concerns only the distance at which pairs of resi-

dues interact. Note that this score increases together

with the number of interacting residue-pairs.

For our computations, we have considered that

two residues interact if its minimum distance is below

5 Å. The reference state considered here is the one

called mole-fraction,31 and its equivalent extensions

for the condition-specific potentials of mean force.

The statistical potentials and native structure

prediction on the 3DID dataset

We have undertaken a preliminary analysis of the

statistical potentials by determining their capacity

to correctly discriminate native structures from non-

native structures on the dataset of binary interac-

tions 3DID. For each native structure in the dataset,

1000 nonnative structures were constructed by shuf-

fling the residues of each protein sequence while fix-

ing the structure.

The five potentials Epair, Elocal, E3D, E3DC, and

ES3DC were analyzed using a five-fold approach. The

dataset 3DID was split into five groups. The native

structures in four of the groups were used to define

the potentials (i.e., for the computation of the

probabilities above), while the remaining group, to-

gether with the corresponding generated nonnative
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structures, was used for testing. This process was

repeated for five times, so that each group was used

as test group once. Additionally, in order to provide

a better comparison of native and nonnative scores

as well as of the different scores, each score was nor-

malized with respect to the random distribution

obtained by shuffling the residues in each sequence.

That is, for each potential, a new score called Z-score

was defined by subtraction of the mean score and di-

vision by the standard deviation among the random-

ized sequences.39

In Figure 1, the distribution of the Z-scores of

native structures is shown. The distribution of

Z-scores for nonnative structures is also given and is

centered at zero (by construction). The deviation

from the centered distribution of the Z-scores corre-

sponding to native structures indicates that our sta-

tistical potentials discriminate to different extent

native from nonnative structures and prove the

validity to further use them for binary interactions

structure prediction or validation. In this sense, Fig-

ure 1 shows that the most relevant scoring functions

are Epair, Elocal, and ES3DC, while E3DC is probably

the less useful potential for this task. Note that the

Z-score of E3D vanishes because this score depends

only on the coordinates of the interface residues that

are fixed in the randomized sequences.

Near-native decoy selection by the statistical
potentials on the benchmark dataset

Each binary-complex conformation obtained by

means of rigid-body docking from its two individual

protein-chains will be referred as decoy. We denote

by I-RMSD the interface Ca-RMSD42 from the native

structure. A decoy is called near-native if I-RMSD <

2.5Å.31,43

We consider here the suitability of our scoring

functions to single out near-native decoys from a

pool of decoys. For that, we consider the benchmark

dataset.44 It consists of a collection of binary com-

plexes (124) with known structure (named targets)

and a set of decoys for each of them (named target

set). Note that there are 97 of the target sets in the

dataset that contain at least one near-native decoy.

Each scoring function provides a ranking of the

decoys in a target set. We call a target set a hit of a

scoring function for a fixed number of allowed pre-

dictions m if the scoring function ranks at the top m

at least one near-native decoy of the set. We build

success curves of each scoring function by consider-

ing the percentage of hits in the dataset while vary-

ing the number of allowed predictions. We consider

the success only up to 1000 predictions because for

this number, the probability of finding at least one

near-native decoy is around 0.9 for most target sets

(see Methods). Therefore, it is essentially meaningful

to analyze the behavior of scoring functions for small

number of predictions. Moreover, the usual number

of predictions provided by the uploaders in the

CAPRI scoring function experiment (http://www.

ebi.ac.uk/msd-srv/capri/) is 1000.

Figure 2(A) shows the success curves of the five

statistical potentials. It can be seen that each of the

potentials in which Epair was split (Elocal, E3D, E3DC,

and ES3DC) has a lower near-native prediction

capability than that of Epair. Surprisingly, the two

statistical potentials that account for the most sophis-

ticated conditions to take part in an interaction,

ES3DC and E3DC, have less successful rate than Elocal

and E3D potentials. With the exception of Epair, all

other potentials show success curves below the ran-

dom for more than 150 predictions [Fig. 2(A)].

