Sequence analysis of the EF-1 α gene family of Mucor racemosus

Paula Sundstrom, L.M.Lira, D.Choi, John E.Linz¹ and Paul S.Sypherd

Department of Microbiology and Molecular Genetics, University of California, Irvine, CA and ¹Department of Food Science and Human Nutrition, 234 B Food Science Building, Michigan State University, East Lansing, MI 48824, USA

Received August 18, 1987; Accepted September 9, 1987

ABSTRACT

Our previous studies have shown that Mucor racemosus possesses three genes (TEF-1, -2 and -3) for EF-1 α , and that all three genes are transcribed. However, the level of transcription varies markedly between the three genes, with TEF-1 mRNA levels being approximately two fold higher than TEF-3 and 6 fold higher than TEF-2. We have now completed the DNA sequence of both strands of all three genes and have found that these genes are highly homologous. TEF-2 and TEF-3 are more similar to each other than they are to TEF-1. The TEF-2 and the TEF-3 coding regions differ from TEF-1 at 30 and 37 positions respectively out of 1374 nucleotides. Twenty-six of these nucleotide substitutions were common to both TEF-2 and TEF-3, and the majority of the substitutions were clustered in the 5' region of the coding sequences. While the majority of these changes were silent, TEF-2 and TEF-3 differed from TEF-1 by having a lysine instead of a glutamate at amino acid position 41. In addition, TEF-2 and -3, but not TEF-1, each have an intron located near the 5' end of the coding region, although its size and sequence is not conserved between the two genes. All three genes have a conserved intron near the 3' end of the coding region. The sequence data have been analyzed with respect to the structure and function of EF-1 α in protein biosynthesis.

INTRODUCTION

<u>Mucor racemosus</u> is a fungus that displays at least three morphogenetic events; the germination of spores, the formation of spores, and the transitions between yeast or hyphal forms. A variety of biochemical and molecular changes accompany the morphogenetic events, including changes in the translational apparatus. Among the latter events are increased rates of peptide chain elongation (1,2), phosphorylation of ribosomal protein S-6 (3,4) and changes in the level of N-lysine methylation of the translational factor EF-1 α (5). EF-1 α activity increases six-fold during spore germination (6), paralleling an increase in the rate of peptide chain elongation (1,2). It has been hypothesized that this enhanced EF-1 α activity, is a result of a postranslational modification, as suggested by the fact that a concommitant increase in lysine methylation of EF-1 α also occurs during this period (5).

The finding of three genes designated TEF-1,-2 and -3 in <u>Mucor racemosus</u> (7) raised the possibility that isomers of EF-1 α exist in <u>Mucor</u>, and that differential expression of these

genes could also contribute in some way to the changes in protein synthesis and EF-1 α activity seen during morphogenesis. A partial sequence analysis of these genes revealed nonhomologous 5' and 3' flanking regions, for which we prepared gene-specific oligonucleotide probes (8). The presence of different mRNA levels for the three genes was detected by analyzing mRNA isolated from different growth phases with the gene-specific oligonucleotide probes (8). It was found that TEF-1 mRNA levels are highest in all growth phases while the level of TEF-3 mRNA appears to have a morphogenetic pattern of expression. In order to gain more information about the genes which could help explain their different expression levels, we have completely sequenced both strands of TEF-2 and -3. In comparison with the previously sequenced TEF-1 (9), we have found that the coding regions of all three genes are nearly identical, with only two amino acid differences between them. Interestingly, one of the amino acid changes results in the substitution of a glutamate in TEF-1 to a lysine in TEF-2 and TEF-3, which would influence the overall charge on the protein and might add an additional methylation site.

MATERIALS AND METHODS

<u>Organism</u>. DNA used for sequencing was originally derived from <u>M</u>. racemosus (Mucor lusitanicus) ATCC 1216B.

Bacterial Strain and Plasmids. E. coli strains JM109 (10) was the host strain for the bacteriophages M13mp18 and M13mp19, and the plasmids PUC18 and PUC19, which were used to sublone restriction fragments from the EF-1 α clones in pUC9 (9). Replicative form and single stranded DNA were purified using the procedures recommended by Bethesda Research Laboratories (11). Plasmid DNA for sequencing was prepared as previously described (12).

