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Abstract
Over the past three decades we have steadily increased our knowledge on the genetic basis of
many severe disorders. Nevertheless, there are still great challenges in applying this knowledge
routinely in the clinic, mainly due to the relatively tedious and expensive process of genotyping.
Since the genetic variations that underlie the disorders are relatively rare in the population, they
can be thought of as a sparse signal. Using methods and ideas from compressed sensing and group
testing, we have developed a cost-effective genotyping protocol to detect carriers for severe
genetic disorders. In particular, we have adapted our scheme to a recently developed class of high
throughput DNA sequencing technologies. The mathematical framework presented here has some
important distinctions from the ’traditional’ compressed sensing and group testing frameworks in
order to address biological and technical constraints of our setting.

Index Terms
compressed sensing; DNA; genotyping; group testing

I. INTRODUCTION
Genotyping is the process of determining the genetic variation in a certain trait in an
individual. This process plays a pivotal role in medical genetics to detect individuals that
carry risk alleles* for a broad range of devastating disorders, from Cystic Fibrosis to mental
retardation. These disorders lead to severe incapacities or lethality of the affected individuals
at an early age, but have a very low prevalence in the population. In the past years, extensive
efforts were made to identify the genetic basis of many disorders. These efforts have not
only led to deeper insights regarding the molecular mechanisms that underlie those genetic
disorders, but have also contributed to the emergence of large scale genetic screens, where

*Appendix A contains a glossary of biological terms

NIH Public Access
Author Manuscript
IEEE Trans Inf Theory. Author manuscript; available in PMC 2011 March 28.

Published in final edited form as:
IEEE Trans Inf Theory. 2010 February ; 56(2): 706–723. doi:10.1109/TIT.2009.2037043.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



individuals are genotyped for a panel of risk alleles in order to detect genetic disorders and
provide early intervention where possible.

The human genome is diploid, and with a few exceptions, each gene has two copies.
Consequently, many of the mutations that cause severe genetic diseases are recessive; where
the dysfunction of the mutated allele can be compensated by the activity of the normal
allele. Therefore, recessive genetic disorders appear only in individuals carrying two non-
functional alleles. When genotyping an individual for a recessive disorder, there are three
possible outcomes: (a) normal - an individual with two functional alleles (b) carrier - an
individual with one functional allele and one non-functional allele (c) affected - an
individual with two non-functional alleles. There are no phenotypic differences between a
carrier and a normal individual, and they are both healthy. However, a mating between two
carriers may give rise to an affected offspring, as explained by Mendel’s rules (Table I): A
mating between two normal individuals always gives rise to a normal offspring. A mating
between a normal and a carrier has 50% chance of giving a normal offspring and 50%
chance of giving a carrier, but no chance of giving an affected offspring. A mating between
two carriers has 25% chance of giving an affected offspring, 50% of giving a carrier, and
25% of giving a normal offspring. We do not consider the possibility of matings between
affected individuals, since they rarely survive to reproductive age. This picture reveals that
only families with two parental carriers are at risk for having an affected offspring, and that
other mating combinations are safe.

In order to eradicate severe genetic disorders, many countries have employed wide-scale
carrier screening programs, in which individuals are genotyped for a small panel of risk
genes that are highly prevalent in the population [1], [2]. The common practice is to offer
the screening program to the entire population regardless of their familial history, either
before mate selection (premarital screens), or prenatally in order to provide a reproductive
choice for the parents.

One possible genotyping method is to sequence the genomic region that harbors the
mutation site, and analyzing whether the DNA sequence is wild-type (WT) or mutated. This
approach has gained popularity due to its high accuracy (sensitivity and specificity),
applicability to a wide variety of genetic disorders, and technical simplicity. However, the
current DNA sequencing platforms utilized in medical diagnosis provide only serial
processing of a single specimen/region combination at a time. Therefore, while the genetic
basis of many disorders is known, the cumbersome costs of large genotyping panels has
hinder its routine application in the clinic.

Recently, a new class of DNA sequencing methods, dubbed next-generation sequencing
technologies, has emerged, revolutionizing molecular biology and genomics [3]. These
sequencing platforms process short DNA fragments in parallel and provide millions of
sequence reads in a single batch, each of which corresponds to a DNA molecule within the
sample. While there are several types of next generation sequencing platforms and different
sets of sequencing reactions, all platforms achieve parallelization using a common concept
of immobilizing the DNA fragments onto a surface, so that each fragment occupies a distinct
spatial position. When the sequencing reagents are applied to the surface, they generate
optical signals according to the DNA sequence, which are then captured by a microscope
and processed. Since the fragments are immobilized, successive signals from the same
spatial location convey the DNA sequence of the corresponding fragment (Fig. 1a). Using
this approach millions of DNA fragments can be simultaneously sequenced to lengths of
tens to hundreds of nucleotides. For tutorials on next generation sequencing, the interested
readers are referred to [4], [5].
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Harnessing next generation sequencing platforms to carrier screens will dramatically
increase their utility. The main challenge is to fully exploit the wide capacity of the
sequencers. Allocating one sequencing batch to genotype a single individual would utilize
only a small fraction of the sequencing capacity, and in fact, would be even less cost-
effective than the serial approach. Therefore, multiplexing large number of specimens in a
single batch is essential to utilize the full capacity of the platforms. However, a significant
problem arises from when specimens are simply pooled and sequenced together; the
sequencing results reflect only the allele frequencies of the specimens in the pools, and do
not provide any information about the genotype of a particular specimen.

A simple solution to overcome the specimen-multiplexing problem is to append unique
identifiers, dubbed DNA barcodes, to the specimens prior to sequencing [6] [7]. Each
barcode is an artificially synthesized short DNA molecule with a unique sequence. When the
barcode is concatenated to the DNA fragments of a specimen, it labels them with a unique
identifier. The sequencer reads the entire fused fragment, and reports both the sequence of
the interrogated region and the sequence of the associated barcode. By decoding the portion
of the sequence corresponding to the barcode, the experimenter links the genotype to a given
specimen (Fig. 1b). While this method has been quite successful for multiplexing small
number of specimens, the process of synthesizing and concatenating a large number of
barcodes is both cumbersome and expensive, and therefore not scalable.

Drawing inspiration from compressed sensing [8], [9], we ask: since only a small fraction of
the population are carriers of a severe genetic disease, can one employ a compressed
genotyping protocol to identify those individuals? We propose a compressed genotyping
protocol in which pools of specimens are loaded to a next-generation sequencing platform,
which will realize the sequencing capacity, while reducing the number of barcodes, and
maintaining a faithful detection of the carriers. While our main motivation is to apply this
approach to carrier screens, the concepts and ideas presented here can be used also for other
genotyping tasks, such as whole-genome discovery of rare genetic variations.

A. Related work
Our work is closely related to group testing and compressed sensing, which deals with
efficient methods for extracting sparse information from a small number of aggregated
measurements. Much of the literature of group testing (thoroughly reviewed in: [10], [11]) is
dedicated to the prototypical problem, which describes a set of interrogated items that can
either be in an active state or an inactive state and a test procedure, which is performed on
pools of items, and returns ’inactive’ if all items in the pool are inactive, or ’active’ if at
least one of the items in the pool is active. Mathematically, this type of test can be thought
of as an OR operation over the items in the pool, and is called superimposition [12]. In
general, there are two types of test schedules: adaptive schedules, in which items are
analyzed in successive rounds and re-pooled from round to round according to the
accumulated results, and non-adaptive schedules, where the items are pooled and tested in a
single round. While in theory adaptive schedules require fewer tests, in practice they are
more labor intensive and time consuming due to the re-pooling steps and the need to wait for
the test results from the previous round. For that reason, non-adaptive schedules are favored,
and have been employed for several biological applications including finding sequence-
tagged sites in yeast artificial chromosomes [13], and mapping protein interactions [14].

