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BACKGROUND: Although inhibitors of histone deacetylase inhibitors (HDACis) in combination with genotoxins potentiate apoptosis,
the role of proteases other than caspases in this process remained elusive. Therefore, we examined the potentiation of apoptosis and
related mechanisms of HDACis and doxorubicin combination in a panel of myeloma cell lines and in 25 primary myelomas.
RESULTS: At IC50 concentrations, sodium butyrate (an HDACi) or doxorubicin alone caused little apoptosis. However, their
combination potentiated apoptosis and synergistically reduced the viability of myeloma cells independent of p53 and caspase 3–7
activation. Potentiated apoptosis correlated with nuclear translocation of apoptosis-inducing factor, suggesting the induction of
caspase 3- and 7-independent pathways. Consistent with this, butyrate and doxorubicin combination significantly increased the
activity of cytoplasmic cathepsin B. Inhibition of cathepsin B either with a small-molecule inhibitor or downregulation with a siRNA
reversed butyrate- and doxorubicin-potentiated apoptosis. Finally, ex vivo, clinically relevant concentrations of butyrate or SAHA
(suberoylanilide hydroxamic acid, vorinostat, an HDACi in clinical testing) in combination with doxorubicin significantly (Po0.0001)
reduced the survival of primary myeloma cells.
CONCLUSIONS: Cathepsin B has a prominent function in mediating apoptosis potentiated by HDACi and doxorubicin combinations in
myeloma. Our results support a molecular model of lysosomal–mitochondrial crosstalk in HDACi- and doxorubicin-potentiated
apoptosis through the activation of cathepsin B.
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Despite recent advances, disease recurrence and side effect profiles
of existing drugs remain a problem in multiple myeloma (Ludwig
et al, 2010; Niesvizky and Badros, 2010; Richards and Weber,
2010). As evasion of apoptosis may be important for early
expansion and accumulation of mutant plasma cells, identification
of drug combinations that potentiate apoptosis might be bene-
ficial for achieving better outcomes (Bergsagel and Kuehl, 2001;
Cheriyath et al, 2007b).

Besides caspases, proteolysis is mediated by lysosomal cathe-
psins such as cathepsin B and cathepsin D in apoptosis (Boya et al,
2003; Broker et al, 2004; Paquet et al, 2005; He et al, 2005a; Turk
and Stoka, 2007). Once released from lysosomes, cathepsins may
contribute to apoptosis execution either by direct cleavage of
cellular substrates, by acting in concert with caspases or by
disrupting the mitochondrial transmembrane potential (DC)
(Boya et al, 2003; Broker et al, 2004; Paquet et al, 2005; He et al,
2005a; Turk and Stoka, 2007). Various insults including oxidative
stress and DNA damage may lead to the limited release of
cathepsins that culminate in the induction of apoptosis. However,

the release of cathepsin in excess may lead to cellular necrosis
(Paquet et al, 2005).

Cancer cells evade apoptosis by both genetic (mutations) and
epigenetic means (Egger et al, 2004). Perturbation of the balance
between histone acetyltransferases and histone deacetylases
(HDACs) has been defined in myeloma and in other cancers
(Mitsiades et al, 2003; Marks and Xu, 2009; Luszczek et al, 2010).
Consequently, inhibition of HDACs has emerged as a potential
therapeutic strategy (Glaser, 2007; Richon et al, 2009). Histone
deacetylase inhibitors (HDACis) include several classes, ranging
from the simple aliphatic acid sodium butyrate (butyrate) to more
complex hydroxamic acid-derived compounds, such as SAHA
(suberoylanilide hydroxamic acid, vorinostat; Moradei et al, 2008;
Balliet et al, 2009). Histone deacetylase inhibitors cause cytotoxi-
city of cancer cells epigenetically by re-expressing silenced tumour
suppressors (Laird, 2005; Glaser, 2007; Richon et al, 2009) or by
altering acetylation status of cellular proteins through non-
epigenomic mechanisms (Pei et al, 2004; Dai et al, 2005; Chen
et al, 2007).

