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This paper presents BrainNetVis, a tool which serves brain network modelling and visualization, by providing both quantitative
and qualitative network measures of brain interconnectivity. It emphasizes the needs that led to the creation of this tool by
presenting similar works in the field and by describing how our tool contributes to the existing scenery. It also describes the
methods used for the calculation of the graph metrics (global network metrics and vertex metrics), which carry the brain network
information. To make the methods clear and understandable, we use an exemplar dataset throughout the paper, on which the
calculations and the visualizations are performed. This dataset consists of an alcoholic and a control group of subjects.

1. Introduction

One of the major issues in neuroscience is to describe
how different brain areas communicate with each other
during perception, cognition, and action as well as during
spontaneous activity in the default or resting state. Mainly
two different approaches for capturing and localizing brain
activity motifs have been proposed; univariate spectrum
based analysis and functional connectivity analysis [1].
Friston [2] defined functional connectivity as the statistical
dependence between the activations of distinct and often
well-separated neuronal populations.

Network models and graph theory provide a common
framework for describing brain functional connectivity
[3-5]. The interdependence between brain areas is estimated
using multivariate neurophysiological signals (EEG, MEG,
ECoG) and/or haemodynamic response images (fMRI).
Then, a network is formed by corresponding either brain
areas or channels to vertices and by considering an edge
between two vertices if and only if the estimated interdepen-
dence is above a threshold. Regarding threshold selection,
it is important to notice that it is a rather tricky part and
there is currently no established way of favouring a specific

threshold value. In practice, a broad range of threshold values
is used to characterize the network. However, the authors
propose two alternative approaches in selecting a threshold
value based either on group statistics between specific graph-
theoretic measures of the populations under analysis [6] or
utilizing a signal-based technique of selecting the optimal
visualization threshold using surrogate (artificially generated
ensemble of data aiming at revealing the most significantly
coupled brain regions) datasets to correctly identify the
most significant correlation patterns [7]. The next step in
the analysis, after edge identification, is to measure some
networks statistics and characterize the network. Then, using
the network characterization, one can draw conclusions on
the effect of illnesses or of cognitive loads on functional
connectivity [6-11].

In this study, we briefly refer to pairwise (bivariate)
and multivariate interdependence measures, as well as linear
and nonlinear ones, that have been successfully used as
indices of cerebral engagement [12]. This information is
important for the correct usage of the tool, especially
for nonexpert users, as the application of these measures
on the raw EEG data produces the input to our tool.
The BrainNetVis tool provides a dynamic snapshot of



the highly complex underlying neural mechanisms by means
of graph visualization [13]. BrainNetVis is an open-access
multiplatform tool, provided by ICS-FORTH, for graph
representation and brain network visualization. Please note
that BrainNetVis calculates the following presented metrics
on the synchronization matrices (adjacency matrices) that the
user should calculate in advance! However, the preprocessing
section (Section 3.2) briefly presents some widely used
techniques to assess functional brain connectivity and form
the adjacency matrix.

At this point, we refer to some already existing tools
on the field. These tools capture different kinds of EEG
information than BrainNetVis and they may be used com-
plementary to it. One of them is EEGLAB [14], which we
have been using extensively for better perception of the
brain area. EEGLAB is an interactive Matlab toolbox for
processing continuous and event-related EEG, MEG, and
other electrophysiological data incorporating independent
component analysis (ICA), time/frequency analysis, artifact
rejection, event-related statistics, and several useful modes
of visualization of the averaged and single-trial data. EEGlab
offers also dipole localization functions. Some of the metrics
that we implement have also been implemented in the Brain
Connectivity toolbox (a matlab toolbox) by Rubinov and
Sporns [15]. Other related toolboxes include MEA-Tools [16]
and ERPWAVELAB [17]. In these toolboxes, however, the
measures for quantifying channel interactions are mainly
confined to the temporal crosscorrelation [16] and the
coherence spectrum [17, 18]. However, more sophisticated
interdependence techniques addressing not only linear but
also nonlinear synchronization and causality are also avail-
able and applied in certain pathologies like Epilepsy [12].
Such measures can act complementary to graph theoretic
indices that characterize brain networks as discussed in [19]
and can be used as input to BrainNetVis.

The paper is organized as follows. Section 2 presents
essential information on the different ways of graph mod-
elling and manipulations, using BrainNetVis. Section 3 refers
to the preprocessing needed (Section 3.2), the most com-
monly used menu calls and the GUI (Section 3.3), and
the possible graph visualization options (Section 3.4). Our
conclusion is given in Section 4.

2. Network Analysis

Before presenting BrainNetVis, it is important to provide
here some basic definitions from graph theory.