<u>DNA sequencing</u>. Overlapping clones for sequencing were prepared by the Exonuclease III deletion procedure of Henikoff (13). Nucleotide sequences were determined by the dideoxy chain termination procedure of Sanger and Coulson (14).

<u>RESULTS</u>

All three genes for EF-1 α in <u>Mucor</u> were found to code for nearly identical proteins of 458 amino acids, however, the genetic organization of the genes varied (Figure 1) in that TEF-2 and -3 had an additional intron identically located after codon 18.

As predicted from restriction enzyme analysis, the nucleotide sequences of the exons of the three EF-1 α genes were similar (Figure 2), with 37 nucleotide changes between TEF-1 and TEF-3 (97.4 % homology), 30 nucleotide changes between TEF-1 and TEF-2 (97.8 %) homology, and only 13 differences between TEF-2 and TEF-3 (99.5 % homology). Most of these differences were clustered near the 5' end of the genes (Figure 3), and resided in the third nucleotide position with little effect on the amino acid sequences. However, two amino acid changes were noted (Boxed residues in Figure 2). A lysine residue was found at amino acid position 41 In TEF-2 and -3, where TEF-1 had a glutamate. The only other amino acid

Figure 1. Genetic Organization of TEF 1, 2 and 3. Transcription of all three genes starts approximately 20 base pairs 5' of the translation initiation site (squiggly arrows). Introns are indicated by triangles. The numbers above the bars indicate the length in base pairs of the respective introns and exons. Vertical marks at the 3' ends of the genes indicate the approximate ends of the transcripts. Diagrams are not drawn to scale.

difference between the three genes was found at position 145 where TEF-3 had a valine residue while TEF-1 and -2 had phenylalanine.

The most striking difference between the genes was the presence of a second intron in TEF-2 and -3 which is not present in TEF-1 (9). Unlike the intron near the 3' end, which was present in all three genes and highly conserved, the 5' introns of TEF-2 and -3 were not homologous and differed in length, being only 58 nucleotides long in TEF -3 and 129 nucleotides in TEF-2. The donor splice sites of the 5' introns of TEF-2 and -3 differed from the conventional sequence (15) by 2 nucleotides (TCGTAAGT instead of AGGTAAGT) and differed from the donor site of the conserved 3' intron by 1 nucleotide. The acceptor site of all introns contained the consensus dinucleotide AG. The conserved introns near the 3' end of the genes were slightly less homologous than the coding regions of the genes. In this conserved intron there were 13 nucleotide changes between TEF-1 and -3 (93.5 % homology), 10 changes between TEF-1 and -2 (95 % homology), and 2 changes between TEF-2 and -3 (98.5 % homology). Compared to TEF-1, both TEF -2 and -3 contained a nine base pair insert located four positions prior to the 3' end of the conserved introns. In addition, the conserved 3' intron possessed a possible branch site, TATTAAC, in all three genes which differed by only one nucleotide from the branch consensus sequence, TACTAAC, which is essential for intron cleavage in <u>S. cerevisiae</u> (16) The 5' intron of TEF-2 was found to have an exact TACTAAC sequence while no consensus sequence for splicing could be found in the 5' intron of TEF-3.

The 5' flanking regions of both strands, as shown in Figure 4, were largely nonhomologous, as were the 3' flanking regions (8). No TATAA elements or CAAT boxes were found, however some conserved sequence elements were identified as seen in Figure 4. The 11 nucleotide direct repeat shown in the box was found in the flanking regions of TEF-1 and -3 only. Sequencing and analysis of the 3' flanking regions has been previously reported (8).