Toxicities associated with cumulative or higher dosages limit
HDACi usage as a monotherapy (Richardson et al, 2008; Badros
et al, 2009; Richon et al, 2009). To overcome this limitation,
synergistic interaction of HDACi with a variety of anticancer
agents including anthracyclins, which inhibits topoisomerases I
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and II, have been explored (Marchion et al, 2004; Mitsiades
et al, 2004; Catalano et al, 2006; Pan et al, 2007; Hajji et al, 2008;
Sanchez et al, 2010). In myeloma cell lines, at above IC50

concentrations, HDACi (SAHA and LBH589) and anthracyclins
potentiate apoptosis through a variety of mechanisms, including
the induction of caspase 3 and 7 or by altering the expression of
proapoptotic genes (Mitsiades et al, 2004; Sanchez et al, 2010).
However, the molecular mechanisms of the synergy between
HDACi and doxorubicin at their IC50 or sub-IC50 concentrations
are not known. In this study, we identified a critical role for
cathepsin B in mediating the potentiation of apoptosis in myeloma
cells by HDACi and doxorubicin combinations at their IC50

concentrations. Moreover, both experimental (butyrate) and a
clinically relevant HDACi (vorinostat) and liposomal doxorubicin
(doxil) significantly reduced the viability of patient-derived
primary myeloma cells, providing a rationale of combining this
non-neurotoxic and steroid sparing combination for myeloma and
other haematological malignancies.

MATERIALS AND METHODS

Cell lines

Human multiple myeloma cell lines RPMI 8226, U266 and NCI-H929
were purchased from the ATCC (Manassas, VA, USA); KMS-11 and
OPM-2 cells were kind gifts from Drs Taolin Yi and Eric Hsi of the
Cleveland Clinic. All cells were propagated in recommended media.

Reagents and antibodies

Sodium butyrate was purchased from Sigma (Sigma-Aldrich,
St Louis, MO, USA), SAHA (vorinostat) was provided by Merck
& Co. Inc., (Whitehouse Station, NJ, USA) and liposomal
doxorubicin (Doxil) was obtained from the Cleveland Clinic
Cancer Pharmacy. Cathepsin B inhibitor CA-074Me was obtained
from Calbiochem (Calbiochem Inc., San Diego, CA, USA) and
caspase 3 inhibitor DEVD-CHO and pan-caspase inhibitor z-VAD-
FMK were from BioMol Inc., (Plymouth Meeting, PA, USA).
Antibodies for caspase 3 and apoptosis-inducing factor (AIF) were
from Cell Signaling Technology Inc., (Danvers, MA, USA).
Cathepsin B antibody was from Sigma (Sigma-Aldrich). Cathepsin
stealth siRNA was from Invitrogen Inc (Carlsbad, CA, USA).

Viability assays and synergy analysis

Human multiple myeloma cell lines were seeded in 96-well plates
at a concentration of 5� 103 cells per well and incubated for 72 h
with various concentrations of butyrate, doxorubicin or their
combinations. At the end of incubation, the percentage reduction
in cell viability compared with untreated cells was determined with
Alamar blue (Invitrogen Inc.) as described (Cheriyath et al, 2007a).
The median drug effect for butyrate, doxorubicin and their
combinations was analysed using Calcusyn software (Chou and
Talalay analysis) to derive the combination indices.

Informed consent for bone marrow (BM) aspirates was obtained
in accordance with protocols approved by the Institutional Review
Board of Cleveland Clinic (Cleveland, OH, USA). The effect of
HDACi, doxorubicin or their combinations on the survival of fresh
myeloma cells after drug treatments was measured as previously
described (Lincz et al, 2001; Cheriyath et al, 2007a).

Apoptosis and caspase 3 and 7 activity assay

TUNEL labelling (BD Biosciences, San Jose, CA, USA) and caspase 3
and 7 activities (Caspase-Glo assay reagent, Promega Inc., Madison,
WI, USA) were measured according to manufacturer’s instructions
and as described (Cheriyath et al, 2007a; Bae et al, 2008).

Cathepsin B, cathepsin D and calpain assays

Cathepsin B, cathepsin D and calpain activity kits were used to
measure enzymatic activity according to manufacturer’s instruc-
tions (Biovision Inc., Mountain View, CA, USA). Briefly, 1� 106

cells were treated with butyrate, doxorubicin or their combination
for the indicated time periods. Cytoplasmic cathepsin B activity was
assessed in cytoplasmic extracts prepared by permeabilising the
plasma membrane with digitonin containing buffer (50mg ml�1

digitonin, 250 mM Sucrose, 20 mM Hepes, 10 mM KCl, 1.5 mM MgCl2,
1 mM EDTA, 1 mM EGTA, 1 mM Pefablock, pH 7.5) for 10 min on ice.
A measure of 15ml of cytoplasmic extract was then diluted with 35ml
of assay buffer and incubated with AFP-conjugated substrates for
1 h. The increase in fluorescence was measured with a Wallac
Victor2 fluorimeter (Waltham, MA, USA). Lactate dehydrogenase
(LDH) activity using cytotox 96 well assay kit (Promega Inc.) was
used to monitor permeabilisation of plasma membrane and to
normalise the activity of cytoplasmic cathepsin B.