A graph G = (V,E) defined on a set of vertices V =
{vi,...,vs} and edges E = {ei,...,em}, where each edge
e € E is an ordered or unordered pair of vertices. An ordered
pair e = (u,v) € V x V is called a directed edge, while
an unordered pair e = {u,v}, where u,v € V, is called
an undirected edge. In case u = v, e is called a self-loop. In
our study, we consider simple graphs, that is, graphs without
self-loops. Also the cardinality of V is denoted by n (ie.,
n=1V]).

A weighted network G = (V,E,w) consists of a graph
with vertex set V and edge set E augmented with an edge
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value function w : E — R that assigns to each edge e € E
a real value w(e). Every weighted network G = (V,E,w)
corresponds to a real n X n matrix W = (wy), i,j €
{1,2,...,n}, where w;; is equal to value w(e) of edge e =
(vi,vj) if e € E, or to 0 otherwise. If we reserve value 0
to mean the absence of an edge, then the correspondence
between G and W is one to one. In this work, we consider
a subset of weighted networks, which we call synchronization
networks, where edge values are restricted to interval (0, 1]
and interpreted as strength of dependence between vertices.

In synchronization networks, higher edge values indicate
stronger dependencies. To define the length of an edge, we
should at least reverse the order of edge values by applying,
for example, the inverse function g : (0,1] — [1,+c0), that
is,

1
glx) = o (1

We also propose another function g : (0,1] — [1,+00),
where

g(x) =1 —log,(x). (2)

These are definitions on how to transform the edge
lengths in the case of synchronization networks. Which of
the two functions performs better depends on the graph
structure and on the metric or the visualization method
that uses these functions. When choosing the appropriate
formulation, one should consider that the function 1/x tends
to +oo faster than the function 1 — log,(x) when x — 0.
Therefore, the edges with small values are assigned longer
lengths with the 1/x function than those with the 1 — log, (x)
function.

The length of a path from vertex u to vertex v is the sum
of the lengths of the edges of the path. The shortest path
distance from vertex u to vertex v is denoted by dg(u,v). If
vertex v is unreachable from vertex u, then dg(u,v) = +oo.

3. Methods and Results

3.1. Exemplar Case. In what follows, we are using the data
of a specific use case, consisting of alcoholic and control
subjects, in order to provide concrete examples of use
of the application. Briefly, the specific study included 30
control subjects and 30 alcoholic subjects. Each subject
was fitted with a 61-lead electrode cap (ECI, Electro-Cap
International). All scalp electrodes were referred to C;. In this
experiment, each subject was exposed to pictures of objects
chosen from the 1980 Snodgrass and Vanderwart picture set
[20]. The stimuli in each trial were randomized (but not
repeated) and were presented on a white background for
300 ms at the center of a computer monitor. Their size was
approximately 5-10 cm X 5-10 cm, thus subtending a visual
angle of 0,05°—0,1°. Ten trials were shown, with the interval
between trials fixed to 3.2 s. The participants were instructed
to memorize the pictures in order to be able to identify
them later. For each subject and for each trial and frequency
band (0.5-4 Hz, 4-8 Hz, 8—-13 Hz, 13-30 Hz, 30-45Hz) the
interdependence for each channel pair (there are 61 (61—1)/2
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channel pairs since the number of active EEG channels is 61)
was calculated using the coherence and the RIM methods.
The results were stored in 61 X 61 interdependence matrices
W with elements ranging from 0 to 1. The main finding of
this study, using BrainNetVis, was that the alcoholic subjects
have impaired synchronization of brain activity and loss of
lateralization during the rehearsal process as compared to
control subjects.

3.2. Preprocessing. In order to create a graph, a matrix
containing the EEG channel pairwise correlations is required.
Thus, one needs to calculate the correlations among all
pairs of electrodes and deduce the respective adjacency
matrix, called synchronization matrix. There exist a number
of measures that capture the linear and the nonlinear links
between time-series in a frequency band in order to calculate
the required correlations (in the EEG analysis context they
are called synchronization indices). Three measures have
been chosen after an extensive study in linear and nonlin-
ear synchronization measures [12]: the typical magnitude
squared coherence method (MSC) [21], a nonlinear bivariate
measure for generalized synchronization (RIM) [22] and
Partial Directed Coherence (PDC) [23]. The advantage of
magnitude squared coherence is that it is well known and
widely accepted. The advantage of RIM is that it is able to
capture nonlinear patterns available in the signals, whereas
PDC can measure causality.