The frequency of codon usage in each of the three genes was calculated from their

Nucleic Acids Research

TEA TEA TEA	F 1 F 3 F 2	ATG	667	AAA G 1ys	GAG	AAG	ACT	CAC	GTT	AAC	30 GTT C C val	GTC	GTT C C val	ATT	GGT	CAC	GTC val	GAT	TCC	ста ста	NGT NGT	6777 AAAA	жс т 17 т	TITC	G AC	GAGA TGTC	GT G GA T	ATG SCT	TGATT GGCCT	с л: с т:	TTAAT TTGCA	CAT TCT	TATC TCTT	6777 CCTC	7 C.	атад Ладоса
TER TER	7 1 7 3 7 2	AGA	TGA	AAGA	70	GCTA	GT G	ACAT	c T	AGTT	10 5 CA	GTTC	GT	57 77	ACT	MC	CTG.	ATC	TTGT	c r	GCTC	ŦŦ	AG	GGT	60 AAG A A	тсс т т	ACC T T	ACC T T	ACT	GGT	CAC :	FTG	ATT	TAC	90 AAG	TGT
TEP	1	GGT	GGT	ATC	GAC	AAG	CGT	ACC	ATC	120 GAA G	GAG	ттс	GA G	AAG	GAA	GCT	GCT	GĄ	стс	150 GGT	-	661	T T C C	• TTC	20 AAG	TAC	GCC	TGG	GTT	180 CTT	GAC		стс	AAG	30 GCT	GAA
TEP	2	gly	 gly	T ile	т азр	lys	arg	thr	 i1e	G glu 40	.	phe	glu	 1ys	glu	C ala	 ala	glu	leu	gly 50	lys	gly	T ser	phe	 1ys	tyr	 ala	trp	C val	leu 60	т азр :	Lys	T leu	 1ys		glu
TER Ter Ter	7 1 3 7 2	сст 	GAG	сст 	GGT	ATC	ACC	ATC	GAT	ATT C	сст 	стс 	TGG	AAG	TTC	слс 	ACC	ccc	AAG	TAC	AAT c	6TC	ACT	GTC T T	ATT	GAT	GCT	сст с с	GGC T		ССТ (3AT	ттс 	ATC	300 AAG	
		arg	giu ATT	arg	70 70		thr	110	ap	330 GAT	107	100	ATT	198	80	giu ATT	GCT	pro	178	1 yr	GGT	GAA	TTC	GAA	90	GGT	ATC	TCC	d I Y	390 GAT	GGT		ACC	CGT	100	aan cac
TEF	3	 	 11e	thr	g1y	thr	ser	gln		 asp 110	cys	c	 11•	 1eu	T 	 i1e	 ala	g1y	 gly	thr 120	gly	glu	phe	 glu	ala	g1y	 i1e	 ser	 1ys	asp 130	g1y (, gln	thr	 arg	 glu	 his
TEP TEP	1	6ст 	стт 	с тт 	420 GCC	тт с	ACC	71G	GGG T	ТТС G	сст 	с лл	TTG	ATT	450 GTT	сст 	ATC	M C	AAG	ATG	GAT	ACC	ACC	A AG	480 TGG	тст	с лл	GAT	сст 	TAC	M C (5 AA	а тс	стс	510 AAG	GAA
TEP	2	ala	leu	leu	ala 140	phe	thr	leu	T gly		arg	gln	leu	i1e	val 150	ala	i1e	asn	1 ys	met	a *p	thr	thr	178	trp 160	ser	gln	asp	arg	tyr	asn (j lu	ile	val	1 ys 170	glu
TEF TEF TEF	1 3 2	GTT val	TCC	GGT gly	ттс phe	ATC	AAG	AAG	ATT	GGT	ттс phe	AAC	ccc pro	AAG	TCT	GTT	ccc	ттс phe	GTC val	ccc pro	ATC	TCT	GGC	тсс trp	CAC	GGT gly	GAT	AAC	ATG met	TTG	GAT (;AA 	тсс ser	ACC	AAC	ATG met
TEF	1	ccc	TGG	TTC	630 NAG	GGA	ŤGG	MC	AAG	180 GAG	ACC	MG	GCT	GGT	660 TCC	ANG	ACC	GGT	AAG	190 ACT	стс	ctc	GAA	GCC	690 ATC	GAT	GCT	ATT	GAG	200	CCT (stc	CGT	cec	720 TCC	GAC
TEF	2	pro	trp	phe	1ys 210	gly	trp	 4 5 N	1ys	glu	thr	1ys	a1a	g1y	90 T 220	1ys	thr	g1y	1 ys	tyr	leu	leu	glu	ala	ile 230	asp	ala	i1•	 glu	pro	pro v	/al	arg	т pro	30r 240	**p