Indirect immunofluorescence microscopy

Cells left untreated or treated with butyrate, doxorubicin or their
combination for the indicated time periods were cytospun and fixed
with 4% paraformaldehyde for 10 min. Fixed cells were permeabi-
lised with 0.2% Triton X-100 for 10 min and incubated with
monoclonal anti-AIF antibody (dilution of 1 : 200) for 1 h followed
by secondary antibody conjugated with Alexa-488 (dilution 1 : 1000;
Invitrogen Inc.). Cells were then mounted with Prolong Gold
mounting media with DAPI and imaged using a Leica DMI4000B
fluorescence microscope (Leica, Bannockburn, IL, USA).

Immunoblot analysis

Whole-cell extracts (WCE) were made by lysing 1� 106 cells with
RIPA buffer (Sigma-Aldrich) containing 1� protease inhibitor
cocktail (Calbiochem). A quantity of 25–35 mg of WCE was
subjected to immunoblot analysis as previously described
(Cheriyath et al, 2007a; Bae et al, 2008).

siRNA-mediated downregulation of cathepsin B

Cells (1� 106) were transfected with cathepsin B stealth siRNA by
Lipofectin according to manufacturer’s instructions (Invitrogen
Inc.). After 24 h transfection, cells were treated with butyrate,
doxorubicin or their combination for 72 h.

Statistical analysis

One-way repeated measures ANOVA followed by all pairwise
multiple comparison procedures (Holmes-Sidak method) were
performed using SigmaStat 3.5 software to determine the
significance of difference between untreated, single agent and
combination-treated fresh myeloma samples. One-way ANOVA
followed by Tukey’s Multiple Comparison Test was used to
determine the significance of difference of cathepsin B activity and
potentiation of apoptosis between the untreated and treated
samples. Two-tailed t-test was used to determine the significance
of difference of the effects of caspase 3 and cathepsin B inhibitors
on apoptosis.

RESULTS

HDACi and doxorubicin combination potentiated
apoptosis in myeloma cells

To assess whether the combination of butyrate and doxorubicin
potentiate apoptosis at their IC50 or sub-IC50 concentrations, five
myeloma cell lines carrying wild-type or mutant p53 alleles were
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treated with either butyrate, doxorubicin alone or with their
combination for 48 h, and apoptotic indices were assessed by
TUNEL assay (Figure 1A). In initial studies, the IC50 of butyrate,
SAHA and doxorubicin were determined in NCI H929, RPMI
8226 and U266 cells (Supplementary Figure 1 and Supplementary
Table 1). Butyrate or doxorubicin alone had only a modest effect
on TUNEL positivity. However, their combination markedly
increased TUNEL staining in all myeloma cell lines tested
irrespective of p53 status (Figure 1A). An exception to this was
OPM2 cells, in which doxorubicin alone resulted in 54.7% positive
TUNEL staining (Figure 1A). These results suggested that
potentiation of apoptosis by the combination may lead to
synergistic reduction in the viability of myeloma cells.

As augmented inhibition of HDACs could lead to potentiation of
apoptosis, effects of butyrate, doxorubicin and their combination on
HDAC activity was tested by assessing histone-H4 acetylation. As
expected, butyrate induced the acetylation of histone H4 in RPMI
8226 and NCI-H929, indicating the inhibition of HDACs (Figure 1B).
However, acetylation status of histone H4 was unaltered by
doxorubicin alone or in combination with butyrate (Figure 1B).
These results suggest that potentiated apoptosis by the combination
is not resulting in from the augmented inhibition of HDACs.