(1) Magnitude Squared Coherence (MSC) . MSC (or simply
coherence) has been a well-established and traditionally
used tool to investigate the linear relation between two
signals or EEG channels. Let us suppose that we have two
simultaneously measured discrete time series x; and y;, i =
1...N. MSC is the cross-spectral density function Sy, (f),
which is simply derived via the fourier transform of the
crosscorrelation, normalized by their individual autospectral
density functions. Hence, MSC is calculated using the
Welch’s method as
2
Sk
(0)] .

|<sxxf>>|\<yy M

where (-) indicates window averaging. The estimated MSC
for a given frequency f ranges between 0 (no coupling) and
1 (maximum linear interdependence).

ny(f) =

(2) A Robust Interdependence Measure (RIM) . Given
two scalar time series {x(t)},er and {y(£)},.y with T =
{1,...,N}, which have been measured from dynamical sys-
tems X and Y, the dynamics of the systems are reconstructed
using delay coordinates [24]

x(t) = [x(t),x(t+1),...,x(t+ (m— D1)]T (4)

and similarly we reconstruct y(t) from {y(¢)},_;, with an
embedding dimension m and a delay time 7 forn € T’ =
{1,...,N’'},where N' =N — (m — 1)1.

Regarding 7 and m, they are parameters of Arnhold’s
method [25]. Taken’s [24] embedding theorems and their

sequels (e.g., [26]) are existence proofs but they do not
directly show how to get a suitable time delay 7 or embedding
dimension m from a finite time series. Empirical and
heuristic criteria are employed for selecting T and m. Usually,
a choice of 7 is the value for which the autocorrelation
function first passes through zero, while m is determined
using variations of false nearest neighbour statistics [27-29].
Parameter 7 can also be calculated using the method of Fraser
[30].

Letr;jands;j, j = 1,...,k, denote the time indices of the
k nearest Euclidean neighbors of x(t) and y(t), respectively.
Temporally correlated neighbors are excluded by means of a
Theiler correction: |r; —t| > m - 7 and [s;; —t| > m - 7.
For each t € T, the average square distance of y(¢) to all
remaining points in {y(j)} ;. is given by

N’

- X o -y() I (5)

j=Lj#t

R(Y)

For each y;, the X-conditioned mean squared Euclidean
distance is defined as

k
1 2
R(%) - ;2\y(t)—y(n,,-)\ . (6)
Quiroga et al. [25] defined the dependence measure

Y S R(Y) — RP(v7x)
N<_) N’ & R/(Y) : )

X

The measure N(X/Y) is defined in complete analogy, and as
interdependence measure between X and Y, we use the mean
value (N(X/Y) + N(Y/X))/2.

(3) Partial Directed Coherence (PDC) . Let {x(t)},cn with
x(t) = [x1(£),...,x2(t)] bea stationary n-dimensional time
series with mean zero. Then, a vector autoregressive model of
order p for x is given by

P
x(t) = D AM)x(t — 1) +e(t), (8)

r=1

where A(r) are the n X n coefficient matrices of the model
and &(t) is a multivariate Gaussian white noise process with
covariance matrix X. In this model, the coefficients A;;(r)
describe how the present values of x; depend linearly on
the past values of the components x;. In order to provide
a frequency domain measure for Granger-causality, Baccala
and Sameshima [23] introduced the concept of PDC. This
measure is based on the Fourier transform of the coefficient
series

P
Alw) =1- > Alw)e ™. 9)
r=1
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(a) Binary network using threshold = 0.4
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(b) Greyscale network using colormap scale. The warmer the color of
the edge, the stronger the coherence of its adjacent vertices

F1Gure 1: Example of weighted networks for a virtual alcoholic patient. Both pictures are produced with the Arnhold’s method for broadband

activity.

More precisely, the PDC from x; to x; is defined as

‘Zij(w)’
VL Ay @) |

The PDC ;. j(w) takes values between 0 and 1 and vanishes
for all frequencies w if and only if the coefficients A;;(r) are
zero forallr =1,...,p.

The synchronization matrix created using one of the
above methods serves as input to the BrainNetVis tool
thus, it should be calculated separately and a priori. Please
note that the presented tool currently implements only
graph characterization measures and visualization schemes.
It can be used with a variety of inputs in the form of the
adjacency matrix. However, we provide the preprocessing
section mostly for the interested but not expert user that
wishes to investigate how graph analysis may be applied to
the neuroscience field. In this sense, even if signal processing
techniques are outside of the scope of the tool, we do describe
the most widely used methods that provide the input for the
further graph analysis. Nevertheless, it is true that most of the
methods presented, linear (i.e., PDC) but mostly nonlinear
ones (i.e., RIM), assume some kind of stationarity. Generally
EEG distribution is considered as a multivariate Gaussian
process even if the mean and covariance properties generally
change from segment to segment. Therefore, strictly speak-
ing, EEG meets quasistationarity because it can be considered
stationary only within short intervals. Hence, the user should
somehow test the stationarity assumptions prior to using
these methods. Hopefully, a novel and prosperous technique
capable of decomposing a multivariate time series into its
stationary and nonstationary part is known as stationary
subspace analysis (SSA) [31] and can be utilized to overcome
the implicit stationarity constraints.