TEF TEF TEF	1 3 2	AAG	сст 	стс 	CGT	стт 	ccc	стс 	с аа 	750 GAT	GTC	тас	AAG	ATT	GGT	GGT 	ATT	667 	аса 	780 GTT	ccc	GTT 	GGT 	сст 	GTT 	GAG 	ACT	GGT 	аст . 	10 ATC	AAG 0	CT (667 	ATG	GTT	GTC
		lys	pro	leu	arg 840	leu	pro	leu	gln	250	val	tyr	1y.	110	gly 870	gly	110	gly	thr	va1 260	pro	val	gly	arg	900	glu	thr	gly	thr	270	lys a	.1.8 .	gly :	met '	930	val
TEF TEF TEF	1 3 2	A.A.C.	phe	ala	pro 280	ala	ala	val	thr	thr	g lu	va1	 1ys	ser	val 290	glu	net	T his	hi:	glu	thr	 1eu	thr	 glu	gly 300	 1eu	pro	gly	a sp -		T . val g	19 1	phe	asn -	val 310	 1ys
TEF TEF	1 3	AAC	бтс 	тсс	GTC	AAG	GAT	ATC	CGT	960 CGT	GGT	AAC	стс 	TGT 	т сс	GAC	тсс 	ллс 	алс 	990 GAT	ccc	GCC T	AAG	GAA	тст 	GCC	тст	ттс 	ACC	20 CT	с лл с	атт <i>і</i>	ATT	ATC	TTG	AAC
TEF	2	asn	val	ser	v#1	1 ys	asp	110	arg	arg 320	gly	a \$n	val	су э	ser 080	asp	ser	175	asn	asp 330	pro	a la	1 ys	glu 1	ser	a 1 a	ser	phe	thr	1a 340	gln v	a 1 3	11e	11• : 1	1eu 140	A SN
TEF TEF TEF	1 3 2	CAC his	ccc	GGT gly	CAA gln	ATC ile	TCT ser	GCT ala	GGT gly	TAC tyr	GCA ala	CCA pro	GTT val	CTC 1eu	GAT	тст суз	CAC	ACT	GCT ala	CAC	ATC	GCC	тст суз	AAG	TTC	тст ser	GAA glu	стс 1•ч	ATT	10 10	AAG A	.TT (GAT	arg	CGT arg 380	TCC ser
tef Tef	1 3	G	GTA	AGT	ACC	TGCA	ict d	TCM	un ri	IG AA	66T0			стт	711	GTA1	асто	IGG :	TTG.	u TT	сл т.	гтал	TATG	с ст 	CAA1	- TTA	тт т	ATT	ГАС Т.		стоса	1 TCI	 G	ATGA		
TEF	2	TGA1		 	rtcau	ATTC1	τ. 				GATI	TAA		GGT1	 1 T.K				NTC CT				с ос.		GT			ATG	GAG (AT	AGC C	11 11 12 12 12 12	G 170 MAG 1		STC .	AAG
TEF	2		 GGT		тсс	GCT	ATC	200 GTC	AA G	ATG		ccc	 TCC				 1 TGT	230 GTC		GCT	TAC	ACT	GAC	тат	д1у сст	lys cct	1уз 1	met 260 GGT	glu d CGT 1	ар тс	тст . вег р ост с	ro 1 TC (Lys 390	phe v GAT J	val	lys CGT
TEF TEF	3 2	 ser	gly	 asp	ser	 ala	 i1e	val 400	gly	met	 val	pro	 ser	lys	pro	met	 суз	val 410	g1u	 ala	tyr	 thr	asp	 tyr	 pro	pro	leu	gly 420	arg ş	 he	ala V	•1 •	rg	asp s	net i	arg
TEF TEF TEF	1 3 2	сал 	290 ACC	стс 	сст 	стс 	GGT 	стс 	атс 	MAG	GCC	атс 	320 GAG	NNG	GTT 	GAC	AAG	GCT	GGT		GTC 	ACC	350 AAG	GCC	GCT	GCC .	AAG	ст 	тсс /	AG .						
		gln	thr 430	val	ala	val	gly	val	ile	lys	ala	val	glu 440	178	val	asp	178	ala	gly	178	val	thr	1ys 450	ala	a la	ála	172	ala	ser]	y:	1 ys					