In agreement with the potentiated apoptosis, combinations of
HDACi and doxorubicin synergistically reduced viability of
myeloma cell lines (Supplementary Figure 2). Compared with
single agents, butyrate (150, 300 and 600mM) and doxorubicin
(15, 30 and 60 nM) co-treatment with incrementally increased
concentrations markedly reduced the viability of myeloma cells. In
all three cell lines, butyrate and doxorubicin combinations resulted
in a combination index of o1 in Chou and Talalay analysis,
indicating synergistic interaction between them (Supplementary
Figure 2A). To understand the relative contribution of HDACi to
the synergy, myeloma cells were treated with a fixed concentration
of doxorubicin (40 nM) and varying concentrations of butyrate
(0–800 mM). Similar to incrementally increased concentrations of
butyrate and doxorubicin, increased concentrations of butyrate
with a constant concentration of doxorubicin also resulted in
synergy with a combination index of o1 (Supplementary Figure 2B).
As in co-treatment, sequential treatment (SAHA followed by
doxorubicin) also synergistically reduced the viability of myeloma
cell lines (data not shown).

HDACi and doxorubicin significantly reduced viability
of patient-derived fresh myeloma cells

To define the clinical relevance of HDACi and doxorubicin
combination, the antimyeloma activity of the clinically relevant
concentrations of HDACi and doxorubicin combinations was
tested in patient-derived primary myeloma cells (n¼ 25).
Characteristics of the patients and treatments that they received
before the collection of BM aspirates are provided (Supplementary
Table 2). CD138þ cells derived from BM aspirates of 18 myeloma
patients were left untreated or treated with butyrate, doxorubicin
or their combination in the presence of BM mononuclear cells,
which includes stromal cells. After 72 h of treatment, survival of
CD138þ cells was assessed by flow cytometry. Compared with
untreated cells, butyrate (600 mM) or doxorubicin (40 nM) alone
had only a marginal effect on the survival of CD138þ cells
(100% untreated vs 72.97% butyrate and 83.25% doxorubicin
treated; Table 1). However, co-treatment of butyrate and
doxorubicin significantly reduced the survival of CD138þ cells
(43.42%, Pp0.05; Table 1). While butyrate (600 mM) and doxo-
rubicin (40 nM) reached IC50 in 4 out of 18 and 1 out of 18 patient
samples, respectively, their combination reached IC50 in 10 out of
18 patient samples.

Effect of combinations of HDACi and doxorubicin on the
survival of fresh myeloma cells was further investigated using

SAHA in BM aspirates from 12 myeloma patients. In initial studies,
the IC50 of SAHA for myeloma cell lines ranged from 546 to 976 nM

(Supplementary Table 1). Compared with single agents, combina-
tion of SAHA (200 nM) and doxorubicin (40 nM) markedly reduced
viability of fresh myeloma cells. At the concentrations used,
neither SAHA nor doxorubicin reached IC50 or IC25, but,
combining SAHA with doxorubicin reached IC50 in 5 out of the
12 samples and IC25 in 11 out of the 12 samples (Table 1). In one-
way repeated measures of ANOVA, the sub-IC50 concentration of
SAHA used had only a marginal effect on the survival of fresh
myeloma cells (CD138þ ; 80.87% in SAHA treated vs 100% in
untreated). However, combining SAHA with doxorubicin signifi-
cantly reduced the survival of fresh myeloma cells to 46.29%
(Pp0.05; Table 1).

HDACi- and doxorubicin-potentiated apoptosis was
caspase 3 and 7 independent

To gain a better understanding of the mechanism of apoptosis
potentiated by butyrate and doxorubicin, effects of these agents
alone or in combination on caspase-dependent and -independent
apoptosis were investigated. Butyrate and doxorubicin treatments
had no marked effect on the activity of caspase 3 and 7 in NCI
H929, RPMI 8226 and U266 cell lines at 24 h (Figure 2A). Under the
same conditions TRAIL, a potent inducer of apoptosis, markedly
increased the activity of caspase 3 and 7 in sensitive cell lines
(NCI H929 and RPMI 8226), suggesting the absence of an intrinsic
block in caspase activation pathways in these cell lines. Lack of
caspase 3 activation was confirmed by caspase 3 cleavage assay at
16, 24 and 36 h (Figure 2B). The role of caspase 3 in apoptosis
potentiated by butyrate and doxorubicin was further tested by
pretreating RPMI 8226 cells with DEVD-CHO, a cell permeable
caspase 3-specific peptide inhibitor. DEVD-CHO inhibited the
activity of caspase 3 and 7 (Figure 2C). Consistent with its
inhibition of caspase activity, DEVD-CHO significantly reduced
the apoptosis induced by TRAIL from 41.4 to 19.5% (P¼ 0.0065);
however, it had no apparent effect on apoptosis potentiated by the
butyrate and doxorubicin combination (Figures 2C and D).
Influence of caspases other than caspase 3 and 7 on butyrate
and doxorubicin combination potentiated apoptosis was tested
using z-VAD-FMK, a pan-caspase inhibitor. Compared with
vehicle-treated cells, B12% decrease in apoptosis was observed in
z-VAD-FMK-treated cells (Supplementary Figure 3). Together, these
results suggest the involvement of caspases other than 3 and 7 in the
potentiation of apoptosis by HDACi and doxorubicin.