mij(w) = (10)

3.2.1. Binary and Greyscale Networks on BrainNetVis. Brain-
NetVis provides the option of using either a binary or a
greyscale network by adjusting, respectively, the Network
Metrics Options under the View drop down menu. In our
use case, we provided as input to the tool a synchronization
matrix describing the brain network of a virtual alcoholic
patient. This virtual patient has been created by taking the
means across the node and edge values over all 30 alcoholic
subjects. We underline that this subject does not actually
exist. We applied a binary network, using threshold = 0.4
and a greyscale network which we visualized using colormap
scale. The edge length transformation function can also be
selected under the same menu. We used

fe) = )—16 (11)

The results are depicted in Figure 1.

3.2.2. Data Structure. Two types of files are required for the
algorithms that BrainNetVis encapsulates to run properly

(1) A square synchronization matrix with the data
from the EEG study (required for the algorithms to
function).

(2) A file containing a matrix of the labels and the
coordinates of each electrode. The rows of the
table correspond to the electrodes. The first column
contains the electrodes’ labels, and the other columns
contain the coordinates of the electrodes. These will
be either 2 columns (for 2D data, respective to x
and y coordinates) or three columns (for 3D data,
respective to x, y, and z coordinates). (required for the
visualization options)
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FIGURE 2: A menu screenshot depicting the selection of global
network metrics.

3.3. Menu Calls (GUI). The network metrics available in
BrainNetVis will be presented here, in a way that follows the
tool’s structure.

3.3.1. Global Network Metrics. Networks are often classified
into unifying categories in order to obtain a better under-
standing of their structure and function. Network measures
are numbers which capture reduced information for graphs
and describe essential properties. Network measures should
catch the relevant and needed information, they should
differentiate between certain classes of networks and be
easily computed in order to be useful in algorithms and
applications.

A very important global network metric is clustering
coefficient. The clustering coefficient has been introduced
by Watts and Strogatz [32] in 1998. For a vertex v, the
clustering coefficient c¢(v) measures the connectivity of its
direct neighborhood. The clustering coefficient C(G) of a
graph is the average of c(v) taken over all vertices.

In the BrainNetVis application, we implement two
different kinds of clustering coefficients, proposed by Zhang
and Horvath (the first) and Onnela (the second). Zhang and
Horvath proposed a definition which uses only the network
values, in the context of gene coexpression networks. On the
other hand, Onnela proposed a version of local clustering
coefficient based on the concept of subgraph intensity,
defined as the geometric average of subgraph edge values.
Both metrics are defined in Table 1. It has to be noticed that
the Onnela clustering coefficient definition suffers from the
drawback that it requires an underlying binary network; if
this is not available as a separate set of data, then presumably
it must be obtained by discretizing the weighted edges.

The other important global network metric, included
in the tool, is assortative mixing. This feature captures the
similarity between properties of adjacent network vertices.
Intuitively, this measure captures the tendency of network

vertices to connect either to vertices with similar degrees
(high degrees connected with high degrees and low degrees
connected with low degrees) or to vertices that have dis-
similar degrees (high degrees connected with low degrees).
Newman [33] proposed an interesting measure to quantify
the degree of similarity (dissimilarity) between adjacent ver-
tices in a network using assortative mixing, which is given as
the correlation between properties of every pairs of adjacent
vertices. Each vertex may have assigned a single scalar, such
as a centrality measure of the vertex position in a network, or
a set of scalar properties. Then, the assortativity coefficient
for an undirected graph is defined as the (sample) Pearson
product-moment correlation coefficient. The formula of
this computation is given in Table 1, and it is written in
a symmetrical form. This equation can also be used for
directed graphs by simply ignoring the direction of edges.

The value of the assortativity coefficient, r, lies in the
range —1 =< r < 1, with » = 1 indicating perfect
assortativity and r = —1 indicating perfect disassortativity
(perfect negative correlation between the properties of the
vertices of the edges under consideration). Brain functional
networks tend to be assortative [34, 35]. From computational
studies, it has been observed that information gets easily
transferred through assortative networks as compared to that
in disassortative networks [36].