When the number of allowed predictions is low-

ered to 200, most P-values of the target sets in the

benchmark dataset are small (Table SI). This indi-

cates that near-native predictions are not likely to be

solely due to random. The success curves of the scor-

ing functions in Figure 2(A) are over the random

curve for up to 200 predictions. In this case, 53 targets

are hits for at least one scoring function and four of

them are exclusive of EPair. We have observed that all

but two of the hits of Elocal and E3D are also detected

by EPair. On one hand, this indicates that Elocal and

E3D do not incorporate new information to EPair, and,

on the other, that most of the success of EPair is

encoded in these two scoring functions. That is, the

frequency of pairs of interacting residues observed in

known binary interactions (measured by EPair) is

essentially due to (a) the intrinsic geometry of the

binding interface (E3D) and (b) the presence of some

residues at certain locations, independently of the

interacting partner (Elocal).

Figure 1. Average of the distribution of Z-scores using a

five-fold approach plus the ranges of error. Z-scores are

obtained with the statistical potentials Epair (red), ES3DC

(orange), Elocal (blue), and E3DC (purple). Also the

distribution of the Z-score of a random distribution,

simulated by shuffling the sequences of the unbound

proteins along the interface is shown in black.
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Although the scoring function ES3DC is less suc-

cessful than EPair, it detects 14 hits (out of 27)

where EPair failed, for 200 predictions. Also, the

scoring function E3DC predicts six hits that were not

found by EPair and four of them were also predicted

by ES3DC. To emphasize the nonoverlap of the hits

of EPair and ES3DC, we show in Figure S1 their suc-

cess curves together with the percentage of common

hits. We conclude that a relevant number of hits are

different between ES3DC and EPair, independently of

the number of allowed predictions.

For comparison, we have also plotted in Figure

2(B), the success curves of the scoring functions

EPair, Zrank, and RPScore. RPscore is a pair poten-

tial scoring function, while Zrank encodes atomistic

energy terms. We see that Zrank provides the best

success curve in the benchmark dataset for the cur-

rent near-native criterion. The differences between

the scoring functions will be addressed later in the

text.

Finally, to see the dependence of the results on

the near-native decoy criterion, we show in the sup-

plementary material (Figure S2), the success curves

of our scoring functions obtained by considering a

decoy to be near-native if I-RMSD < 5 Å.

ROC curves on the benchmark dataset

Success curves tell us about the number of hits of a

scoring function in a dataset but provide no insight

about the number of near-native decoys selected for

each target set. This feature can be globally ana-

lyzed in the dataset by considering ROC curves.

ROC curves are constructed here from the ratio of

near-native decoys selected while varying the num-

ber of allowed predictions (see Methods). Our

approach is equivalent to first compute the ROC

curve for each target set and then average the

curves over the target sets.

Figure 3 shows the ROC curves of the five sta-

tistical potentials (Epair, Elocal, E3D, E3DC, and

ES3DC) together with those of the scoring functions

Zrank and RPScore. The ROC curves of the five

Figure 2. Success curves for the benchmark dataset.

Success curves for the near-native criterion I-RMSD<2.5 Å

are plotted. (A) Success curves for the five statistical

potentials: Epair (red), ES3DC (orange), Elocal (blue), E3D

(green), and E3DC (purple), plus the success curve expected

by random (black). (B) Success curve of the MixRank

strategy ranking and ranks with Epair, Zrank, RPScore

scoring functions before and after application of the

redundancy filter (superindex ‘‘elim’’ indicates the

application of the filter).

Figure 3. ROC curves for the benchmark dataset. We plot

the ROC curves for each of the five statistical potentials

Epair (red), ES3DC (orange), Elocal (blue), E3D (light green),

E3DC (purple), the scoring functions Zrank (dark green) and

RPScore (light blue), and the random classification ROC

curve (dashed black).
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statistical potentials relate similarly to the relation

among their success curves explained above.

Although the success curve of Zrank surpassed

the curve of Epair (and hence of the other statistical

potentials), it is remarkable that the statistical

potentials Epair, Elocal, and E3D provide a bigger

area under the ROC curve (AUC) than Zrank. This

observation implies that these three statistical

potentials tend to group near-native decoys together,

providing a better separation of the two classes

(near-native and non-near-native) than Zrank.