As apoptosis potentiated by butyrate and doxorubicin was not
caspase 3 and 7 dependent, nuclear translocation of AIF, a
mediator of caspase-independent apoptosis, was assessed in RPMI
8226 and NCI H929 cells using indirect immunofluorescence
microscopy. In untreated, butyrate- or doxorubicin-treated RPMI
8226 and NCI H929 cells, most of the AIF was localised in
mitochondria resulting in very little colocalisation of AIF with
nuclear stain DAPI (Figure 2E). However, the combination of
butyrate and doxorubicin markedly increased the nuclear translo-
cation of AIF in both RPMI 8226 and NCI H929 cells (Figure 2E).
These results together with the lack of caspase 3 and 7 activation
suggested the involvement of caspase 3- and 7-independent
pathways in mediating the apoptosis potentiated by HDACi and
doxorubicin combinations.

HDACi and doxorubicin significantly increased the activity
of cytoplasmic cathepsin B

On the basis of the role of cathepsin B in mediating AIF activation
and apoptosis induced by agents that act on DNA (Bidere et al,
2003; Broker et al, 2004; Biswas et al, 2005), we postulated that
increased activity of cathepsin B in the cytoplasm may be a critical
mediator of HDACi and doxorubicin combination induced
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Figure 1 Combinations of HDACi and doxorubicin potentiate apoptosis in myeloma cells. (A) Effects of HDACi, doxorubicin and their combination on
apoptosis of myeloma cells with varying p53 status. Myeloma cells (1� 106) carrying either wild-type or mutant p53 (NCI H929, RPMI 8226, U266, KMS11
and OPM2) were left untreated or treated with butyrate (300 mM for NCI H929 and 600 mM for RPMI 8226, U266, KMS 11 and OPM2) or doxorubicin
(40 nM) or with their combination for 48 h. Percentage of cells undergoing apoptosis was assessed by TUNEL staining. Scatter plot shown is a representative
of two independent experiments with similar results, in which 10 000 events were collected using flow cytometry. Mutational status of p53 of the myeloma
cell lines is indicated. Induction of apoptosis in myeloma cells by butyrate, doxorubicin and their combination are summarised in the bottom graph. Each bar
on the graph is mean±s.e.m. of two independent experiments. # Indicates that the treatment is significantly different from other treatments and ‘&’ sign
indicates that treatment is significantly different from untreated or butyrate treatment; P-values for each treatment is provided. (B) Effect of butyrate and
doxorubicin (40 nM) combination on HDAC activity. Whole-cell lysates (WHL; 30 mg) of NCI-H929 or RPMI 8226 cells left untreated or treated with
butyrate (þ ¼ 300 mM, þ *¼ 600 mM) doxorubicin or their combination for 36 h and acetylation status of histone H4 as an indirect measure of HDAC
activity was determined by immunoblot analysis.
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apoptosis. To test this hypothesis, activity of cathepsin B in
cytoplasmic extracts of untreated and treated RPMI 8226 cells was
determined. Permeabilisation of cells with digitonin was mon-
itored by measuring the activity of cytoplasmic enzyme LDH
(Foghsgaard et al, 2002). Incubation of cells in cytoplasmic
extraction buffer with 50 mg of digitonin resulted in the maximal
release of LDH with minimal increase in the activity of cathepsin B,
indicating the permeabilisation of the plasma membrane, but not
lysosomes (Figure 3A). In kinetic studies compared with untreated
and single agents, the combination of butyrate and doxorubicin
significantly increased the cytoplasmic activity of cathepsin B
at 16 h in RPMI 8226 cells (Figure 3B). An increase in the
activity of cytoplasmic cathepsin B was also observed in NCI
H929 cells treated with butyrate and doxorubicin combination
(data not shown).

As other lysosomal enzymes, including cathepsin D and calpain,
are also suggested to be involved in HDACi and stress-induced
apoptosis, combination-mediated activation of cathepsin D and
calpains was assessed in RPMI 8226 cells (Mandic et al, 2002;
Carew et al, 2007). Unlike cathepsin B, butyrate and doxorubicin
combination failed in activating cathepsin D and calpain (Figures
3C and D).