Global network metrics on BrainNetVis. BrainNetVis allows
the calculation of the mentioned global network metrics
by following the Tools menu (see Figure 2). Continuing the
previous example on an alcoholic patient, we applied the
simple Clustering Coefficient and the Assortative Mixing.

3.3.2. Vertex Metrics-Centrality Measures. The above con-
cerned global network metrics. There exists a significant
interest in local network properties as well, which concen-
trates on one node of interest. These properties are very
important since at the local scale we can detect which vertices
are the most relevant for the organization and functioning
of a network. These local measures are commonly named
centrality measures (or centrality indices) and have proved
of great value in analysing the role played by individuals
in social networks and in identifying essential proteins,
keystone species, and functionally important brain regions.

Centrality Measures Based on Neighbourhoods. The simplest
and most basic centrality measure is degree centrality cp(v)
of a vertex v. In practice, this is the number of neighbours of
the node of interest. In spite of the simplicity of this concept,
degree is the most fundamental network measure and most
other centrality measures are linked to it. The definitions
of degree centrality, both for directed and for undirected
networks are provided in Table 1.

In the case of greyscale networks, instead of using the
term degree centrality, we use the term strength centrality. The
formulas for strength centrality are defined correspondingly
(Table 1). In BrainNetVis, strength centrality is presented as
normalized degree centrality. This is accessed when the user
chooses the Normalized Metrics on the Tools = Network
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TaBLE 1: Network and vertex metrics available in BrainNetVis.
cz(v) = Zi#jeV\{v} in@ij@jv/ Zi#jeV\{v} wviwjv =
Zhang and Horvath cz(v) = (1/max;j(wij)) - (Xiz jeviivy WiWiiWin/ Dis jevin WriWjy)
The weights have been normalized by max; ;(w;;).
The above definition uses only the network values, in the context of gene coexpression networks.
d A~ A A 1/3
co(v) = (1/( egz(v) ) Dizjevi (Wiwiwy,) " =
de 1/3
Onnela co(v) = (l/maxi,j(wij)( e%(v) ) Zi#jeV\{v} (inWijov)

Here, the edge values are normalized by the maximum value in the network,

Wij = w,-]-/maxl,kwlk.

Assortative mixing

Symmetrical weighted
networks

Directed weighted
networks

r=(4mY ee pPWp(V) = [ mer(p@) + pON /2 3 1y ep(pu) +p(v)?) =X merlp() + p(¥)1?)

r = (H X s ©(,)p()p(v) = ABY/(JH Zer @ V)p(u)’ = A2\/H S pcr 0(1, v)p(v)” = B?)

A= Z(u,v)EE w(uv V)P(u)
B = Z(u,v)eE w(uv V)P(V)

H = > ,cpw(e) is the sum of all values of edges in E.

Degree centrality cp(v)
of vertex v

Undirected binary
network

Directed binary network

Degree deg(v) of vertex v

In-degree c;ip(v) = deg™ (v)
Out-degree c,p(v) = deg' (v)

Strength centrality cs(v)

Greyscale symmetric
network

Greyscale assymetric
network

Strength s(v) of vertex v

In-strength: ¢;s(v) = s~(v)

Out-strength: c,s(v) = s*(v)

Shortest-path Efficiency

cef(v) = (1/ngg) X4, 1/dg(v, u), where ngp = n — 1

Shortest-path
Betweeness centrality
cg(v) ofavertexve V

cs(v) = (1/18) sevi v} 2tev ivs (0(v)/0y), where o is the number of shortest (s, t)-paths

04 (v) is the number of shortest (s, t)-paths passing through some vertex v other than s, t and
ng = (n — 1)(n — 2) is a normalizing constant.

Bonacich’s eigenvector
centrality

Ac(vy) = Z?:l WjiC(Vj)

In matrix notation with ¢ = [c¢(v1), c(v2), ..., c(v,)]7, this yields:

Ae = WTe.

This type of equation is well known and solved by the eigenvalues and eigenvectors of W7.

We call the eigenvector s = [sy,...,S,] T of the maximal eigenvalue of Ac = WTc¢ principal eigenvector. Then,
the eigenvector centrality of node v; is defined as: cgv (vi) = |s;|/l[sllp,

where the centrality vector s is normalized by dividing it by its p-norm

lIsll, = (S |5:1))"? 1 < p < o0, and lIsll, = maxi—1,..{ls;|} p = oo to produce centrality scores c(v;) < 1.

Hubbell’s centrality

c=aWTc+ewherec = [c(v),c(1),...,c(v,)] and e = [e1,e3...,e.]".