The theory of group testing offers a large number of highly efficient pooling designs for the
prototypical problem. These designs reduce the number of pools with respect to the number
of items while ensuring exact recovery of the active items [10]–[12], [15]–[17]. In practice,
however, the relevance and the feasibility of many of those theoretical objects are
questionable as technical limitations constrain the pooling design [18]–[21]. For instance,

Erlich et al. Page 3

IEEE Trans Inf Theory. Author manuscript; available in PMC 2011 March 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



some biological assays suffer from a dilution noise - a decreased accuracy when the assay
conducted on a large number of specimens [22], which restricts the ratio between items and
pools [23]. Other complications can be restricted amounts of specimens’ material, which
limit the number of times an item can be sampled or tedious designs that are time
consuming. Du and Hawng also recognized the limited applicability of the prototypical
problem to some practical settings, and pointed out in their monograph on group testing
theory: “Recent application of group testing theory in clone library screening shows that the
easiness of collecting test-sets can be a crucial factor… the number of tests is no longer a
single intention to choose an algorithm” [10]. Later in this sequel, we will discuss the exact
technical limitations of our setting, and introduce a new class of designs that reduces the
number of pools, while satisfying the technical constraints. We will also compare the
performance of our design to the theoretical oriented designs, which focus only on the
maximal reduction in the number of pools.

Compressed sensing [8], [9] is an emerging signal processing technique that describes
conditions and efficient methods for capturing sparse signals by measuring a small number
of linear projections. This theory extends the framework of group testing to the recovery of
hidden variables that are real (or complex) numbers. Additional difference from group
testing is the measurement process that reports the linear combination of the aggregated data
points, and not their superimposition. However, some combinatorial concepts from group
testing were found useful also for constructing sparse compressed sensing designs [24]–[27].
These designs enable very fast encoding and recovery of the compressed signal. Inspired
from the rigor of compressed sensing, a wide variety of applications has been devised, for
example: single pixel cameras [28], fast MRI [29], and ultra wideband converters [30]. A
closely related application to our subject is highly efficient microarrays with a small number
of DNA probes [31], [32].

Our approach combines lessons from group testing and compressed sensing, but also
possesses some notable differences. The most obvious distinction is that we seek an ’on a
budget’ design that not only reduces the number of queries (termed ’measurements’ in
compressed sensing, or ’tests’ in group testing), but also minimizes the weight - the number
of times a specimen is sampled. This constraint originates from the properties of next
generation sequencers, and prevents maximal query reduction. We will discuss the
consequences of this constraint and provide some theoretical bounds and efficient designs.
Additional unique feature of our setting is the measurement process, called ’compositional
channel’. This process neither reports the superimposition results of the specimens in the
query, nor their linear combination; rather it reports the results of a sampling with
replacement procedure of the items in the query. We will compare this process to the
measurement processes in group testing and compressed sensing.

The theoretical framework presented here was built on our recent experimental results in
genotyping thousands of bacterial colonies for a biotechnological application using
combinatorial pooling [21]. Prabhu et al. [33] has also developed a closely related
theoretical approach to detect extremely rare genetic variations using error correcting codes.
A somewhat similar compressed sensing approach to the setting proposed here has been
independently developed by Shental et al. [34]. Some of the results presented in that paper
are based on our earlier work in [35].

The manuscript is divided as follows: In section II, we set up the basic formulation of
compressed genotyping. In section III, we present the concept of light-weight designs and
provide a lower theoretical bound. Then, we show how a design based on the Chinese
Reminder Theorem comes close to this bound. In section IV, we present a Bayesian
reconstruction approach based on belief propagation, and in section V, we provide several
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simulations of carrier screens. Section VI presents some open problems and possible future
directions and section VII concludes the manuscript.

II. THE GENOTYPING PROBLEM - PRELIMINARIES
A. Notations

We denote matrices as an upper-case bold letter and the (i, j) element of the matrix X as Xij.
The shorthand X ̅ denotes a matrix that its row vectors are normalized. X) is an indicator
function that returns a matrix in the same size of X with:

For example:

The operation | · | denotes the cardinality of a set or the length of a vector. For graphs, ∂a
refers to the subset of nodes that are connected to node a, and the notation ∂a\b means the
subset of nodes that are connected to a except node b. We use natural logarithms.

B. Genotype representation
We will represent the genotype of a specimen by the number of it non-functional allele
copies. Since the human genome is diploid, a genotype has three possible values: 0 if the
specimen is normal, 1 if the specimen is a carrier, and 2 if the specimen is affected. The
symptoms of severe genetic diseases are always overt, and therefore affected individuals
never participate in carrier screens. Thus, the genotype is either 0 or 1 in our setting. x, the
genotype vector, represents the genotype of n individuals. For example:

In that case, the 3th specimen is a carrier, and the other 4 specimens are normal.

Our main interest in a carrier screen is to recover x with a small number of queries. Since the
number of carriers is extremely low in rare genetic diseases, x is highly sparse. For example,
consider a screen for ΔF508, the most prevalent mutation in Cystic Fibrosis (CS) among
people of European descent; the ratio between k, the number of non-zero entries (carriers) in
x, to n is around 1:30 [36] [37]. Cystic Fibrosis is one of the most prevalent genetic diseases,
and therefore a ratio of 1/30 is almost the lowest expected sparsity for a carrier screen.
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C. A Cost-effective Genotyping Strategy
We envision a compressed genotyping strategy that is based on a non-adaptive query
schedule using next-generation sequencing. Φ denotes the query design, a t × n binary
matrix; the columns of Φ represent specimens, and each row determines a pool of specimens
to be queried. For example, if the first row of Φ is (1, 0, 1, 0, 1…), it specifies that the 1st,
3rd, 5th, … specimens are pooled and queried (sequenced) together. Since pooling is carried
out using a liquid handling robot that takes several specimens in every batch, we only
consider balanced designs, where every specimen is sampled the same number of times. Let
w be the weight of Φ, the number of times a specimen is sampled, or equivalently, the
number of 1 entries in a given column vector. Let ri be the compression level of the ith
query, namely the number of 1 entries in the ith row, which denotes the number of
specimens in the ith pool.

1) First objective - minimize t—In large scale carrier screens, n is typically between
thousands to tens of thousands of specimens. We restrict ourselves to query designs with
rmax ≲ 1000 specimens, due to technical / biological limitations (in DNA extraction and
PCR amplification) when processing pools with larger number of specimens. Interestingly,
similar restrictions are also found in other practical group testing studies [18], [20]. When
rmax ≲ 1000, a single query does not saturate the sequencing capacity of next generation
platforms. In order to fully exploit the capacity, we will pool queries together into query
groups until the size of each group reaches the sequencing capacity limit, and we will
sequence each query in a distinct reaction. Before pooling the queries, we will label each
query with a unique DNA barcode in order to retain its identity (for an in-depth protocol of
this approach see [21]). Thus, the number of queries, t, is proportional to the number of
DNA barcodes that should be synthesized, and one objective of the query design, similar to
those found in group testing and compressed sensing, is to minimize t.

In practice, once the DNA barcodes are synthesized, there is enough material for a few
dozens experiments, and one can re-use the same barcode reagents for every query group as
these are sequenced in distinct reactions. Hence, the number of queries in the largest query
group, τmax, dictates the synthesis cost for a small series of experiments. While this does not
change the asymptotic cost (e.g. for synthesizing barcodes for a large series of experiments),
it has some practical implications, and we will include it in our analysis.

2) Second objective - minimize w—There are three reasons to minimize the weight of
the design. First, the weight determines the number of times the liquid handling robot
samples a specimen. Thus, minimizing the weight reduces robot time, and therefore the
overhead of the pooling procedure. Second, each time a robot samples a specimen, it
consumes some material. In many cases, the material is rather limited, and therefore w must
be below a certain threshold. The third reason to minimize w is to reduce the overall
sequencing capacity. Each time an aliquot of a specimen is added to a pool, we need a few
more sequence reads to report the genotype of the specimen. While the sequencing capacity
of a single batch of next generation platforms is high, it is not limited. We will see in the
next subsection that the sequencing coverage, the ratio between the number of sequence
reads to the number of specimens, determines the quality of the results. Thus, minimizing w
will improve the quality of the results.

Next generation sequencers are usually composed of several distinct biochemical chambers,
called ’lanes’, that can be processed in a single batch. We assume that the sequencing
capacity needed for n specimens corresponds to one lane†. Since the pooling step generates

†Recent study has shown that when the number of specimens is a few thousand up to tens of thousands this assumption is valid [38]
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nw aliquots of specimens in total, one needs w lanes to sequence the entire design, where
each lane gets a different query group.