MixRank: A new strategy to rank the decoys of

a target set

Based on the fact that ES3DC and EPair provide a

fairly amount of nonoverlapping hits, we consider a

new strategy to rank the decoys of a target set,

called MixRank. It consists of first considering the

lists of decoys ranked by the scoring functions

ES3DC and EPair separately, and then alternatively

selecting one decoy from each list. Additionally, in

order to avoid repetitions, we apply a removal of

redundant predictions.45 That is, we do not include

decoys that are less than 5 Å of ligand-RMSD46 from

an already selected decoy. This way of removal of

redundancies was analyzed45 and was proved to pro-

vide better selection of near-native decoys. We wish

to note that MixRank is not a scoring function but a

method of ranking.

We have applied the same filter for redundant

predictions to the scoring functions EPair, Zrank,

and RPScore. Figure 2(B) shows the success curves

of these scoring functions, with or without the re-

dundancy filter, together with that of the MixRank.

It is noteworthy that the elimination of redun-

dancy improves near-native prediction success for all

scoring functions.45 Also, the MixRank strategy pro-

vides better hit-prediction in comparison with EPair

when the number of selected predictions is small.

This is due to the fact that this strategy adds hit-

predictions of ES3DC without loosing hit-predictions

of EPair. Note that even with the improvement of

MixRank over EPair, Zrank (with elimination of

redundancies) is the best ranking method for near-

native selection on the benchmark dataset.

In order to understand the ratio of hits shared

between decoys ranked with the MixRank strategy,

Zrank and RPScore (after removal of redundancies),

we show in Table I the name of the targets in the

benchmark dataset for which each of the rankings

include at least one near-native among the first 200

selected decoys. Zrank clearly provides the highest

number of nonshared hits (17), but we observe that

MixRank obtains a hit for nine of the targets where

Zrank fails and RPScore for five (see Fig. 4 for the

scores of target 1UDI, for which there is a near-

native decoy ranked 1 with the MixRank).

Similar success in near-native decoy prediction

was obtained by considering a MixRank strategy

with the combination of ES3DC, Elocal, and E3D, or

E3DC and EPair, or E3DC, Elocal, and E3D as above.

Alternatively, we also tried to find a new scoring

function by combining the five statistical potentials

Epair, Elocal, E3D, E3DC, and ES3DC. This was

attempted by using artificial intelligence methods

(support vector machine and neural networks among

others) without success. Failure was mainly due to

the fact that all artificial intelligence methods

tended to ignore success cases of ES3DC and E3DC in

favor of the three most successful scoring functions

EPair, Elocal, and E3D. As already observed, the last

three scoring functions share most of the hits, and

therefore, there is no gain in their combination.

Selection of the best decoy in a target set

We have been concerned with the selection of near-

native decoys in a target set. However, only 97 of

the target sets of the benchmark dataset contain

decoys satisfying our criterion of near-native. We an-

alyze here the capacity of the scoring functions and

MixRank ranking to top-rank the best available

decoy. To introduce some flexibility, we consider a

Table I. Hits by different ranking methods on the benchmark dataset

Zrank and RPScore Zrank Zrank and MixRank
1AY7, 1EWY, 1N8O, 1RLB,

2QFW, 2SIC, 2UUY
1AY7, 1B6C, 1E96, 1HE1, 1I9R,

1IJK, 1IQD, 1JPS, 1KAC, 1KTZ,
1QFW, 1AZS, 1GLA, 2MTA,
2SNI, 2VIS, 2FD6

1AKJ, 1E6J, 1F34, 1F51, 1KXQ,
1ML0, 1MLC, 1NCA, 1GPW, 1K74,
1R0R, 1YVB, Z5Y, 1ZHI, 2HLE

Common for all
1AHW, 1AVX, 1BJ1, 1BUH, 1BVN,

1DFJ, 1E6E, 1EAW, 1FSK, 1IQD,
1K4C, 1KXP, 1MAH, 1PPE,
1WEJ, 1T6B, 1XD3, 1Z0K,
2JEL, 2B42, 2CFH, 7CEI

RPScore RPScore & MixRank MixRank
1FC2, 1J2J 1CGI, 2BTF, 2I25 1EZU, 1I4D, 1TMQ, 1UDI, 2PCC, 2H7V