Cathepsin B inhibition reverses HDACi and doxorubicin
combination potentiated apoptosis

As butyrate and doxorubicin combination markedly increased
the activity of cytoplasmic cathepsin B, its role in potentiating
apoptosis was further investigated in RPMI 8226 cells with
CA-074me, a membrane-permeable cathepsin B inhibitor

(Ostenfeld et al, 2005; Sandes et al, 2007; Wang et al, 2008). As
expected, pretreatment of RPMI 8226 cells with CA-074me
markedly inhibited total cathepsin B activity in control, butyrate,
doxorubicin and combination treated cells (Figure 4A). Addition-
ally, inhibition of cathepsin B activity with CA-074me significantly
reduced the TUNEL positivity of RPMI 8226 cells treated with the
combination from 46.84 to 17.24% (P¼ 0.0009), suggesting a
prominent role for cathepsin B in the mediation of butyrate- and
doxorubicin-potentiated apoptosis (Figure 4B).

To test the direct role of cathepsin B in mediating the HDACi-
and doxorubicin-potentiated apoptosis, its expression was down-
regulated in RPMI 8226 cells with a siRNA (Figure 4C). Compared
with control siRNA-transfected cells, downregulation of cathepsin
B reduced the butyrate and doxorubicin combination induced
from 36.73 to 11.31% (Figure 4D). These results are in agreement
with the results of using cathepsin B inhibitor CA-074me and
confirm the role of cathepsin B in mediating the potentiation of
apoptosis by butyrate and doxorubicin.

DISCUSSION

To further the current successes in myeloma therapy, there is a
need to identify drug combinations that synergistically reduce
viability of myeloma cells (Mitsiades et al, 2007; Richardson et al,
2007; Cheriyath et al, 2007b). Although anthracyclins (doxorubicin)
have been used clinically as single agents or in combination to
therapeutic advantage, greater effectiveness could improve activity.
Moreover, the success of combination therapies could be improved
by defining molecular mechanisms responsible for their antitumour

Table 1 Effects of HDACi (butyrate or SAHA) and doxorubicin or their combinations on the survival of fresh myeloma cells

% Survival of CD138+ cells (treatments)

Sample no. Untreated SB Dox Combo Untreated SAHA Dox Combo

P01 100 65.6 92.6 51.1 — — — —
P02 100 71.6 78.2 1.0 — — — —
P03 100 70.1 76.9 37.8 — — — —
P04 100 107.7 113.7 62.5 — — — —
P05 100 33.9 85.3 18.9 — — — —
P06 100 61.9 81.7 62.0 — — — —
P07 100 104.3 93.3 85.7 — — — —
P08 100 80.7 95.2 76.7 — — — —
P09 100 102.2 101.5 92.7 100 85.7 97.8 88.1
P10 100 91.5 78.5 29.4 100 91.0 79.5 31.7
P11 100 59.5 65.5 52.5 — — — —
P12 100 94.1 74.5 27.5 — — — —
P13 100 39.1 85.8 19.4 — — — —
P14 100 85.9 18.9 7.8 100 102.5 19.9 16.0
P15 100 43.9 74.2 20.5 — — — —
P16 100 107.3 112.5 65.4 100 97.3 110.5 60.4
P17 100 60.6 73.3 47.7 — — — —
P18 100 32.9 96.7 23.0 100 79.8 99.5 67.7
P19 — — — — 100 83.2 87.8 73.1
P20 — — — — 100 54.4 64.7 3.9
P21 — — — — 100 88.3 101.3 56.2
P22 — — — — 100 69.8 107.1 55.3
P23 — — — — 100 41.3 87.5 16.5
P24 — — — — 100 86.8 122.1 30.3
P25 — — — — 100 81.4 92.9 51.4
Mean 100 72.9# 83.25# 43.42*** 100 80.87# 89.73 46.29***
s.e.m. 0.00 5.96 4.93 6.35 0.00 5.40 7.78 7.57