We do not intend to specify a global cost function that includes the costs of barcode
synthesis, robotic time, sequencing lanes, and other reagents. Clearly, these costs vary with
different genotyping strategies, sequencing technologies, and so on. Rather, we will present
heuristic rules that would be applicable in most situations. First, w should not exceed the
maximal number of lanes that can be processed in a single sequencing batch, as launching a
run is expensive and time consuming. The number of lanes in the most widespread next-
generation sequencing platform is 8 [39], and therefore, we favor designs with w ≤ 8.
Second, we assume that the cost of adding a sequencing lane is about two to three orders
more than the cost of synthesizing an additional barcode. We will use that ratio to evaluate
the performance of the query design.

To conclude, the query design that we seek is a t × n binary matrix that: (a) provides
sufficient information to recover x (b) minimizes t (c) keeps the weight w balanced and
small. Table II presents the notations we used in that part.

D. The Compositional Channel - A Model for High Throughput Sequencing
The sequencer captures a random subset of DNA molecules from the input material and
reports its composition. In essence, this process is a sampling with replacement; the
sequencer takes βi molecules from substantial number of input molecules of the i-th query,
and reports αi the number of sequence reads from the non-functional allele, and βi. Let yi be
the ratio of the sequence reads from the non-functional allele to the total number of reads in
the query. yi = αi / βi. The result of the sampling procedure is given by the following
equation:

(1)

where

and Φ ̅i is the i-th row vector in Φ ̅. The reason that p is divided by 2 is that every specimen
has two copies of each gene. One implication of Eq. (1) is that higher βi gives more accurate
estimation on the number of carriers in the query. The number of sequence reads for each
query is a stochastic process that determined by many technical factors, and βi is a random
variable with Poisson distribution. We will use the following shorthand β = [β1, …, βt].

We will term the measurement process in Eq. (1) compositional channel. The reason for that
name is that the sequencing process places 2-dimensional input vectors in 1-dimensional
simplex, which is reminiscent of the concept of compositions in data analysis [40].

The sequencer may also produce errors when reading the DNA fragments. For simplicity,
we assume that the sequencing errors are symmetric; the probability of the sequencer to
report a normal allele as non-functional allele is equal to the probability of reporting a non-
functional allele as normal. Let Λ be the error probability. In the presence of error, the
sequencing results are given by:
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(2)

where

and

The value of Λ dependents on the sequence differences between the normal allele and the
non functional allele and the specific chemistry that is utilized by the sequencing platform.
Once these are determined, one can infer Λ with high accuracy [41]. For single nucleotide
substitutions, the most subtle mutations, we expect Λ = 1%, and when the sequence
differences are more profound, like the three base-pair deletion in the Cystic Fibrosis
mutation ΔF508, we expect Λ = 0 [38], [41].

1) Comparison between the compositional channel and the superimposed
channel—The superimposed channel has been extensively studied in the group testing
literature, and describes a measurement process that only returns the presence or absence of
the tested feature among the members in the pool. The superimposed channel is given by:

(3)

The information degradation of the superimposed channel is more severe than the
degradation of the compositional channel. Since in the latter case, the observer can still
evaluate the ratio of carriers in the query.

Consider the following data degradation procedure that gets y = [y1, …, yt]T, the sequencing
results of Eq. (1), and returns y′super, a degraded version of the results:

(4)

In essence, this procedure returns the presence or absence of carriers for each query.

Proposition 1: With high probability, y′super = ysuper, if βi ≫ 2n log n and Λ = 0.

In other words one can process the data of a compositional channel in Eq. (1) as if it was
obtained from a superimposed channel in Eq. (3), once the sequencing coverage is high
enough. The proof for the proposition is given in appendix B.

Group testing theory suggests a sufficient condition, called d-disjunction, for Φ that ensures
faithful and tractable reconstruction of any d sparse vector that was obtained from a
superimposed channel [12]. According to Proposition (1) d-disjunction is also a sufficient
condition to recover up to d carriers when βi is high, and no sequencing errors. In that case,
one can use group testing designs to employ the queries and guarantee the recovery of x.
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2) Comparison between the compositional channel and the real-adder channel
—The real adder channel describes a measurement process that reports the linear
combination of the data points, and is given by:

(5)

This type of channel serves as the main model for compressed sensing, and it captures many
physical phenomena and signal processing tasks. A closely related models were studied in
group testing for finding counterfeit coins with a precise spring scale [42] and in multi-
access communication [43] [44] [45]. Rewriting Eq. (2) reveals that the compositional
channel is reminiscent of the noisy version of the adder channel:

(6)

However, there are two key differences between the compositional channel and the real-
adder channel: (a) unlike the models in compressed sensing, ε is not i.i.d, and does depend
on x. To emphasize that, consider a query with one carrier that is mixed with 99 normal
specimens, and β = 5000. The sequencing results will follow a binomial distribution with

. Accordingly, the variance of the results will be p(1 − p)β = 1/200 * 199/200 *
5000 = 24.8. Now, consider a query with 50 carriers and 50 normal specimens; the variance
is 100/200 * 100/200 * 5000 = 1250, which is 50 times higher then the previous case. Notice
that the only difference in the two cases is the composition of the query. (b) the observer can
evaluate the reliability of each single query since he knows β. Thus, in the recovery
procedure, the observer can give more weight to queries with higher number of reads, and
vice verse. On the contrary, adder channel models assume that the observer only knows the
noise distribution. The vast majority of the compressed sensing recovery algorithms does not
have an inherent mechanism that takes into account the reliability of each measurement.
Rather, they are built with a ’top-down’ approach that minimizes a global cost function.

To summarize that part, we presented the compositional channel as a model for next
generation sequencing. We showed that the channel is reminiscent of to the channel models
in group testing and compressed sensing, but not identical. We further showed that
disjunctness is a sufficient decoding condition when the sequencing coverage is high. Table
III summarizes the different channel models in this section.

III. QUERY DESIGN
A. Light-Weight Designs

We are seeking non-trivial d-disjunct matrices that reduce the number of barcodes with a
minimal increase of the weight.

Definition 2: Φ is called d-disjunct if the Boolean sum of d column vectors does not contain
any other column vector.

Definition 3: Φ is called reasonable if it does not contain a row with a single 1 entry, and its
weight is more than 0. We are only interested in reasonable designs.

Definition 4: λij is the dot-product of two column vectors of Φ, and λmax ≜ max(λij).

Lemma 5: The minimal weight of a reasonable d-disjunct matrix is: w = d + 1.
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Proof: Let ci be a column vector in Φ, and assume w ≤ d. According to definition (3), every
1 entry in ci intersects with another column vector. Thus, by choosing at most other w
vectors, one can cover ci. According to definition (2), Φ cannot be d-disjunct, and w ≥ d + 1.
The existence d-disjunct matrices with w = d + 1 was proved by Kautz and Singleton [12].

Definition 6: Φ is called light-weight d-disjunct in case w = d + 1.

Lemma 7: Φ is a light-weight (w−1)-disjunct iff λmax = 1 and Φ is reasonable.

Proof: First we prove that if Φ is a light-weight (w − 1)-disjunct then λmax = 1. Assume λmax
occurs between ci and cj. According to definition (3), there is a subset of at most w − λmax +
1 column vectors in which ci is included in its Boolean sum. On the other hand, the Boolean
sum of any w − 1 column vectors does not include ci. Thus, λmax < 2, and according to
definition (3), λmax > 0. Thus, λmax = 1. In the other direction, Kautz and Singelton [12]
proved that d = ⌊(w − 1)/λmax⌋, and Φ is light-weight according to definition (6).

Lemma 8: The number of columns of Φ is bounded by:

(7)

Proof: see Kautz and Singelton [12].

Theorem 9: The minimal number of rows, t, in a light-weight d-disjunct matrix is

Proof: plug lemma (7) to lemma (8):

Corollary 10: The minimal number of barcodes is  in a light-weight weight
design.

Proof: There are w query groups, and the bound is immediately derived from theorem (9).

A light weight design is characterized by λmax = 1, and  rows. Low λmax does
not only increase the disjunction of the matrix but also eliminates any short cycle of length 4
in the factor graph built upon Φ, which enhances the convergence of the reconstruction
algorithm. We will discuss this property in section IV.