We show the targets of the benchmark dataset that provide a near-native decoy among the first 200 predictions, for the
rankings provided by the MixRank strategy, Zrank and RPScore, after applying the redundancy filter. Common hits are
grouped. Total of structures: 71 (out of 97 possible).
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decoy good if its I-RMSD differs less than 0.5 Å from

the lowest I-RMSD among all the decoys in the tar-

get set. Note that this concept depends on the other

decoys in the target set, and it is not a property of

the decoy conformation in comparison to the native

structure.

We have constructed new success curves

[Fig. 5(A)] by considering the percentage of target

sets in the benchmark dataset for which a good

decoy is top-ranked, while varying the number of

allowed predictions. Note that this definition of suc-

cess allows us to test all 124 target sets. We observe

that the relation between our five statistical poten-

tials is analogous to that depicted in Figure 2(A).

However, in this case, the most successful scores are

better than random.

Determination of the best (or good) decoys in

the target set allows us to take a closer look to the

behavior of the scoring functions on the medium and

difficult cases of the benchmark dataset (see Meth-

ods). For most targets in these two classes, there is

no decoy in their target set satisfying our near-

native criterion. The goal for the docking community

is to obtain the best pose, but our purpose here con-

cerns only the evaluation of scoring functions that

are aimed to select the decoys that will be further

processed, and we do not allow conformational

changes at this step. Therefore, the success in these

types of targets is to select the best decoy available.

Figures 5(B) and 5(C) provide the analysis of

success when restricted to medium and difficult

cases. Figure 5(B) depicts the success curves related

to good decoys for medium and difficult cases, for

the scoring functions Epair, Elocal, E3D, E3DC, and

ES3DC and Zrank and RPScore. We observe that the

statistical potentials Epair, E3D, and Elocal have a

similar success in the selection of the best decoy

[compare to Fig. 5(A)]. Additionally, these three

statistical potentials surpass Zrank for these cases.

Figure 5(C) provides the success curves for the

MixRank strategy together with the ranks provided

after the application of the redundancy filter to

Epair, Zrank, and RPScore. The MixRank strategy

and the rank provided by Epair are better than

Zrank at predicting the best decoy in the dataset of

medium and difficult cases.

We attribute the differences to the fact that

Zrank takes into account detailed atomic features

(fine-grain) and hence it is likely to fail in predicting

decoys that are not close enough to the native struc-

ture. On the contrary to Zrank, our statistical poten-

tials are less dependent on small variations of the

conformation of the binding interface (coarse-grain).

This observation was also pointed out in a previous

work.45

Figure 4 shows the scores and ranks for the

best near-native decoy of target 1IBR predicted as

solution at rank 120 according to MixRank and at

rank 3722 according to Zrank (applying the redun-

dancy filter). The value of I-RMSD of this decoy is

4.71 Å. In this example, it is shown that the Zrank

score of the native conformation of the binary

Figure 4. Comparison of the native conformation and one decoy for easy and difficult targets. The native conformation and a

near-native decoy of 1UDI (easy case) and of a good decoy of 1IBR (difficult case) are plotted in ribbons. Decoy

conformations obtained by rigid-body docking of the unbound proteins are shown in pink and yellow. Their respective chains

in the native conformation of the binary complex are shown in green and cyan. Additional information of the scores (Zrank,

Elocal, Epair, ES3DC, and E3D) calculated with the native and selected decoys are shown in the inner table. Also, for the decoys

of both targets, the table includes the I-RMSD and the ranking by Zrank scores and the MixRank strategy.
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complex of target 1IBR is significantly different to

the Zrank score of this near-native decoy, while the

differences using Epair scores are not that signifi-

cant. Using the scoring functions Elocal or E3D

alone, we also mistake the ranking. Therefore,

Zrank can only be used if the structure of the binary

complex after rigid-docking is optimized and cor-

rectly modified, while this example shows how Epair,

Elocal, and E3D can be combined to obtain a good

ranking of rigid-docking poses.