Figure 2. DNA sequence of exons and introns of TEF-1, -2, and -3. Dots are placed in positions where TEF-2 or -3 have the same nucleotide as TEF-1. Boxes indicate amino acid differences. At amino acid position 41, TEF-2 and -3 have a lysine where TEF-1 has a glutamate. At position 145, TEF-3 has a valine where TEF-1 and -2 have phenylalanine. Introns are in italics and are not included in numbering. TEF-1 has only one intron.

10000

Figure 3. Nucleotide differences between exons of TEF-1, -2 and -3. The vertical lines represent nucleotide substitutions between the indicated genes. Each horizontal line represents a distance of 1374 base pairs.

DNA sequence data with the result seen in Table I. TEF-2 and TEF-3 showed the same codon bias seen with TEF-1 (9).

DISCUSSION

In previous work (8), we reported that there were differences in the levels of mRNA transcribed from the three genes for EF-1 α in <u>Mucor</u>. Therefore, it was not surprising that comparison of the three sequences revealed several features of the genes which could be responsible for these differences. These included differences in 5' and 3' regions, as well as intron characteristics. There appear to be only two common features in the 5' regions. First,

TEF 1

TEF 3

G<u>GATCCATCCAT</u>GCCACAAATCAGCATAAATGCTATC<u>CATCCAT</u>CA<u>AACAT</u>ACTTACATGT<u>ATCAT</u>CTTTCATTATAG TCGCA.....

TEF 2

Figure 4. 5' Flanking Regions of TEF 1. 2, and 3. Underlined nucleotides indicate positions of AACAT or ATCAT conserved sequences in the regions predicted for transcription initiation by S1 analysis. Boxed sequences indicate repeated sequences present in TEF 1 and TEF 3.

100	e I. Co	mpar	ISON	of free	luency	of codor	i usag	ge 10	r me :	$\mathbf{P} = \mathbf{P} - \mathbf{I} \mathbf{C}$	genes i	ILLOUL T	viuco	<u>n</u>
		TEF1	TEF2	TEF3			TEF1	TEF2	TEF3			TEF1	TEF2	TEF3
Ala	GCT	27	28	27	Gly	GGT	37	38	39	Pro	CCT	5	5	5
	GCC	9	8	9		GGC	2	2	1		CCC	16	16	16
	GCA	1	1	1		GGA	1	1	1		CCA	1	1	1
	GCG	0	0	0		GGG	1	0	0		CCG	0	0	0
							•	•				•		10
Arg	CGT	17	- 17	17	His	CAL	1	2	1	Ser	TCT	9	12	12
	CGC	0	0	0		CAC	10	9	10		TCC	16	14	14
	CGA	0	0	0							TCA	0	0	0
	CGG	0	0	0	lle	ATT	15	16	16		TCG	0	0	0
	AGA	0	0	0		ATC	19	18	18		AGT	0	0	0
	AGG	0	0	0		ATA	0	0	0		AGC	1	0	0
										_				
Asn	AAT	1	0	0	Leu	TTA	0	0	0	Thr	ACT	12	14	13
	AAC	15	16	16		TTG	5	5	5		ACC	18	16	17
						CTT	6	7	7		ACA	1	1	1
Asp	GAT	19	21	21		CTC	11	10	10		ACG	0	0	0
1 -	GAC	7	5	5		CTA	0	0	0					
						CTG	0	0	0	Trp	TGG	6	6	6
Cys	TGT	6	6	6										
	TGC	0	0	0	Lys	AAA	3	3	3	Tyr	TAT	1	1	1
					-	AAG	46	-47	47		TAC	7	7	7
Gln	CAA	8	8	8										
	CAG	0	0	0	Met	ATG	11	11	11	Val	GTT	15	14	14
		-	-	-							GTC	26	27	28
Glu	GAA	17	16	16	Phe	TTT	1	1	1		GTA	Ō	Ó	Ó
	GAG	12	12	12		TTC	16	16	15		GTG	0	0	0