Notice that the light weight design is an extreme case of the sparse designs suggested in
compressed sensing [46]–[48]. The weight of those designs usually scale with the number of
specimens. For instance, in the sparse design of Chaining Pursuit, w ~ O(d log n) [47]. The
light weight design is far more restricted, and w has no dependency per-se on n. We will
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show in section III-D that such dependency in other designs reduces their applicability to
our setting.

B. The Light Chinese Design
We suggest a light weight design construction based on the Chinese Remainder Theorem.
This construction reduces the number of queries to the vicinity of the lower bound derived in
the previous section, and can be tuned to different weights and numbers of specimens. The
repetitive structure of the design simplifies its translation to robotic instructions, and permits
easy monitoring.

Constructing Φ starts by specifying: (a) the number of specimens, and (b) the required
disjunction, which immediately determines the weight. Accordingly, a set of w positive
integers Q = {q1, …, qw}, called query windows, is chosen with the following requirement:

(8)

where lcm denotes the least common multiplier. We map every specimen x to a residue
system (r1, r2, ⋯, rw) according to:

(9)

Then, we create a set of w all-zero sub-matrices Φ(1), Φ(2), ⋯ called query groups with sizes
qi × n. The submatrices captures the mapping in Eq. (9) by setting  when this clause: x
≡ r (mod qi) is true. Finally, we vertically concatenate the submatrices to create Φ:

(10)

For instance, this is‡ Φ for n = 9, and w = 2, with {q1 = 3, q2 = 4}:

Definition 11: Construction of Φ according to Eq. ( 8 – 10 ) is called light Chinese design.

‡when x = qi we set ri = qi, so the first row in every submatrix is 1
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Theorem 12: A light Chinese design is a light weight design.

Proof: Let x ≡ vx (mod qi) and x ≡ ux (mod qj), where i ≠ j. According to the Chinese
Remainder Theorem there is a one-to-one correspondence ∀x : x ↔ (ux, vx). Thus, every two
positive entries in cx are unique. Consequently, |cx ∩ cy| < 2, and λmax < 2. Since specimens
in the form r, r + qi, r + 2qi, … are pooled together Φ, λmax = 1. According to lemma (7) Φ
is light-weight.

C. Choosing the Query Windows
The set of query windows, Q, determines the number of rows in Φ as:

(11)

Since , where gcd is the greatest common divisor, minimizing the
elements in Q subject to the constraint in Eq. (8) implies that q1, …, qw should be pairwise
co-prime and . Let , the definition of the problem we seek to solve is as
follows: given a threshold, κ, and w, a valid solution is a set, R, that contains w co-prime
numbers, all of which are larger than κ. We seek for the optimal solution, Q, being the
solution satisfying that the sum of Q is minimal.

We begin by introducing a bound on max(Q) − κ, a value we will name δ, or the
discrepancy of the optimal solution. In order to give an upper bound on δ, let us first
consider a bound that is not tight, δ0, the discrepancy of the solution Q0 that is composed of
the w smallest primes greater than κ. Primes near κ have a density of 1/log(κ), so δ0 ≈ w
log(κ). δ0 is known to be an upper bound on δ because if any value greater than κ + δ0
appears in the Q, then there is also a prime q, κ < q ≤ max(Q0) that is not used. There is at
most one value in Q that is not co-prime with q and if it exists it is larger than q. Replace it
by q in Q (or replace max(Q) with q if all numbers in Q are co-prime with q) to reach a
better solution, contradicting our assumption that Q is the optimal solution.

This upper bound can improved as follows. We know that Q ⊂ (κ, κ + δ0]. In this interval,
there is at most one value that divides any number greater or equal to δ0. Consider,
therefore, the solution Q1 composed of the w smallest numbers larger than κ that have no
factors smaller than δ0. In order to assess the discrepancy of this solution, δ1, note that the
density of numbers with no factors smaller than δ0 is at least 1/log(δ0). This can be shown
by considering the (lower) density that is the density of the numbers with no factors smaller
than pδ0, where pi indicates the i’th smallest prime. This density is given by:

(12)
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where e is Euler’s constant and we make use of , a well-known
property of the prime harmonic series. Like δ0, the bound δ1 is also an upper bound on δ. To
show this, consider that the optimal solution Q may have z values larger than κ + δ1 in it. If
so, there are at least z members of Q1 absent from it. Replace the z members of Q with the
absent members of Q1 to reach an improved solution. We conclude that z = 0 and δ1 ≥ δ.

Theorem 13: For κ → ∞ and large w, δ ≈ w log(w).

Proof: Consider repeating a similar improvement procedure as was used to improve from δ0
to δ1 an arbitrary number of times. We define Qi+1 as the set of w minimal numbers that are
greater than κ and have no factors smaller than δi, where δi is the discrepancy of solution Qi.
This creates a series of upper bounds for δ that is monotone decreasing, and therefore
converges. Because each δi+1 satisfies δi+1 ≈ w log(δi), we conclude that the limit will
satisfy δ∞ ≈ w log(δ∞), meaning δ ≤ δ∞ ≈ w log(w). This gives an upper bound on δ. To
prove that this bound is tight, we will show that, asymptotically, it is not possible to fit w co-
prime numbers on an interval of size less than w log(w). To do this, note first that at most
one number in the set can be even. Fitting w − 1 odd numbers requires an interval of size at
least 2w (up to a constant). The remaining numbers can contain at most one value that
divides by 3. The rest must be either 1 or 2 modulo 3. This indicates that they require an

interval of at least . More generally, if S contains w values, with each of the first w
prime numbers dividing at most one of said values, then the interval length of S must be at
least on the order of:

This gives a lower bound on δ equal to the previously calculated upper bound, meaning that
both bounds are tight.

Corollary 14: 

Proof:

Since the number of positive entries in each submatrix is the same and equals to n the query
groups are formed by partitioning Φ to the submatrices. Consequently, τmax = max(Q).
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Importantly, the maximal compression level, rmax, is never more than , and the light
Chinese design is practical for genotyping tens of thousands of specimens. The tight bound

on δ also implies a tight bound on the sum of Q. Let . We give a tight
bound on σQ that, asymptotically, reaches a 1:1 ratio with the optimal value.

Theorem 15: The number of queries in the light Chinese design is 

Proof: Proof that this is a lower bound is by induction on w. Specifically, let us suppose the
claim is true for Qw−1 and prove for Qw, where Qw is the optimal solution with w elements
(There is no need to verify the “start” of the induction, as any bounded value of w can be
said to satisfy the approximation up to an additive error). To prove a lower bound, σQw
cannot be better than σQw−1 + w log(w), as the discrepancy of Qw is known and the partial
solution Qw \ max (Qw) can not be better than Qw−1. To prove that this is also an upper
bound, consider that the discrepancy of Qw is known to be approximately w log(w), so any
prime larger than approximately pw cannot be a factor of more than one member of the
interval (κ, max(Qw)]. Furthermore, the optimal solution for Qw can not be significantly
worse than the optimal solution for Qw−1 plus the first number that is greater than
max(Qw−1) and has no factors smaller than pw. As we have shown before, this number is
approximately max(Qw−1) + log(w). However, we already know the discrepancy of Qw−1 is
approximately (w − 1) log(w − 1), so this new value is approximately κ + (w − 1) log(w − 1)
+ log(w) ≈ κ + w log(w). Putting everything together, we get that σQw ≤ σQw−1 + w log(w) ≤
Σi≤w i log(i), proving the upper bound. The value Σi≤w i log(i) is between

, so asymptotically σQ converges to .

We will now consider algorithms to actually find Q. First, consider an algorithm that begins
by setting τmax to the w prime number after κ, and then runs an exhaustive search through all
sets of size w that contain values between κ and τmax. This is guaranteed to return the
optimal result, and does so in complexity O((τ−κ)w), which is asymptotically equal to O((w
log(κ))w). Though this complexity is hyper exponential, and so unsuitable for large values of
w it may be used for smaller w.

The upper bound described above suggests a polynomial algorithm for Q since it is a bound
that utilizes sets chosen such that none of their elements have prime factors smaller than κ.
This implies the following simplistic algorithm that calculates a solution that is
asymptotically guaranteed to have a 1:1 ratio with the optimal σQ.