Abbreviations: Dox¼ doxorubicin; HDACi¼ histone deacetylase inhibitor; SAHA¼ suberoylanilide hydroxamic acid; SB¼ sodium butyrate. Mononuclear (1� 105) cells from
bone marrow aspirates of patients were left untreated or treated with butyrate (600 mM), SAHA (200 nM), doxorubicin (40 nM), butyrate plus doxorubicin or SAHA plus
doxorubicin for 24 h. Percentages of dead and CD138+ positive cells were determined by flow cytometry, in which 10 000 events were collected for each treatment. Statistical
significance between each treatment was determined by one-way repeated analysis of variance adjusted for multiple comparisons (Holm-Sidak method). # Significantly different
from untreated and combination treated, Po0.0001; ***significantly different from untreated and single-agent-treated samples, Po0.0001.
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Figure 2 Effects of butyrate, doxorubicin or their combination on caspase 3 and 7 activation and AIF release in myeloma cells. (A, B) Effects of butyrate,
doxorubicin and their combination on caspase 3 and 7 activation. (A) NCI H929, RPMI 8226 and U266 cells were treated with butyrate (SB; 300 mM for NCI
H929 and 600 mM for RPMI 8226 and U266), doxorubicin (Dox; 40 nM) or with their combination. After 24 h treatments, fold change in caspase 3 and 7
activity relative to untreated cells was assessed by caspase 3 and 7 glo kit (Promega Inc.). TRAIL (50 ng ml�1, Peprotech Inc., Rocky Hill, NJ, USA) was used as
a positive control. Each data point in the bar graph is mean±s.e.m. of three independent experiments performed in triplicate. (B) Caspase 3 cleavage was
assessed after 16, 24 or 36 h by subjecting 30mg of whole-cell lysates (WCL) of RPMI 8226 cells to immunoblot analysis with a caspase 3-specific antibody.
TRAIL-treated sample was used as a positive control and b-Actin as a loading control. (C, D) Effects of caspase 3 inhibitor DEVD-CHO on butyrate- and
doxorubicin-induced apoptosis of myeloma cells. RPMI 8226 cells (1� 106) were pretreated with either vehicle (DMSO) or 1 mM of cell permeable caspase
3-specific inhibitor DEVD-CHO (Biomol Inc.) for 2 h. Then the cells were left untreated or treated with TRAIL (50 ng ml�1) or butyrate (600 mM) plus
doxorubicin (40 nM). Caspase 3 and 7 activity was determined as in Figure 3A, and percentage of cells undergoing apoptosis was determined 48 h post-
treatment by TUNEL assay as in Figure 2. Scatter plot shown is one of two independent experiments with similar results, in which 10 000 events were
collected (top panel). Each bar on the graph is mean±s.e.m. of two independent experiments, and P-values of significantly different treatments are provided.
(E) Butyrate plus doxorubicin combination results in nuclear translocation of AIF in RPMI 8226 and NCI H929 cells. RPMI 8226 or NCI H929 cells were left
untreated or treated with indicated concentrations of butyrate, doxorubicin or their combination for 48 h. The localisation of AIF was assessed by indirect
immunofluorescence staining with an AIF antibody followed by Alexa Flour-488-conjugated secondary antibody (Green staining). Nuclei of the cells were
stained with DAPI (blue). Merged images were produced by superimposing both images. Results shown are representative of three independent
experiments with similar results.
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activity, information that might be useful for patient selection and
for predicting treatment outcomes.

Histone deacetylase inhibitors have been identified as epigenetic
modulators and are in clinical trials either as single agents or in
combination (Marks and Xu, 2009; Richon et al, 2009). We have
identified potentiation of apoptosis and marked reduction of the
viability of both myeloma cell lines and fresh myeloma cells
by combinations of HDACi (butyrate and SAHA) and doxorubicin
(Figure 1, Table 1 and Supplementary Figure 2), which is in
agreement with other studies (Marchion et al, 2004; Mitsiades et al,
2004; Catalano et al, 2006; Sanchez-Gonzalez et al, 2006; Sanchez
et al, 2010). However, this study identified a prominent role for
cathepsin B in mediating HDACi- and doxorubicin-potentiated
apoptosis at their IC50 or sub-IC50 concentrations. Interestingly,
butyrate and doxorubicin potentiated apoptosis of myeloma cell
lines, irrespective of p53 mutational status, and reduced the
viability of fresh myeloma cells from patients who had been
relapsed on a variety of therapies including liposomal doxorubicin
(patient samples P02, P08, P15 and P16, Supplementary Table 1).
These results suggested that HDACi and doxorubicin combina-
tions could be useful for treating patients who recur on existing
therapies and provide a rationale of testing this combination in
clinics. In agreement with these results, in vitro and in vivo studies
in mice have identified a synergistic antimyeloma effect for
combinations of SAHA and the alkylating agents melphalan and
doxorubicin (Campbell et al, 2010; Sanchez et al, 2010).