Table 1.	Comparison	of frequency	of codon usage	for the 3 EF-1 α	genes from Mucor

in the region where the initiation of transcription is predicted to start by S1 analysis (7,8), there is a pentanucleotide sequence AACAT (TEF-1 and -2) and ATCAT in TEF-3 which occurs 25, 23 and 22 nucleotides upstream from the initial ATG codon, in TEF-1, -2 and -3 respectively. In addition AACAT is also present in TEF-3, 37 nucleotides prior to the initial ATG codon. It would be interesting if this pentanucleotide sequence coincided with transcript initiation, since transcription initiation sites are not conserved in general. In E. coli, transcription initiation usually starts with a purine and is often the central nucleotide in the sequence CAT (17). The second notable feature in the 5' region of the Mucor genes is common only to TEF-1 and TEF-3, the genes which have the highest message levels. This is a 12 nucleotide direct repeat CATCCATCCA, present in two copies in each gene, but spaced differently. The two repeats are separated by 25 nucleotides in TEF-3, but are adjacent in TEF-1. This element could be involved in the level of transcription of these genes, based on analogy to Saccharomyces. The EF-10 genes of Saccharomyces have been shown to have RPG sequences, activating sequences for many ribosomal protein genes in Saccharomyces (18,19,20) as well as in <u>Schizosaccharomyes pombe</u> (21), located 200-400 nucleotides upstream of the translation start site. It has been shown that the level of transcription of genes with these sequences is proportional to the number of activating sequences, as well as the to the lack of deviation from an optimal sequence (22). Thus the CATCCATCCA pattern in Mucor could play a similar role. In addition, the Mucor sequence is similar to the RPG sequence ACCCATACATCA (20). The observation that TEF-2, which generates the lowest message levels, does not have the 12 nucleotide direct repeat, at least in the 463 nucleotides

which were sequenced 5' of the ATG codon, is consistent with an activating role for this sequence. In addition, at least one protein has been shown to bind to the RPG sequences in <u>Saccharomyces</u> (22,23). In contrast to other eucaryotic activating sequences which are located hundreds of base pairs upstream of the transcriptional initiation site, the CATCCATCCA sequence of <u>Mucor</u> is much closer, being only a few nucleotides upstream from transcription initiation. This feature, along with the conserved pentanucleotide in the vicinity of transcription initiation, is more analogous to transcription initiation in <u>E. coli</u> than in other eucaryotes. Sequencing other coordinately regulated genes such as ribosomal protein genes of <u>Mucor</u>, would determine if this is an important activating element, and would serve to identify precisely the optimal activating sequence. In addition, identifying proteins which bind to these approaches are currently in progress. More precise localization of important regions in regulating transcription by deletion and fusion to marker genes in vivo is needed.

In addition to transcriptional efficiency, other features of the three EF-1 α genes which could influence message levels are differences in intron splicing, or message degradation, or differences in secondary structure of the mRNA.

Analysis of the complete sequences of the three EF-1 α genes from Mucor predicted that each gene is potentially able to code for a functional protein. The nucleotide sequence revealed only 2 changes in amino acid sequence for the three proteins, and all proteins possessed conserved domains characteristic of GTP binding regions of many proteins such as those of ras proteins and G proteins (24,25). Both amino acid changes occurred in the N terminal GDP-binding domain and potentially altered protein function. For example, if all genes were translated, the substitution of a lysine in TEF-2 and -3 for a glutamate in TEF-1 at position 41 could provide an additional methylation site for the protein, which might make the TEF-2 or TEF-3 gene products more active than the TEF-1 gene product, under conditions where methylation occurs. Although it has been shown that EF-1 α and EF-Tu have regions of homology (9), amino acid 41 of the Mucor sequence lies in a stretch of 15 amino acids which is not present in EF-Tu, but is in the vicinity of α helix A of EF-Tu (26). Analysis of the Mucor sequence by Chou Fasman (27) parameters showed that the region around position 41 is highly compatible with an α helix as well, with either a glutamate or a lysine residue in that position. The additional 15 amino acids present in EF-1a could result in an additional α helix separated from the analogous EF-Tu A helix by a β bend at the glycine residues 32 and 33 (predicted by Chou Fasman analysis). Based on analogy with EF-Tu, these residues are positioned between a region interacting with the aminoacyl group of tRNA (personal communication with F. Jurnak), and α helix A which contributes to the GDP binding region. Thus, methylation of lysine 41 in the TEF 2 and 3 gene products could alter the function of the protein either through its interaction with GDP or tRNA.