1. Let Q be the set of the w smallest primes greater than κ.

2. repeat

3.   δ ← max(Q) − κ

4.   Q ← the w smallest numbers greater than κ that have no factors smaller than δ

5. until δ = max(Q) − κ

6. output Q.

In practice, this is never the optimal solution, as for example, it contains no even numbers.
In order to increase the probability that we reach the optimal solution (or almost the optimal
solution), we opt for a greedy version of this algorithm. The greedy algorithm begins by
producing the set of smallest numbers greater than κ that have no factors smaller than δ (as
in the upper bound). It continues by producing the set of smallest co-prime numbers greater
than κ that have at most one distinct factor smaller than δ (as in the calculation of the lower

Erlich et al. Page 14

IEEE Trans Inf Theory. Author manuscript; available in PMC 2011 March 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



bound). Then, it attempts to add further elements with a gradually increasing number of
factors. If these attempts cause a decrease in δ, it repeats the process with a lower value of δ
until reaching stabilization.

1. Q ← initial solution.

2. repeat

3.   δ ← max(Q) − κ

4.    the number of distinct primes smaller than δ in the factorization of x.

5.   Sort the numbers κ+1, …, max(Q) by increasing n(x) [major key] and increasing
value [minor key].

6.   for all i in the sorted list do

7.    if i is co-prime to all members of Q and i < max(Q) then

8.     replace max(Q) by i in Q.

9.    else if i is co-prime to all members of Q except one, q, and i < q then

10.     replace q with i in Q.

11.    end if

12.   end for

13. until δ = max(Q) − κ

14. output Q.

Because this greedy algorithm only improves the solution from iteration to iteration, using
the output of the first algorithm described as the initial solution for it guarantees that the
output will have all asymptotic optimality properties proved above. In practice, on the range
κ = 100 … 299 and w = 2 … 8 it gives the exact optimal answer in 91% of the cases and an
answer that is off by at most 2 in 96% of the cases. (Understandably, no answer is off by
exactly 1.) The worst results for it appear in w = 8, where only 82% of the cases were
optimal and 88% of the cases were off by at most 2.

Notably, due to the fact that κ + 1 does not always appear in either the optimal solution or
the solution returned by the greedy algorithm, sub-optimal results tend to appear in streaks:
a sub-optimal result on a particular κ value increases the probability of a sub-optimal result
on κ+1 (A similar property also appears when increasing w), and we denote an interval of
consecutive κ values where the greedy algorithm returns sub-optimal results to be a “streak”.
The number of streaks is, perhaps, a better indication for the quality of the algorithm than
the total number of errors. For the parameter range tested (totaling 1400 cases), the greedy
algorithm produced 61 sub-optimal streaks (of which in only 23 streaks the divergence from
the optimal was by more than 2). The worst w was 6, measuring 14 streaks. The worst-case
for divergence by more than 2 was w = 8, with 8 streaks.

In terms of the time complexity of this solution, this can be bounded as follows. First, we
assume that the values in the relevant range have been factored in advance, so this does not
contribute to the running time of the algorithm. (This factorization is independent of κ and
w, except in the very weak sense that κ and w determine what the “relevant” range to factor
is.) Next, we note that the initial δ is determined by searching for w primes, so we begin
with a δ value on the order of w ln(κ). Each iteration decreases δ, so there are at most w
log(κ) iterations. In each iteration, the majority of time is spent on sorting δ numbers. Hence,
the running time of the algorithm is bounded by δ2 log(δ) or w2 log2(κ)(log(w) +
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log(log(κ))). Clearly, this is a polynomial solution. In practice, it converges in only a few
iterations, not requiring the full δ potential iterations. In fact, in the tested parameter range
the algorithm never required more than three iterations in any loop, and usually less. (Two
iterations in the greedy allocation loop is the minimum possible, and an extra iteration over
that was required in only 4% of the cases.)

In some cases, it is beneficial to increase the number of barcodes from κ to κ1 in order to
achieve higher probability of faithful reconstruction of signals that are not d sparse. This is
achieved by finding w integers in the interval (κ, κ1) that follow Eq. (8) and maximize

. We give more details about this problem in appendix C.

Lastly, we note that even though these approximation algorithms are necessary for large
values of w, for small w an exhaustive search for the exact optimal solution is not
prohibitive, even though the complexity of such a solution is exponential. One can denote
the solution as Q = {κ + s1, κ + s2, …, κ + sw} in which case the values {s1, …, sw} are only
dependent on the value of κ modulo primes that are smaller than the maximal δ or
approximately w log(w). This means that the {s1, …, sw} values in the optimal solution for
any (κ, w) pair is equal to their values for (κ mod P, w), where P is the product of all primes
smaller than δ. Essentially, there are only P potential values of δ that need to be considered.
All others are equivalent to them.

In practice, the number of different κ values that need to be considered is significantly
smaller than this. As an example, Fig. 2 gives the complete optimal solution for any value of
κ with w = 4. The figure shows that the set S = {s1, …, sw} for any κ has only 7 possible
values, and that determining which set produces the optimal solution for any particular value
of κ can be done by at most 5 Boolean queries regarding the value of κ modulo specific
primes.

D. Comparison to other designs
It is well established in group testing theory and in compressed sensing that certain designs
can reach to the vicinity of the lower theoretical bound of t ~ O(d log n) [16], [49]. The

 scale in light weight designs raises the question whether other designs are
more cost effective for compressed genotyping with thousands of specimens.

We compared the performance of the light Chinese design to other two designs: Chinese
Remainder Sieve (CRS) [50], and Shifted Transversal Design (STD) [51]. CRS, to the best
of our knowledge, shows the maximal reduction of t for the general case. Interestingly, it is
also based on the Chinese Remainder Theorem, but without the assertion in Eq. (8). Instead,
to create a d-disjunct matrix, CRS allows Q to contain any series co-prime numbers whose
product is more than nd. The number of queries in CRS for a given d is:

(13)

and the weight is:

(14)

Notice that the weight scales with the number of specimens, implying that more sequencing
lanes and robotic logistic are required with the growth of n even if d is constant. STD is also
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a number theoretic design, which has been used for several biological applications [18],
[19].

From the results in table IV we see that CRS and STD are not applicable to the biological
and technical constraints in the genotyping setting of w ≤ 8 and rmax ≲ 1000 (labeled in the
table with †) when the number of specimens is 5000 or more. Moreover, the reduction in the
number of barcodes, τmax, and the number of queries in CRS and STD is no more than ten
fold than the light Chinese design, but their weights are least 2.5 fold greater than the
weights in the light Chinese design. The estimated cost ratio between a single barcode
synthesis to a sequencing lane is around 1 : 100. Therefore, the light Chinese design is more
cost effective to our setting.

Additional interesting design is the Subset Containment Design [17]. This design has 

queries,  specimens, and a weight of , where q and k are design parameters. Since
the weight of the design is controllable, we evaluated the performance of this design when
the w = d + 1 as in the light Chinese design. In that case, k = d + 1. Since

, then , and the number of queries scales with

. Thus, for our setting, the light Chinese design outperforms the subset
containment design.

IV. DECODING
A. Formulating the decoding setting

Now, we will turn to address the other part of the compressed genotyping protocol, which is
how to reconstruct x given y and Φ. The MAP decoding of x is:

(15)

For simplicity, we assume that we do not have any prior knowledge, besides the expected
carrier rate in the screen. Notice that in some cases, the observer has information about
kinship between the specimens or their familial history regarding genetic diseases.
Incorporating this information will remain outside the scope of this manuscript. Let φ(0) be
the expected rate of normal specimens and φ(1) the expected rate of carriers. For instance,
for Cystic Fibrosis ΔF508 screen φ(0) = 29/30, and φ(1) = 1/30. The prior probability for a
particular (x1, …, xn) ∈ x configuration is:

(16)

The probability of particular sequencing results is:

(17)
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we use x∂a to denote a configuration of the subset of specimens in the a query, and ya
denotes the sequencing results of the a-th query. The probability distribution Pr(ya | x∂a) is
given by the compositional channel model in Eq. (2). We will use the following shorthand to
denote this probability distribution:

(18)

From Eq. (15–18), we get:

(19)

The factorization above is captured by a factor graph with two types of factor nodes: φ
nodes that denote the prior expectations, and Ψ nodes that denote the probability of the
sequencing data. Each φ node is connected to a single variable nodes, whereas the Ψ nodes
are connected to the variables according to the query design in Φ, so each variable node is
connected to w different Ψ nodes. An example of a factor graph with 12 specimens, and Q =
{3, 4} is given in Fig. 3.