Near-native decoy selection by the statistical

potentials on the permanent interactions
dataset

Next, we analyze the success of our statistical poten-

tials Epair, Elocal, E3D, E3DC, and ES3DC in the

detection of near-native decoys on the permanent

dataset. We observe that the success curves in this

case (Fig. 6) are similar to the success curves

obtained for the benchmark set (Fig. 2). It has to be

noted that most scoring functions are over the ran-

dom curve in the permanent interactions dataset

and that Epair overcomes the rest of the potentials

[Fig. 6(A)].

As we did with the benchmark dataset, we have

analyzed the overlap among the hits of the different

statistical potentials when allowing 200 predictions.

We observe that all hits of Elocal and all but one hit

of E3D are hits of Epair, while seven hits of ES3DC

are not found by the rest of scoring potentials. This

suggests that the MixRank strategy can improve the

rank given by Epair for permanent interactions. For

the analysis of the statistical significance of the hits,

we show in Table SII the probability of finding at

least one near-native decoy among the 200 top-

ranked decoys of each target set. P values in the ta-

ble show similar difficulties to guess a near-native

decoy by chance to those found for the benchmark

dataset (Table SI).

Based on the previous observation, we have fur-

ther compared the near-native prediction success of

MixRank strategy to that of the rank given by Epair,

Zrank, and RPScore after applying the redundancy

filter. The corresponding success curves are given in

Figure 6(B). We note that, contrary to the scenario

shown in Figure 2(B) for the benchmark dataset,

Zrank has lower success rate than the MixRank and

Epair rankings (both with the redundancy filter).

We are apparently reflecting some property of the

permanent dataset not present in the benchmark

dataset. Zrank is a scoring function that is a linear

Figure 5. Success curves for good decoys in the

benchmark dataset. (A) Success curves on the whole

benchmark dataset are plotted for the five statistical

potentials Epair (red), ES3DC (orange), Elocal (blue), E3D (light

green), and E3DC (purple). (B) Success curves for good

decoys for the five statistical potentials together with Zrank

(dark green) and RPScore (cyan), only with the medium and

difficult cases of the benchmark dataset (no redundancy

filter applied). (C) Success curves are plotted after removal

of redundant solutions for the MixRank strategy, Epair,

Zrank and RPScore scoring functions, and also compared

with the success curve expected by random (black), only

with the medium and difficult cases of the benchmark

dataset.
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combination of energy terms, whose weights are

obtained by training on the cases of the benchmark

dataset of the first version,47 which is not included

in the later versions of the dataset that were used

for testing. We believe that this makes Zrank more

specific to transient interactions, because the ratio

of targets being transient interactions in the bench-

mark dataset is higher than in the permanent data-

set, and this is why it has a reduced success rate

when scoring permanent interactions.

Table II provides the name of the targets of the

permanent interaction dataset for which the ranks

given by the MixRank strategy, Zrank, and RPScore

produced at least one near-native decoy in the first

200 predictions.

We have also analyzed the prediction of good

decoys using the split statistical potentials (Fig. S3).

We obtained similar success curves for Epair, Elocal,

and E3D. We further checked the consistency of our

approach if decoys of permanent interactions were

obtained using the unbound structures. We found

only one case in 3DID (RibosomalS2#RibosomalS8)

with the unbound structures of both partners (see

Table SIII for the ranks of the first good decoy in

this case).

Discussion

Statistical potentials have often been used to study

protein folding and protein–protein interactions.

Since they were first defined in the 1970s, they have

been the focus of several studies. Their accuracy has

improved substantially thanks to the increase of in-

formation available in the databases and the newly

developed machine learning algorithms. When

studying protein–protein interactions, it has been

pointed out by several works14,16,17 that the integra-

tion of statistical potentials into the FFT framework

increases the number of detected near-native struc-

tures during a rigid-body docking search.