In order to get meaningful results, o should be chosen according to restriction || < 1/A;, where A, is the
maximum value of an eigenvalue of W.

This restriction is not mentioned in the literature.

Subgraph centrality of
vertex v;

It is given by the ith diagonal entry of the kth power of the adjacency matrix, A
csa(vi) = S i i ()/k! with number of closed walks: pi (i) = (A¥),;.

This measure generalizes to greyscale networks by substituting matrix W for A.
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TasLE 1: Continued.

Network entropy H(P) = = 2 mpyjlog py = 2 miH;

To produce the above equation, we have set a Markov matrix P =

[pij] be the stochastic process which

defines the information source and its stationary distribution 7 : 7P = 7.

Metrics Options = General tab and normalizes the edge
values to range from 0 to 1 accordingly.

Centrality Measures Based on Distances. Another set of
informative measures are the Centrality Measures Based on
Distances, implying distances that information has to cover in
order to be transferred through the network. The first metric
that falls in this category is closeness centrality. Closeness
can be regarded as a measure of how long it will take the
information to spread from a given vertex to others in the
network. Setting G = (V,E) as an undirected graph, the
shortest path closeness centrality of vertex v € V is defined
as the inverse of the mean geodesic distance from vertex v to
every other vertexe. A serious drawback of this metric is that
it can only be used for connected graphs. A new measure,
called shortest path efficiency, is proposed in Latora and
Marchiori [37] and implemented in BrainNetVis application.

For a vertex v, Latora and Marchiori defined efficiency as

ef(v) = — 1 > dG(v, e (12)

u#v

The formula for that is provided in Table 1.

Note that (12) can also be used for disconnected graphs.
If some vertices v and u are not connected, then they do
not contribute to ef(v). In this case, dg(v,u) = 4+ =
1/dg(v,u) = 0. The global efficiency, ef (G), of a graph is
the average of e f (v) taken over all vertices [37]

f(G) = L S ef) = s S S s (1)

veV veVu#v

In addition to shortest path efficiency, we are interested in
shortest-path betweenness centrality. In this metric, two other
nodes, apart from the central vertex v, are involved. We call
these nodes s and t, respectively. This metric intuitively refers
to the number of shortest paths which connect vertices s
and t that pass through vertex v. In the formula provided
in Table 1, the relative numbers oy(v)/0y are interpreted as
the extent to which vertex v controls the communication
between vertices s and t. A vertex is considered central,
if it is between many pairs of other vertices. Shortest-
path betweenness centrality can be generalized to greyscale
networks where the length of a path is equal to the sum of
the lengths of its edges.

Centrality measures based on Neighborhoods and on Distances
in BrainNetVis. We applied the above types of centrality
measures on our synchronization matrix of the alcoholic
patient’s EEG. Figure 3 depicts the visualization of the
individual’s brain network using the Static Visualization
Method. The Binary Network using threshold = 0.4 has

been selected. The centrality measures calculated are the
Degree Centrality, Shortest Path Efficiency and Shortest Path
Betweenness Centrality. They are depicted on the respective
table, shown in the same figure. Both the figure and the table
with the metrics can be created by the following the View
menu.

Spectral Centrality Measures. Another set of network metrics
is based on the calculation of the eigenvectors of the adjacency
matrix of the network, produced at the preprocessing step.
Most of them are calculated by solving a linear equation sys-
tem. These measures are called Spectral Centrality Measures.
Bonacich’s eigenvector centrality is one of them according to
which the centrality of each vertex is proportional to the
sum of the centralities of the vertices to which it is directly
connected. The respective formula is presented in Table 1.

Expanding the simple Bonacich’s eigenvector centrality,
Hubbell [38] suggested yet another centrality measure based
on the solution of a system of linear equations. Hubbell’s
centrality uses an approach based on directed weighted
graphs where the weights of the edges may be real numbers.
The general assumption of Hubbell’s centrality is similar to
the idea of Bonacich, but the centrality of a vertex depends
both on its connection to other vertices and to exogenous
input which sometimes is called boundary conditions. In this
case, we include one more input to the equation A\c = W'c
which describes Bonacich’s eigenvector centrality. The result
is shown on Table 1. This formula encapsulates the relative
importance of endogenous versus exogenous factors in the
determination of centrality.

The next spectral centrality measure, subgraph centrality,
has been introduced by Estrada et al. [39]. It is calculated as
the weighted sum of the number of closed walks in a graph,
where longer walks receive lower weight than shorter ones.
Very relative to the subgraphs of the network is the number
of short walks of length k, starting and ending on vertex v;.
This number is symbolized with p (i) on Table 1.