B. Bayesian decoding using belief propagation
Belief propagation (sum-product algorithm) [52], [53] is a graphical inference technique that
is based on exchanging messages (beliefs) between factor nodes and variable nodes that tune
the marginals of the variable nodes to the observed data. When a factor graph is a tree this
process returns the exact marginals. Clearly, any reasonable query design induces a factor
graph with many loops, implying that finding xMAP is NP-hard [54]. Belief propagation can
still approximate the marginals even if the graph has loops as long as the local topology of
the graph is tree-like and there are no long-range correlations between the variable nodes
[55], [56]. Approximating NP-hard problems with belief propagation was successfully tested
in a broad spectrum of tasks including decoding LDPC codes [52], finding assignments in
random k-SAT problems [57], and even solving Sudoku puzzles [58]. Recently, several
independent studies investigated the performance of belief propagation as a recovery
technique for compressed sensing [31], [48], [59] and group testing [15]. Mezard et al. [15]
studied the decoding performance of belief propagation in the prototypical problem of group
testing. One advantage of their decoding technique is a pre-processing stripping procedure
that identifies ’sure zeros’, variables nodes that are connected to at least one ’inactive’ test
node and removes them from the graph. The stripped graph is much smaller, leading to
faster convergence of the belief propagation. Our algorithm is reminiscent of Mezard et al.
approach. We first employ a stripping procedure to reduce the size of the graph, and then we
use belief propagation to calculate the marginals of the remained variable nodes.

1) stripping—The stripping procedure iterates between three step: (a) evaluating whether
the sequencing data in a Ψ node indicates ’no carriers’ (b) removing the node and its
connected variable nodes (c) extrapolating the sequencing results in the other factor nodes so
they will reflect removing normal specimens from the queries.

In order to evaluate whether the sequencing data indicates ’no carriers’, we calculate the
relative ratio of the two competing hypothesis: H0 - there are no carriers in the pool; and H1
- there is at least one carrier in the pool. H0 and H1 for that query are given by:

(20)
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(21)

where pk denotes the probability of having k carriers in the pool, and qk denotes the
likelihood of the data given that there are k carriers in the pool. pk and qk are Poisson
probabilities given by:

(22)

(23)

and:

(24)

(25)

Where ni is the number of specimens in the i-th query. Once the ratio Pr(H0)/Pr(H1) crosses
a user-determined threshold, we apply the stripping procedure to the factor node, and to its
connected variable nodes.

We then update the observed data of the factors nodes that were connected to each stripped
variable node. Let:

(26)

(27)

(28)

The new number of reads (β′) and the new fraction of non-functional reads  in the factor
node are set to:

(29)

(30)
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where yi is the previous fraction of reads from the non-functional allele, and β is the
previous number of reads in that factor node.

2) Belief Propagation—The marginal probability of xi is given by the Markov property
of the factor graph:

(31)

The approximation of belief propagation in loopy graphs is that the beliefs of the variables
in the subset ∂a\xi regarding xi are independent. Since λmax = 1 in light-weight designs, the
resulted factor graph does not have any short cycles of girth 4, implying that the beliefs are
not strongly correlated, and that the assumption is approximately fulfilled. The algorithm
defines μa→xi (xi) as:

(32)

and

(33)

were u ∈ ∂xj denotes the subset of queries with xj. Eq. (32) describes message from a factor
node to a variable node, and Eq. (33) describes message from a variable node to a factor
node. By iterating between the messages the marginals of the variable nodes are gradually
obtained, and in case of successful decoding the algorithm reaches to a stable point, and
reports x*:

(34)

This approach encounters a major obstacle - calculating the factor to node messages requires
summing over all possible genotype configurations in the pool, which may exponentially
grow with the compression level, rmax, or . To circumvent that, we use Monte-Carlo
sampling instead of an exact calculation to find the factor to node messages of each round.
This is based on drawing random configurations of x∂a according to the probability density
functions (pdf) that are given by the μxj→a(xj) messages and evaluating Ψa(x∂a). An
additional complication are strong oscillations that hinder the convergence of the algorithm.
We attenuate the oscillations by a damping procedure [60] that averages the variable to
factor messages of the m round with the messages of the m − 1 round:

(35)

The damping extent can by tuned with γ ∈ [0, 1] ; γ = 1 means no updates, and with γ = 0,
we restore the algorithm in Eq. (33). Appendix D presents a full layout of the belief
propagation reconstruction algorithm.
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V. NUMERICAL RESULTS
To demonstrate the power of our method, we simulated several settings with: n = 1000, β =
103, w = 5, d = 4 and Q = {33, 34, 35, 37, 41}. Fig. 4 shows the effect of damping on the
belief propagation convergence rates. In this example, the actual number of carriers in the
screen, d0, was 43, and we ran the decoder for 30 iterations. We evaluated different extents
of damping: γ ∈ [0.1, …, 0.9], and we measured for each iteration the averaged absolute
difference of the marginals from the previous step. We found that with γ < 0.5, there are
strong oscillations and the algorithm did not converge, whereas with γ ≥ 0.5, there are no
oscillations, and the algorithm correctly decoded x.

We also tested the performance of the reconstruction algorithms for increasing number of
carriers in the screen, ranging from 5 to 150, with no sequencing errors (Fig. 5). In order to
benchmark the approximation results by the belief propagation, we compared its
performance to pattern consistency (PC) decoding, a baseline group testing decoder [21].
The belief propagation reconstruction outperformed the pattern consistency decoder and
reconstructed the genotypes with no error even when the number of carriers was 40, which
is a quite high number for severe genetic diseases. The ability of the belief propagation to
faithfully reconstruct cases with d0 ≫ d-disjunction of the query design is not surprising,
since d-disjunction is a conservative sufficient condition even for a superimposed channel.

We continue to evaluate the performance of the algorithm in a biologically-oriented setting -
detecting carriers for Cystic Fibrosis W1282X mutation, where the carrier rate in some
populations is about 1.8% [37]. The relatively high rate of the carriers challenges our
scheme with a difficult genetic screening problem. Moreover, the sequence difference
between the wild-type allele and the mutant allele is only a single base substitution,
increasing the probability of sequencing errors. To simulate that, we introduced increasing
levels of sequencing errors with 0% ≤ Λ ≤ 4.5%, and tested the performance of the
reconstruction algorithms when β = 103 and β = 104 (Fig. 6). The belief propagation
algorithm reported the correct genotype for all specimens even when the error rate was 1.5%
and β = 103. Importantly, the decoding mistakes at higher error rates were false positives,
and did not affect the sensitivity of the method. When we increased the number of reads for
each query to β = 104, the belief propagation decoder reported the genotype of all the
specimens without any mistake. As we mentioned earlier, the expected sequencing error rate
for single nucleotide mutations is around 1%, implying that the parameters used in the
simulation are quite conservative.

VI. FUTURE DIRECTIONS AND OPEN QUESTIONS
Tighter sufficient decoding condition

Currently, we rely on the disjunctness for evaluating the decoding performance. Even for
group testing tasks, d-disjunct is a weak lower bound, and in practice the decoding
performance is much better. The compositional channel gives richer information than the
superimposed channel, and we can easily recover x’s that are not d-sparse. For instance, we
showed that we can recover with 100% accuracy even 40 carriers with a 4-disjunct design
(Fig. 5). The sufficient recovery conditions in compressed sensing (e.g. RIP-p [24]) also do
not fit ’as-is’ to our setting. First, these conditions mainly discuss additive i.i.d noise, while
the noise in compositional channel does dependent on the input. Second, the input vectors in
compressed sensing are real, x ∈ ℝn, whereas in our setting the input vector is in the binary
domain, x ∈ {0, 1}n. A tighter condition is important for developing more efficient query
designs, and to predict the performance of the design without tedious simulations.
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Incorporating prior information to the query design
Our query design assumes that the prior probability of the specimens to be carriers is i.i.d.
There are several situations in which the experimenter knows the kinship information
between the specimens, their medical history, or their ethnic background. In those cases, the
prior probabilities are neither identical nor independent. For example, consider a design for
Cystic Fibrosis that includes four specimens: two Caucasian brothers, and two unrelated
Afro-American individuals. The two brothers have higher prior probability based on their
ethnicity, and if one brother is a carrier, it increases the likelihood of the other brother to be
a carrier. An open question is how to incorporate this information in the encoding stage in
order to maximize the information. Kainkaryam et al. [20] studied a similar problem in the
context of drug screening, and proposed a genetic algorithm for near-optimal pooling
designs. However, his approach is computational intensive and not feasible for large scale
designs.