In this study, we have tested a series of novel

residue-pair statistical potentials for scoring pro-

tein–protein interactions, following the methodology

of our previous work in protein folds.39 The main

focus of study has been the ability to discriminate

near-native decoys from a collection of decoys

obtained by rigid-body docking experiments. Four

new statistical potentials have been considered:

ES3DC and E3DC, concerning the frequency of inter-

acting residues, including the specific conditions

(secondary structure, exposure and polar character)

in which they sit; Elocal, measuring the probability

of placing the residues involved in the binding inter-

face within a specific condition; and E3D, based

exclusively on the geometry of the binding interface.

We have noticed that the information carried by

the standard residue-pair statistical potential Epair

is mainly a mixture of two facts: first, the tendency

of some residues that are at some specific conditions

to be at the binding interface (encoded by Elocal),

and, second, some geometric constraints (encoded by

E3D). The fact that the scoring function Elocal con-

tains the largest part of the information required to

predict an interaction implies that the physico-chem-

ical properties necessary for the binding are allo-

cated on the proteins previous to its binding and

with independence of the partner. This is the first

main conclusion of this work, however, given previ-

ous results in the literature, it is not entirely unex-

pected. The usage of desolvation and optimal dock-

ing area to predict binding sites has been described

in the literature21,48 and has already been used to

predict protein–protein interactions. In our case, we

have proved the relevance of certain regions, formed

Figure 6. Success curves for the permanent dataset.

Legend colors of potentials as in Figure 2. (A) Success

curves for the five statistical potentials: Epair, ES3DC, Elocal,

E3D, and E3DC, plus the success curve expected by

random. (B) Success curve of the MixRank strategy ranking

and ranks with Epair, Zrank, RPScore scoring functions

before and after application of the redundancy filter.
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by residues located near the surface of the protein

and within a specific secondary structure, to later

interact with a protein and to become buried in the

protein–protein interface. We have to note that Elo-

cal is computed as a sum of two terms, each of them

obtained as the sum of statistical energies of the res-

idues of the binding interface in one of the chains.

This suggests that it might be worth introducing

Elocal into the FFT procedure, as initial grid scores,

in order to improve the docking surface search.

When studying the rest of statistical potentials,

we found that ES3DC correctly detected some targets

that escaped residue-pair statistical potential selec-

tion. ES3DC is a refinement of EPair that takes into

account the frequency by which two residues inter-

act and the local features in which the residues sit.

Based on this observation, we elucidated a ranking

strategy of rigid-docking poses, MixRank, that com-

bined the selection power of the statistical potentials

EPair and ES3DC in a way that its success curve was

better than that of the standard residue-pair poten-

tial for a small number of predictions. This improve-

ment was noticed with the benchmark dataset and

the permanent interactions dataset, and also when

searching near-native decoys or the best decoys

available in the dataset. Our strategy to combine

both scores seems plausible to follow if: (i) the hits

given by independent scores are different; and (ii)

we do not know a priori the most successful scoring

function. We wish to note that we do not obtain a

new scoring function but a strategy to rank the

decoys.

Similarly, in ClusPro,28 the authors follow the

strategy to select 2000 decoys by picking the top-

ranked decoys according to two different scores (des-

olvation free energy and electrostatics energy). They

proceed with the clustering of the selected decoys

and the centers of the biggest clusters are further

refined. Our approach here is slightly different,

because the selection of decoys is not based on the

size of the cluster but keeps the initial order of the

individual scores.

ROC curves for EPair, Elocal, E3D, and Zrank on

the benchmark dataset suggested that predictions

derived from the first three scoring functions

included less non near-native decoys than Zrank.

This was valid for a large ratio of false-positives

(non near-native decoys being considered near-

native), and it depends on the total number of

allowed predictions. This was particularly relevant

for medium and difficult cases, there were success

curves for EPair, Elocal, and E3D surpassed Zrank

and RPScore functions, and stressed when removing

redundant solutions and using the MixRank strat-

egy. This drives us to the second main conclusion of

this work, that is, we have generated a ranking

based on statistical potentials able to compete with

the best available methods (i.e., Zrank) in successful

rates, unless there is evidence that only small con-

formational changes occur upon binding. Besides,

because this method is defined from residue-pair sta-

tistical potentials and does not require an atomic

level description, it can also surpass Zrank when

scoring rigid-docking decoys in cases where the

unbound partners of an interaction have to endure

conformational changes upon binding.