The only other amino acid change found among the three proteins was a valine (TEF -2 and -3) substitution for a pheylalanine (TEF-1) at position 145. This position is in a region

homologous to EF-Tu. The crystallized GDP domain of EF-Tu reveals that this position lies in a random coil between α helix C and beta sheet region 5 (26) and is close to a hinge region of the first and second domains of EF-Tu (personal communication with F. Jurnak). Thus, differences in this position could influence intramolecular conformational changes. In addition, since both <u>Artemia</u> and <u>Saccharomyces</u> EF-th have lysine at position 41 and valine at position 145, it is unlikely that any of the genes would produce nonfunctional proteins.

The codon usage of the three genes for EF-1 α in <u>Mucor</u> was quite similar which reflects the close relatedness of the three genes. In addition, the codon usage was highly biased in that 92 % of the codons used represented only 25 out of the 61 possible triplets. A similar degree of codon bias, but for different codons, is found in <u>Saccharomyces</u> for genes which are highly expressed (28). This has been found to reflect the predominant isoacceptor tRNAs present. Since EF-1 α is a highly expressed gene, the codon usage seen could reflect the prevalent tRNAs in <u>Mucor</u>.

The new sequence data presented in this paper agree with the previously suggested hyposthesis that the origin of the EF-1 α genes of <u>Mucor</u> could have arisen as duplications of a common predecessor gene with two introns (8). Several features of the sequences suggested that TEF-2 and -3 are more related to each other than either of them is to TEF-1. First there were fewer differences in the exons between TEF-2 and -3 than between either of these genes and TEF-1. Also TEF -2 and -3 possessed an additional intron at the same location which was not present in TEF-1. Both TEF -2 and TEF -3 had an identical nine base pair insert close to the 3' end of the conserved intron, as well as a silent codon change (TCT in TEF 2 and 3 insead of AGC in TEF 1) for serine at amino acid position 388. The non-homology of the 5' introns in TEF 2 and 3 compared to the highly conserved 3' introns is difficult to explain. The 3' introns appear to be slightly more divergent among the three genes than is the coding sequence consistent with the idea that all genes came from a common predecessor. Perhaps the 5' introns are vestigial remnants of a precursor fragment, which was differentially deleted subsequent to the divergence of the 2 genes. The presence of repeated sequences (GTAAGT) at the ends of this intron supports this hypothesis.

The reasons for the presence of multiple genes for EF-1 α are unknown. It is unlikely that the advantage of multiple genes could be a simple quantitative effect, since <u>Saccharomyces</u> can grow normally with either of its EF-1 α genes deleted (29). In addition, overproduction of EF-1 α in <u>Saccharomyces</u> may be deleterious. When the copy number of TEF genes is increased from 1 to 3 per cell, increased misreading occurs, as shown by the enhancement of suppression of nonsense mutations, and additional suppression in the presence of paromomycin (personal communications with Susan Liebman and Jae Mahn Song). In <u>Mucor</u> however, it is possible that subtle differences in the protein, such as an additional methylation site, could provide a more active product during growth phases where more rapid protein synthesis is advantageous.

ACKNOWLEDGEMENTS

We wish to recognize Dr. William Fonzi for his many useful discussions during the course of this investigation. This research was supported by grants from the national institute of Allergy and Infectious Disease (AI 16252) and the National Institute of General Medical Science (GM23999). P. Sundstrom was supported by a fellowship from the Biotechnology Research and Education Program of the University of California. This is publication number 136 from the California Colleges and Universities Mycology Research Unit.