Expanding the mathematical setting to full range of genetic diseases
While the genotype representation presented in section II is valid for the vast majority of
rare genetic diseases, the genetics of a small subset of diseases does not fit to our
description. First, some diseases, such as Spinal Muscular Atrophy, involve copy number
variation. In those cases, the gene is not diploid, and the entries of x are no longer binary.
Second, some diseases have a spectrum of alleles with different levels of clinical outcomes.
For instance, the gene FMR1, that causes Fragile X mental retardation [61], has dozens of
possible alleles. Thus, the genotype of a single individual should be represented by a vector
and not a scalar, and we need to recover a (sparse) matrix and not a vector. A fully inclusive
treatment should include those cases as well.

Pooling imperfections
Throughput the sequel, we assumed that Φ is exactly known. However, the pooling
procedure may be imperfect and introduce some noise to Φ. For example, it may happen
that unequal amount of DNA are taken from each individual, or that small amounts of
material from one pool contaminate the following pool to be sequenced, etc. Such problems
introduce multiplicative noise to Φ, which may hinder accurate reconstruction [62]. While
the experimenter can not completely eliminate those imperfections, he can invest more
efforts to reduce their extent. The main question is if the pooling imperfections cause a
phase transition, i.e, if below a certain threshold their effect is minor, and above the
threshold the recovery procedure will fail. Knowing the value of that threshold is important
when designing optimized experiments.

VII. CONCLUSION
In this paper, we presented a compressed genotyping framework that harnesses next
generation sequencers for large scale genotyping screens of severe genetic diseases using
ideas and concepts from group testing and compressed sensing. We discussed the unique
setting of our problem compared to group testing and compressed sensing. We showed that
in addition to the traditional objective of minimizing the number of queries, our setting
favors light weight designs, in which the weight does not depend on the number of
specimen. In addition, we showed that the sequencing process creates a different
measurement channel called the compositional channel. For constructing light weight
designs, we proposed a simple method based on the Chinese Remainder Theorem, and we
showed that this method reduces the number of queries to the vicinity of the theoretical
bound. For the decoding part, we presented a Bayesian framework that is based on stripping
procedure and loopy belief propagation. We expect that our framework can be useful for
other compressed sensing applications.
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APPENDIX A

GLOSSARY OF GENETIC TERMS
Allele - Allele is a possible variation of a gene. Consider a gene that encodes eye color. One
alleles can be ’brown’, and another allele can be ’blue’.

Barcoding - An artificial reaction in which a short and unique DNA sequence is
concatenated to the specimen’s DNA in order to label its identity. The short DNA sequence
does not encode any relevant genetic information and it is synthesized in the lab according
to the experimenter needs.

DNA - A long molecule that is composed of four building blocks, called nucleotides. The
specific DNA composition encodes a trait.

DNA sequencing - Chemical reactions that convert a DNA molecule into signals that
identify its composition.

Gene - Gene is a DNA sequence in the genome that confers a specific function. There are
about 20,000 genes in the human genome.

Genotyping - The process of determining the alleles in a certain trait of an individual.

Lane - High throughput sequencers are composed of several distinct chambers called lanes.
Thus, one can sequence in each lane a different sample while keeping the samples separated
for each other.

Mutation - An alteration at a specific site in the genome. It is usually refers to a change that
disrupts the normal gene activity.

Nucleotide - The building blocks of the DNA. There are four types of nucleotides that are
labeled by A,C,G, and T.

Ploidy - The number of copies of a gene in the genome. In human, most of the genes are
diploid, meaning that every gene appears in two copies. The two copies (alleles) can be
identical or different from each other.

Recessive mutation - A mutation that causes a loss-of-function in an allele that can be
compensated by the activity of a normal allele. In order for a recessive mutation to be overt,
both alleles must contain the mutation.

Single Nucleotide Polymorphism (SNP) - The most common type of mutation. A change
in a specific nucleotide.

Wild Type (WT) - The allele that is found in the vast majority of the population. In the
context of genetic diseases, it refers to the allele with the normal activity.

APPENDIX B

PROOF FOR PROPOSITION 1
The main problem of reducing the compositional channel to a superimposed channel is
insufficient sequencing coverage. In that case, the sequencing results of a query that contains
carrier/s returns no reads from the non-functional allele, or α = 0. Consequently, the
degradation procedure in Eq. (4) will return 0 from the query instead of 1. Since we assume
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in Eq. (3) that there are no error in the superimposed channel, we want to find a sufficient
condition for β, the number of sequence reads, that will reduce probability of insufficient
sequencing coverage to zero. Proposition (1) claims that β ≫ 2n log n is a sufficient
condition.

Proof: : Let p be the rate of non-functional alleles in the query. The probability of not
having a single read from the non-functional allele when sampling β molecules is:
Pr(failure) = (1 − p)β. The probability of this event not to occur in any of t queries is:

(36)

(37)

Thus, when pβ ≫ log t the probability of having sufficient sequence coverage for all queries
goes to 1. In the worst case (and unlikely) situation, one has exactly a single carrier, and
each pool contains the entire set of specimens. In that case, p = 1/2n. Thus, r ≫ 2n log t.
Since t < n, r ≫ 2n log n is a sufficient condition.

APPENDIX C

THE PRODUCT MAXIMIZATION ALGORITHM
Handling large number of DNA barcodes is usually done with microtiter plates that are
composed of many wells, each of which contains a different DNA barcode. The plates have
several defined sizes, and the most common ones are: 96 wells, 384 wells, and 768 wells.
Thus, another practical consideration is that the number of barcodes will not exceed the
number of wells in the plate, i.e keeping τmax below a certain threshold. For that purpose, we
developed the product maximization algorithm that limits τmax below a threshold and finds a
set of numbers that their product is maximal, which increases the probability of correct
decoding.

The product maximization problem is defined as follows. Given parameters κ, κ1 and w, find
the set Q of size w whose elements are all in the range κ < x ≤ κ1 and such that for no pair x,
y ∈ Q has lcm(x, y) ≤ κ2. For product maximization, typical values in practice have κ in the
range [100, 300), w in the range [2, 8] and κ1 fixed at 384. The reason for this number is the
number of wells in a microtiter plate, which is compatible with liquid handling robots. The
empirical results below relate to this entire range, for all of which we have optimal solutions
discovered by exhaustive searching.

The product maximization problem has ties to the sum minimization problem in both bound-
calculation and solving algorithms. First, note that in this problem we cannot consider

“asymptotic” behavior when w, κ and κ1 are large without specifying how the ratio  is
constrained.

If κ is constant and κ1 rises, the asymptotic solution will be the set {κ1, κ1 − 1, κ1 − 2, …, κ1
+ 1 − w}. This set clearly has the maximum possible product, while at the same time
satisfying the condition on the lcm because no two elements in the solution can have a
mutual factor greater than w. This value will be the optimum as soon as (κ1 + 1 − w) (κ1 + 2
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− w) > wκ2 (and possibly even before), so  should be taken as an upper bound for  to
form a non-trivial case.

For any specific ratio , the condition lcm(x, y) > κ2 for x and y values close to κ1 is

equivalent to . This allows us to reformulate the question as that of finding the
set Q with w elements, all less than or equal to κ1, s.t. the gcd of any pair is lower than or

equal to .