We have tested our methods in two different

datasets: the standard benchmark set and a more

specific set of permanent interactions. First, the

benchmark decoy dataset44 was used to analyze the

success of our scoring functions. However, this data-

set contains many transient interactions. Therefore,

Table II. Hits by different ranking methods on the permanent dataset

RPScore & MixRank MixRank Zrank & MixRank
Dehydratase_LU#Dehydratase_SU ATP-synt#ATP-synt_DE_N ATP-synt_DE#ATP-synt_Eps
Fumarate_red_C#Fumarate_red_D Cloacin#Cloacin_immun MCR_beta#MCR_gamma
NHase_alpha#NHase_beta COX4#COX7B
Ribosomal_L11_N#Ribosomal_L12 MCR_alpha#MCR_gamma
RNA_pol_A_bac#RNA_pol_Rpb1_3 MHC_II_alpha#MHC_II_beta
RNA_pol_Rpb1_4#RNA_pol_Rpb2_3 PA28_alpha#PA28_beta
TFIIF_alpha#TFIIF_beta Ribosomal_S10#Ribosomal_S3_N

RuBisCO_large#RuBisCO_small
TP_methylase#TP_methylase
tRNA-synt_2e#tRNA-synt_2e
Urease_alpha#Urease_beta

RPScore Common for all Zrank
RNA_pol_L#RNA_pol_Rpb1_3 Como_LCP#Como_SCP COX1#COX3

COX6C#COX7B DNA_pol3_beta#DNA_pol3_beta_3
LigA#LigB Glyco_hydro_11#Glyco_hydro_18
Me-amine-dh_H#Me-amine-dh_L Ribosomal_S18#Ribosomal_S6
Ribosomal_S2#Ribosomal_S5 SRP14#SRP9
Trp_syntA#Trp_syntA

We show the targets of the permanent interactions dataset that provide a near-native decoy among the first 200 predictions
with rankings provided by the MixRank strategy and the scoring functions Zrank and RPScore, after applying the redun-
dancy filter. All hits that are shared between Zrank and RPScore are also hits for the MixRank.
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in order to test whether different features would

appear in other types of interactions, we constructed

a new dataset consisting of only permanent interac-

tions. We wish to note that for the permanent inter-

actions dataset, the MixRank strategy and Epair

scoring function surpassed the success rate of Zrank

and RPScore when filtering out redundant poses.

Therefore, the third main conclusion from this work

is that we have obtained a good methodology to rank

protein–protein interactions of permanent com-

plexes. This is particularly relevant to tackle the

next challenge in protein docking, which is to en-

semble higher-order structures (i.e., multiprotein

complexes) from their individual components.49,50

These molecular machines are often constituted by a

central core of interactions, which are permanent

and confer the main function to the complex, deco-

rated by some others with regulatory roles.51 Thus,

a good set of potentials that predict the conformation

of stable complex cores will be paramount.52 Besides,

although it can be argued that the statistical poten-

tials derived from domain–domain interactions are

more suitable to the task of detecting permanent

interactions, the fact that our methods predicted me-

dium and difficult cases of rigid-docking with better

or similar rate of success than other methods vali-

dates its generalized use for rigid-docking.

Methods

Databases

We have considered three databases, one to calculate

the knowledge based pair potentials (3DID) and two

to test the scoring functions (a benchmark decoy set

and the permanent interactions set).

3D Interacting Domains (3DID). We have con-

sidered a nonredundant set of interacting domains

extracted from the database 3DID.53 The database

3DID consists of a nonredundant collection of do-

main–domain interactions in proteins for which

high-resolution three-dimensional structures are

known. Interactions in this database are labeled by

the PFAM code of each of the interacting domains.