Lack of caspase 3 and 7 activation and the increased levels
of nuclear AIF by butyrate and doxorubicin combination
suggested the involvement of caspase-independent pathways in

the potentiation of apoptosis in myeloma cells (Figure 2). Further
investigation highlighted the importance of lysosomal cathepsin B
in mediating apoptosis (Figures 3 and 4; Ivanova et al, 2008).
Consistent with this, a cell permeable small-molecule inhibitor of
cathepsin B or its downregulation with a siRNA rescued RPMI
8226 cells from potentiated apoptosis, suggesting a role for
lysosomal cathepsin B in combination potentiated apoptosis
(Figure 4).

A substantial reduction in apoptosis by a pan-caspase, but not
caspase 3- and 7-specific inhibitor, suggests that potentiated
apoptosis by HDACi and doxorubicin is a result of the concerted
action of cathepsin B and caspases other than caspase 3 and 7
(Figure 2D and Supplementary Figure 3). Stresses acting on
lysosomes could induce apoptosis by increasing the activity of
cytoplasmic cathepsin B by various mechanisms, including
(a) releasing the sequestered enzyme from lysosomes; (b) down-
regulating its negative regulators such as cystatin A; or
(c) increasing the expression of its co-activators (Ivanova et al,
2008). It is unclear which of the above processes led to the
combination mediated increased activity of cathepsin B. Once
activated, cathepsin B could induce the cleavage of Bid, a
proapoptotic member of Bcl2 family (Bidere et al, 2003; Biswas
et al, 2005; Droga-Mazovec et al, 2008). Activated Bid could
depolarise mitochondria releasing either cytochrome c, resulting in
caspase-dependent apoptosis, or AIF and Endo G, leading to caspase-
independent apoptosis (Boya et al, 2003). Increased cathepsin B
activity in the cytoplasm also could lead to Bid-dependent or
-independent activation of Bax by degrading its adaptor proteins,
such as Ku70, Clusterin, Humanin and VDAC, that keep Bax in its
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Figure 3 Combinations of butyrate and doxorubicin significantly increased the activity of cytoplasmic cathepsin B. (A) Optimisation of cytoplasmic
cathepsin B extraction by permeabilisation of plasma membrane with digitonin. RPMI 8226 cells plasma membranes were permeabilised with increasing
concentrations of digitonin for 10 min in ice. Permeabilisation of plasma membranes was monitored by assessing LDH activity (left Y axis) and
permeabilisation of lysosomes was monitored by cathepsin B activity (right Y axis). Each point on the graph is mean±s.e.m. of two independent
experiments. (B) Effects of butyrate and doxorubicin combination on the activity of cytoplasmic cathepsin B in myeloma cells. RPMI 8226 cells were treated
with butyrate (SB, 600 mM), doxorubicin (Dox, 40 nM) or their combination. Cells were harvested at indicated time periods, permeabilised with 50 mg ml�1

digitonin, and the activity of cathepsin B was measured using enzyme assay kits (Biovision Inc.). Cathepsin B activity was normalised to LDH activity; *Po0.05,
**Po0.001 and ***Po0.0001. (C, D) Effects of butyrate and doxorubicin combination on the activity of calpain and cathepsin D in RPMI 8226 cells.
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Figure 4 Cathepsin B inhibitor attenuated butyrate- and doxorubicin-induced apoptosis in RPMI 8226 cells. (A) Cathepsin B inhibitor attenuated
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inactive conformation (Guo et al, 2003; Zhang et al, 2005; Mazumder
et al, 2007; Shoshan-Barmatz et al, 2008).

In summary, HDACi- and doxorubicin-potentiated apoptosis
of myeloma cell lines was partly resulted in from activation of
cathepsin B. Combination potentiated apoptosis and cathepsin B
activity correlated with nuclear translocation of AIF, a mito-
chondrial sequestered proapoptotic factor involved in caspase-
independent cleavage of DNA (Bidere et al, 2003). Enhanced
accessibility of DNA to doxorubicin through chromatin relaxation,
prolonged nuclear retention of doxorubicin and induction of
tumour suppressors have been implicated in HDACi-mediated
potentiation of apoptosis by anthracyclins (Catalano et al, 2006;
Pan et al, 2007; Hajji et al, 2008). However, results of the current
investigation support an apoptosis model involving lysosomal–
mitochondrial crosstalk induced by the combinations of an
epigenetic modulator and a DNA-damaging agent doxorubicin.
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