For the product maximization problem, we redefine the discrepancy to be δ = κ1 + 1 −
min(Q). In order to compute the asymptotic bound for this discrepancy, let us first define
pseudo-primes. Let the set of k-pseudo-primes, Pk, be defined as the set s.t. i ∈ Pk ⇔ i > k
and ¬∃j < i, j ∈ Pk s.t. i is divisible by j. The set of 1-pseudo-primes coincides with the set of
primes.

One interesting property of k-pseudo-primes is that they coincide with the set of primes for
any element larger than k2. To prove this, first note that if i is a prime and i > k then i by
definition belongs to Pk. Second, note that if i is composite and i > k2 then i has at least one
divisor larger than k. In particular, it must have a smallest divisor larger than k, and this
divisor cannot have any divisors larger than k, meaning that it must belong to Pk.
Consequently, i ∉ Pk.

Both the reasoning yielding the upper bound and the reasoning yielding the lower bound for
the sum minimization problem utilize estimates for the density of numbers not divisible by a
prime smaller than some d. In order to fit this to the product maximization problem, where a
gcd of ρ is allowed, we must revise these to estimates for the density of numbers not
divisible by a ρ-pseudo-prime smaller than δ. Because the k-pseudo-primes and the primes
coincide beginning with k2, this density is the same up to an easy-to-calculate multiplicative
constant γk.

Knowing this, both upper and lower bound calculations can be applied to show that the
asymptotic discrepancy of the optimal solution is on the order of γkw log(w). This
discrepancy can be used, as before, to predict an approximate optimal product. However, the
bound on the product is much less informative than the bound on the sum: the product can
be bounded from above by  and from below by (κ1 − δ)w, both converging to a ratio of 1:1
at κ1 rises.

The revised greedy algorithm for this problem is given explicitly below.

1. Let Q be the set of the w largest primes ≤ κ1.

2. repeat

3.   δ ← κ1 + 1 − min(Q)

4.   Q ← the w largest numbers ≤ κ1 that have no factors smaller than δ

5. until δ = κ1 + 1 − min(Q)

6. repeat

7.   δ ← κ1 + 1 − min(Q)

8.     the number of distinct primes smaller than δ in the factorization of x.
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9.   Sort the numbers min(Q), …, κ1 by increasing n(x) [major key] and decreasing
value [minor key].

10.   for all i in the sorted list do

11.    if ∀q ∈ Q, lcm(q, i) > κ2 and i > min(Q) then

12.     replace min(Q) by i in Q.

13.    else if there is exactly one q ∈ Q s.t. lcm(q, i) ≤ κ2, and i > q then

14.     replace q with i in Q.

15.    end if

16.   end for

17. until δ = κ1 + 1 − min(Q)

18. output Q.

Note that the greedy algorithm tries to lower the discrepancy of the solution even when there
is no proof that a smaller discrepancy will yield an improved solution set. In the sum
minimization problem, any change of Δ in any of the variables yields a change of Δ in the
solution, so there is little reason to favor reducing the largest element of Q (and thereby
reducing the discrepancy) over reducing any other element of Q. In product maximization,
however, a change of Δ to min(Q) (and hence to the discrepancy) corresponds to a larger
change to the product than a change of Δ to any other member of Q. This makes the greedy
algorithm even more suited for the product maximization problem than for sum
minimization.

Indeed, when examining the results of the greedy algorithm on κ = 384, with w ∈ [2, 8] and
κ ∈ [100, 300) we see that the greedy algorithm produces the correct result in all cases w ∈
[2, 3, 4]. In w ∈ [6, 7, 8] the algorithm produces the optimal result in all but 2,3 and 3 cases,
respectively. The only w for which a large number of sub-optimal results was recorded is w
= 5 where the number of sub-optimal results was 49. Note, however, that in product
maximization there is a much larger tendency for “streaking”. The 49 sub-optimal results all
belong to a single streak, where the optimal answer is {379, 380, 381, 382, 383} and the
answer returned from the greedy algorithm is {377, 379, 382, 383, 384}. The difference in
the two products is approximately 0.008%.

In terms of streaks, the optimal answer was returned in all but one streak in w ∈ [5, 6] and in
all but two streaks in w ∈ [7, 8]. In terms of the number of iterations required, the only extra
iterations that were needed in the execution of the algorithm beyond the minimal required
was a single extra iteration through the first “repeat” loop when w was 3. In all other cases,
no extra iterations were used, demonstrating that this algorithm is in practice faster than is
predicted by its (already low-degree polynomial) time complexity.

APPENDIX D

FULL LAYOUT OF BELIEF PROPAGATION RECONSTRUCTION
1. Inputs: Query design Φ, sequencing results y, prior expectations about the normal

and carrier rates φ(0), φ(1), damping parameter γ, number of iterations mmax, and
number of Monte Carlo rounds z.

2. Preprocessing: (a) find β - enumerate the number of reads in the query. (b) learn
the genotype error pattern Λ - the sequencing errors rate is estimated using spiked-
in controls [41].
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3. Initialization Initialize the iteration counter m. Initialize μxi→a (xi) to the priors in
φ.

4. Send messages from factors to variables:

a. for each factor a in {1, …, t} do

b.   for each variable xi in query a do

c.    for each state of variable xi in {0, 1} do

d.     Set Ψ0 ← 0

e.     for {1, …, z} Monte-Carlo round do

f.      r ← random configuration of ∂a\x according to pdfs in 

g.      Ψ0 ← Ψ0 + Ψa(r, state of xi)

h.     end for

i.     μa→xi (state of xi) ← Ψ0/m

j.    end for

k.    Normalize μa→xi (xi)

l.    Send message μa→xi (xi)

m.   end for

n. end for

5. Send messages from variables to factors:

a. for each variable xi in {1, …, n} do

b.   for each factor a connected to xi do

c.    Set  to all ones vector.

d.    for each possible state of variable xi in {0, 1} do

e.     for each factor j connected to xi except a do

f.      

g.     end for

h.    end for

i.    Include prior by 

j.    Damp 

k.    Normalize 

l.    Send message 

m.   end for

n. end for

o. m ← m + 1

Go back to step 4 if m < mmax.
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6. Marginalize: For every variable node compute the marginal according to Eq. (31),
and find the state of the variable with the highest probability.

7. Report: Report the highest state of each variable and construct x.
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Fig. 1.
Common techniques in next generation sequencing (a) Schematic Overview of High
throughput DNA Sequencing. The DNA fragments (vertical rods) are immobilized onto a
surface and occupy distinct spatial locations. The sequencing reagents (black ovals) generate
optical signals according to the DNA composition of each fragment. A series of signals from
the same spatial location conveys the sequence of a single DNA fragment. (b) DNA
Barcoding. DNA barcoding starts with synthesizing short DNA sequences. In the example,
there are two barcodes: ’AAA’ and ’GGG’. The barcodes are then concatenated in a simple
chemical reaction to the DNA fragments of each sample (black lines). When the barcoded
samples are mixed and sequenced, the barcodes retain the origin of the sequences. In this
example, every sequence read will start with a short tag of 3 nucleotides, either ’AAA’
or ’GGG’.
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Fig. 2.
An Optimal Solution using Tree Search
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Fig. 3.
Example of a Factor Graph in Compressed Genotyping
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Fig. 4.
The Effect of Damping on Oscillations
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Fig. 5.
Decodability as a Function of Number of Carriers
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Fig. 6.
Simulation of Cystic Fibrosis Screen - The Effect of β and Sequencing Errors
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TABLE I

The Genotype of the Offsprings as a function of mating combination

Offsprings

Mating: Normal Carrier Affected

Normal × Normal 100% 0% 0%

Normal × Carrier 50% 50% 0%

Carrier × Carrier 25% 50% 25%
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TABLE II

Summary of Query Design Parameters

Notation Meaning Typical Values Comments

Φ Query design

n Number of specimens Thousands

t Number of queries (pools)

w Weight ≤ 8 Number of times a specimen is sampled

rmax Max. level of compression ≲ 1000 Maximal number of specimens in a pool

τmax Number of queries in the largest query group Up to a few hundreds Corresponds to barcode synthesis reactions for a single
experiment
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TABLE III

Comparison of Different Channels Models

Channel model Measurement process Example

Superimposition OR operation Antibody reactivity

Compositional Binomial sampling Next generation sequencing

Real Adder Additive Spring scale
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