This database has been used for the computation of

the frequencies required in the statistical potentials

definition.

Benchmark decoy dataset. We have considered

the benchmark decoy dataset of Weng and coworkers.44

This dataset is based on a set of nonredundant real

interactions for which both the complex 3D structure

and the individual chain structures are available. We

consider the 54,000 decoys generated using the rigid-

body docking algorithm ZDock3.016 from the individual

chain structures. The set of binary-complex conforma-

tions of a rigid-body prediction are classified according

to the expected difficulties to obtain a near-native solu-

tion of the target. They deal with three types named:

easy, medium, and difficult cases. This classification

scheme is based on the degree of conformation changes

as measured by I-RMSD and the fraction of non-native

residue contacts.44 In Figure 4, we compare the native

conformations of targets 1UDI (easy case) and 1IBR

(difficult case) to selected decoys (with I-RMSD 2.23

and 4.71 Å, respectively).

In total, the dataset consists of 124 cases, 88 of

which are straight forward for rigid-body docking,

19 are medium and 17 are difficult cases for which

further conformational changes are required upon

binding. Only 97 of them (88 rigid-body and nine

medium) fit into our near-native decoy criterion.

Permanent interactions dataset. We have col-

lected a subset of permanent interactions and its

accompanying docking decoys, by selecting from

3DID one representative structure of all those inter-

actions whose interacting partner components can

only function in their complex form, and thus are

unlikely to exist in isolation. Each binary complex

has been decomposed in two unbound domains and

used to generate a set of decoys of binary interac-

tions. The procedure to obtain the unbound struc-

ture of the interacting domains is as follows: First,

for each binary complex, we searched in the PDB54

for the structures containing the same domains

without its interacting partner. Second, if the

unbound domain was not found in the PDB, we

searched for homologous proteins with solved struc-

tures in the PDB containing the unbound domain

and we used them as templates to model the desired

unbound domain with MODELLER.55 And third, we

constructed the rest of unbound domains of the per-

manent dataset by extracting the backbone of each

unbound domain and remodeling the side-chains

with MODELLER. In this way, the dataset contains

143 targets of binary complexes and its unbound

structures.

Finally, a total of 54,000 decoys for each target

were created using ZDock 3.0 with a 6� sampling.

After the sampling, 59 of the targets produced at

least one decoy satisfying the I-RMSD < 2.5Å.

Scoring functions
We have compared the performance of our five scor-

ing functions (Epair, Elocal, E3D, E3DC, and ES3DC)

with Zrank43 and RPScore.31 Zrank is the scoring

function included in ZDock, obtained as a linear

weighted sum of van der Waals and electrostatic

energies and desolvation. RPScore is a knowledge-

based pair potential scoring function included in

FTDock.
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Statistical assessment of hits
For the assessment of the statistical significance of

predictions, we have used the P-value computation

and the random expected curve.45

I-RMSD and Ligand-RMSD

I-RMSD (interface root mean square deviation)31,43

of a decoy refers to the pairwise RMSD of corre-

sponding Ca-atoms of the residues in the interface of

the native conformation.

Ligand-RMSD46 between two decoys (obtained

from rigid-body docking) is computed as the RMSD

between corresponding Ca-atoms of all the residues

in the ligand. In rigid-body docking, the protein that

is rotated and translated around the other protein is

called the ligand.

Measures for correct predictions

Depending on the approach taken, we consider cor-

rect predictions those being either near-native

decoys or good decoys. A decoy is called near-native

if I-RMSD<2.5 Å and good if its I-RMSD differs less

than 0.5 Å from the lowest I-RMSD among all the

decoys in the target set.

ROC curves
The ROC curve is the plot of the false positive rate

(FPR) versus the true positive rate (TPR) calculated

while varying the selection threshold of a scoring

function:

TPR ¼ TP

Pos
; FPR ¼ FP

Neg
:

Here, Pos and Neg are the total number of posi-

tive and negative objects, respectively, TP is the

number of correctly predicted positive objects, and

FP is the number of objects incorrectly predicted to

be positive.
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