REFERENCES

- 1. Orlowski, M., and Sypherd, P.S. (1978) J. Bacteriol. 134, 76-83.
- 2. Orlowski, Ml and Sypherd, P.S (1978) Biochemistry, 17, 569-575.
- 3. Larsen, A. and Sypherd, P.S. (1979) Mol. Gen. Genet. 175, 99-109.
- 4. Larsen, A. and Sypherd, P.S. (1980) J. Bacteriol. 141, 20-25.
- 5. Hiatt, W.R., Garcia, R., Merric, W.C., and Sypherd, P.S., (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 3433-3437.
- Fonzi, W.A., Katayama, C., Leathers, T., and Sypherd, P.S. (1985) Mol. Cell. Biol. 5, 1100-1103.
- 7. Linz, J.E., Katayama, C., and Sypherd, P.S. (1986) Mol. and Cell. Biol. 6, 593-600.
- 8. Linz, J.E., and Sypherd, P.S., (1987) Mol. Cell. Biol. 7, 1925-1932.
- 9. Linz, J.E., Lira, L.M. and Sypherd, P.S. (1986) J. Biol. Chem. 261, 15022-15029.
- 10. Yanisch-Perron, C. Vieira, J. and Messing, J. (1985) Gene 33, 103-119.
- 11. Bethesda Research Laboratories, Inc. (1985) Instruction Manual. Bethesda Research Laboratories Inc. Bethesda, MD.
- 12. Chen, E.Y., and Seeburg, P.H. (1985) DNA 4, 165-170.
- 13. Henikoff, S. (1984) Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28, 351-359.
- 14. Sanger, F. and Coulson, A.R. (1975) J. Mol. Biol. 94, 441-448.
- 15. Lewin, B. (1987) Genes pp 473-474. John Wiley and Sons, New York.
- 16. Lewin, B. (1987) Genes pp 476-477. John Wiley and Sons, New York.
- 17. Lewin, B. (1987) Genes p 194. John Wiley and Sons, New York.
- 18. Nagashima, K., Masataka, K., Nagata, S., and Kaziro, Y., (1986) Gene 45, 265-273.
- Teem, H.L., Abovich, N., Kaufer, N.F., Schwindinger, W.F., Warner, J.R., Levy, A., Wollford, J., Leer, R.J., van Raamsdonk-Duin, J.M.C., Mager, W.H., Planta, R.J., Schultz, L., Friesen, J.D., Fried, H., and Rosbash, M., (1984) Nuc. Acids Res. 12, 8295-8307.
- 20. Leer, R.J., Van Raamsdonk-Duin, M.C., Mager, W.H., and Planta, R.J. (1985) Current Genetics 9, 273-277.
- 21. Nischt, R., Gross, T., Gatermann, K., Swida, U., and Kaufer, N.F. (1987) 15, 1477-1492.
- 22. Huet, J. and Sentenac, A. (1987). Proc. Natl. Acad. Sci. 84, 36648-3652.
- 23. Huet, J., Cottrelle, P., Cool, M., Vignais, M.-L., Thiele, D., Marck, C., Buhler, J.M., Sentenac, A. and Romageot, P. (1985) EMBO Journal 4, 3539-3547.

- 24. Dever, T.E., Glynias, M.J., and Merrick, W.C. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1814-1818.
- Kohno, K., Uchida, T., Ohkubo, H., Nakanish, S., Hakanishi, T., Fukui, T., Ohtsuka, E., Ikehara, M., and Okada, Y. Proc. Natl. Acad. Sci. U.S.A. 83, 4978-4982.
- 26. Jurnak, F. (1985) Science. 230, 32-36.
- 27. Chou, P.Y. and Fasman, G.D. (1978) Annu. Rev. Biochem. 47, 251-271.
- Bennetzen, J.L., and Hall, B.D., (1982) Codon selection in yeast. J. Biol. Chem. 257, 3026-3031.
- 29. Cotrelle, P., Thiele, D., Price, V., Memet, Sl., Micoun, J., Marck, C., Buhler, J., Sentnac, A., and Fromageot, P., (1985) J. Biol. Chem 260, 3090-3096.