Last but not least, a very interesting idea was suggested by
Demetrius et al. [40], describing network entropy. Evidence
has been presented that this quantity is related to the capacity
of the network to withstand random changes in the network
structure. Network entropy is based on the Kolmogorov-
Sinai (KS) entropy, which is a generalization of the Shannon
entropy in that it describes the rate at which a stochastic
process generates information. In our context, information
corresponds to a sequence of vertices visited by an assumed
Markov process on the network. Network entropy takes into
account the impact of a vertex’s removal on the network. This
is captured by the product 7;H; of the respective definition
on Table 1. The interested reader could find more detailed
information in [41].
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Welcome to BrainNetVis

F1GURE 3: Centrality measures for the virtual alcoholic patient based on neighborhoods and on distances in BrainNetVis. The graph has been

calculated by the Arnhold’s method for broadband activity.

Spectral Centrality Measures in BrainNetVis. We applied the
above types of centrality measures on our synchronization
matrix of the alcoholic patient’s EEG. Using links from
the Tools menu, we calculated the Bonacich’s  Eigenvector
Centrality, Hubbell’s Centrality, Subgraph Centrality, and
Network Entrophy. One can define the type of networks with
which he wishes to work (binary or greyscale) and also select
the threshold value.

3.4. Graph Drawing Techniques. Regarding the way in which
the brain is depicted, BrainNetVis tool incorporates three
different kinds of visualization as the follows.

3.4.1. Static Visualization Method. In this method, in order
to visualize the topology of the emerged network, we create
a static framework where each electrode is depicted by a
node placed in a position similar to the actual electrode’s
position on the human cortex. Depending on the number of
the electrodes of each experiment, an oval shape is outlined
(which corresponds to the scalp) and inside this oval shape,
a number V of circles exist that correspond to the electrodes
placed on the subjects’ head during the experiments.

3.4.2. Multidimensional Scaling. Multidimensional Scaling
(MDS) is a family of techniques for analysis and visualization
of complex data. The "beauty” of MDS is that we can analyze
any kind of distance or similarity matrix, in addition to
correlation matrices. Objects in a data set are represented as
points in a geometric space; distance in this space represents
proximity or similarity among objects. In our case, the

objects are the electrodes and the distances among them are
respective to their correlation in the synchronization matrix.
In general, the goal of the analysis is to detect meaningful
underlying connections among the electrodes which reflect
the connections among different brain functional regions.
In BrainNetVis, we incorporated a 2D visualization of the
connections among electrodes. At this point, it has to be
noticed that the more dimensions we use in order to
reproduce the distance matrix, the better the fit of the
reproduced is matrix to the observed matrix (i.e., the smaller
the stress is). In fact, if we use as many dimensions as there
are variables, then we can perfectly reproduce the observed
distance matrix. Of course, our goal is to reduce the observed
complexity of nature, that is, to explain the distance matrix in
terms of fewer underlying dimensions. Some exemplar views
of multidimensional scaling are shown in Figure 4

3.4.3. Force-Based or Force-Directed Algorithms. These are a
class of algorithms for drawing graphs in an aesthetically
pleasing way. Their purpose is to position the nodes of a
graph in two-dimensional or three-dimensional space so that
all the edges are of more or less equal length and there are as
few crossing edges as possible. The force-directed algorithms
achieve this by assigning forces amongst the set of edges
and the set of nodes; the most straightforward method is
to assign forces as if the edges were springs (see Hooke’s
law), and the nodes were electrically charged particles (see
Coulomb’s law). The entire graph is then simulated as if
it were a physical system. The forces between its nodes
change the dynamics and the layout of the system which at
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FIGURE 5: Binary stress.

some point reaches its equilibrium state: at that moment,
the graph is drawn. For force-directed graphs, it is also
possible to employ mechanisms that search more directly
for energy minima, either instead of or in conjunction with
physical simulation. One of these mechanisms is binary
stress (bStress), and it is the one we have incorporated in
our tool. This model bridges the two most popular force
directed approaches—the stress and the electrical-spring
models—through the binary stress cost function, which is
a carefully defined energy function with low descriptive
complexity allowing fast computation via a Barnes-Hut
scheme. Both electric-spring and stress approaches enjoy
successful implementations and offer pleasing layouts to
many graphs. Electric-spring models have the advantage of
a lower descriptive complexity compared to the stress model.
On the other hand, the stress function has a mild landscape,
which allows utilizing powerful optimization techniques
such as majorization. This way, good minima are usually
achieved regardless of the initial positions. As far as the

binary stress model is concerned, computationally, it is able
to merge the advantages of both the electric-spring model
and the stress model. Namely, it offers a low descriptive
complexity, while at the same time, it is similar in its form
to the known stress function, thus enabling the use of the
majorization optimization scheme. More than other models,
bStress emphasizes uniform spread of the nodes within a
circular drawing area. In addition, bStress is suitable for
drawing large graphs, not only because of its improved
scalability, but also because it achieves good area utilization.
Some exemplar views of binary stress visualization scaling are
shown in Figure 5

More information on graph drawing techniques can be
found in [13].

When we choose to visualize our graphs using the
static visualization method, a change in the network metrics
is not depicted on the output panel; this is because the
electrode positions are stable and set from the beginning.
Nevertheless, the changes in the calculations are saved in a
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(b)

FIGURE 6: Static visualization for the synchronization matrix of the virtual control subject using (a) binary network and (b) greyscale
network. Instead of scales of grey, the edge weights are depicted in colormap scale. Both pictures are produced with the Arnhold’s method

for broadband activity.

matrix which is accessible by the end user. On the other hand,
in multidimensional and binary stress modeling, the effects
that take place when a network metric changes its value are
depicted immediately after the change.

One can then set up the display options of his/her
preference, for example, set up the way the graph vertices and
edges will be displayed. As far as the nodes of the network are
concerned, one can arrange their size, their color (uniform
or colormap)and the depiction of the node labels. Regarding
the edges, there exist three options for the color: uniform
for directed networks, greyscale for greyscale networks (the
intensity of the shadows of grey corresponds to the strength
of the respective edge), and colormap. Colormap is also used
in the case of greyscale networks but in this case colors are
used: the closer the tint is to red color, the larger the strength
of the respective edge is and the closer the tint is to blue color,
the smaller the strength of the edge is. Moreover, one can
adjust the size of the edge and whether this will be directed or
not. Figure 6 depicts the brain of the virtual control subject
using both binary and colormap networks. In both cases, the
threshold was set to 0.5.

4. Conclusion

Using BrainNetVis, one can visualize and quantify the
connections of the brain, based on EEG or MEG acquired
signals. The inner brain connectivity is depicted as a
graph; different sensor locations (electrodes) are visualized
as nodes and their interconnections as edges. Therefore,
scientists and clinicians will be able to get a better insight
regarding brain connectivity and functionality and deduce
more accurate results. We tested the tool using EEG
data from alcoholic patients [7]. We were thus able to
investigate some structural brain features that EEG and
clinical data alone would not reveal. This tool can be

easily used by the interested researcher, and it is accessible
via http://www.ics.forth.gr/bmi/tools.html. It runs in every
operating system that has JRE installed. Future work includes
the support of the preprocessing methods mentioned in the
same intuitive environment and the support of the binary
European Data Format (EDF). Currently, simple ASCii text
format is supported for simplicity and flexibility reasons.

Appendix

We present here a summary of the metrics used at Brain-
NetVis and their placement under the tools menu. The main
menu when the GUI opens contains the options: File, View,
Tools, Window, and Help.

File. This drop-down menu includes the following tabs.

(i) Import. Following this tab, the user can give as input
the greyscale matrix that corresponds to the network
of interest along with the vertex coordinates. He can
browse his computer for these required files.

(ii) Export. It is used to export the produced visualiza-
tions to a file with various formats (.eps,.pdf,.jpg, etc)

(iii) Exit. It is used to quit the GUL

(iv) Output. One can export all the metrics of the
examined network at a.txt file, which is saved in the
same directory with the tool executable.

View. Under the View drop-down menu, one can find the
following.

(i) Network Visualization. One can choose among the
three supported visualization techniques: Chan-
nel/Source coordinates, Multidimensional Scaling
and Binary Stress, described in detail in Section 3.4
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(ii) Network Metrics. Following this tab, the user can
ask either for the Vertex level metrics table, which
contains the values of the vertex metrics that interest
the user (and which he chooses under the Tools drop-
down menu), or for the Network level metrics, which
contains the values of the global network metrics.

Tools. This menu contains the following.

(i) Display Options. Following this tab, the user can
set up the display of the graphs. He can set his
preferences concerning the nodes (size, color, label,
font) and/or the edges (size, color, direction, arrow
size).

(ii) Network Metrics Options. Three tabs appear in this
sub-menu. The first one is named General and
contains options like if the network is directed or
not, binary or not and synchronization network or
not. In the latter case, the tool provides an option
on the normalization of the edge length. The second
tab is named Vertex Metrics and contains options
for all the vertex metrics described in Section 3.3.2.
Finally, the last tab is named Network Metrics and
contains options for the network metrics described
in Section 3.3.1.

Window. Here, the user can change the size of the window of
the GUI.
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