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Abstract

Controlled clinical trials are widely considered to be the vehicle to treatment discovery in cancer that leads to significant
improvements in health outcomes including an increase in life expectancy. We have previously shown that the pattern of
therapeutic discovery in randomized controlled trials (RCTs) can be described by a power law distribution. However, the
mechanism generating this pattern is unknown. Here, we propose an explanation in terms of the social relations between
researchers in RCTs. We use social network analysis to study the impact of interactions between RCTs on treatment success.
Our dataset consists of 280 phase III RCTs conducted by the NCI from 1955 to 2006. The RCT networks are formed through
trial interactions formed i) at random, ii) based on common characteristics, or iii) based on treatment success. We analyze
treatment success in terms of survival hazard ratio as a function of the network structures. Our results show that the
discovery process displays power law if there are preferential interactions between trials that may stem from researchers’
tendency to interact selectively with established and successful peers. Furthermore, the RCT networks are ‘‘small worlds’’:
trials are connected through a small number of ties, yet there is much clustering among subsets of trials. We also find that
treatment success (improved survival) is proportional to the network centrality measures of closeness and betweenness.
Negative correlation exists between survival and the extent to which trials operate within a limited scope of information.
Finally, the trials testing curative treatments in solid tumors showed the highest centrality and the most influential group
was the ECOG. We conclude that the chances of discovering life-saving treatments are directly related to the richness of
social interactions between researchers inherent in a preferential interaction model.
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Introduction

Randomized controlled clinical trials (RCT) are widely

considered one of the most important vehicles of discovery of

new treatments. RCTs have been credited with considerable

improvement in health outcomes resulting in a significant increase

in life expectancy for conditions such as cancer, which is the topic

of this paper [1–7].

We have previously shown that the success of new treatments in

cancer does not fit the random normal distribution curve [8]. We

found that new treatments were, on average, slightly superior to

standard treatments, bringing about small or moderate advances,

with occasional discovery of breakthrough interventions; a pattern

of therapeutic discovery that fits a power law distribution (figure 1)

[8]. In general, power law distributions describe many natural and

man-made phenomena such as the population of cities, the word

frequency in a manuscript, the citations of a scientific paper, etc.

[9,10]. The significance of the power law finding in therapeutic

discovery arises from the scale free property of the distribution,

which implies that, regardless of the number of controlled trials

performed, the discovery of new treatments is described by the

same power law.

While the power law appears to provide a credible mathematical

description of the overall pattern of treatment success, it is not clear

what exact mechanism can explain how power law actually works.

We have previously argued that trials operate on the borderline of

success and failure due to the principle of equipoise [11],which

implies that discovery remains possible only if RCTs are performed

when there is substantial uncertainty with respect to the relative

merits of interventions to be tested. However, if that were the only

explanation, the distribution of treatment successes would be random

i.e. the pattern of therapeutic discovery would fit the normal

distribution, which we found it was not the case. In reality, it could be

expected that based on the tremendous amount of effort and money

spent on discovery of new treatments, the number of successful RCTs

would be significantly greater than the number of unsuccessful ones,

resulting in a skewed distribution. The equipoise hypothesis does not

provide explanation for the fact that new treatments are slightly more

superior to the old ones, as it does not take into account researchers’

efforts to develop new more successful treatments [8]. In this paper,

we argue that the mechanism responsible for the observed pattern in

therapeutic discovery is the social interactions between the

researchers who conduct clinical trials (but who do have to work

under the ethical requirement of equipoise).
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The process of discovery that characterizes scientific progress is

inherently a social enterprise. The pursuit of future discoveries

depends upon understanding of the existing and ongoing research

[12–14]. This characteristic of the scientific discovery process has

been most memorably captured in the metaphor expressed by

Isaac Newton: ‘‘If I have seen a little further it is by standing on the

shoulders of Giants’’ [15]. Therefore, the process of scientific

discovery depends on the interactions between past and current

researchers, as well as institutions and the wider scientific

community that sanctions the results of a given research endeavor

and ultimately ensures that it is accepted [12–14]. The same

process of social interactions applies to clinical trials, particularly

well-designed RCTs.

A trial design is largely attributed to knowledge and information

acquired in earlier trials. Investigators tend to interact with

colleagues in their immediate environment [16] and/or make use

of scientific journals and meetings [17,18] to share knowledge as

well as trial successes and failures among the members of scientific

community. However, if testing of new (therapeutic) ideas is to

occur, the researchers’ personal representations must be further

formalized. For example, in the U.S., most RCTs that are not

conducted by industry are performed under the auspices of the

National Cancer Institute (NCI) that support the co-operative trial

infrastructure. All proposals aimed at testing new promising

treatments are vetted and ultimately funded through the

framework of the NCI co-operative groups (COGs).

We postulate that the social interactions between members of

the NCI COGs drive the development of therapeutic discovery for

malignant diseases. If this is the case, then the analysis of explicit

interactions between RCTs ought to shed some additional light on

the treatment discovery process in cancer, in particular, explain

the power law pattern of treatment success. Studying the RCTs in

such a way is expected to help understand the process of treatment

discovery within the entire RCT system that ultimately may help

improve health outcomes.

Methods

Dataset
We used a data set reported in detail elsewhere [8]. This data set

involves 216,451 patients and consists of 624 phase III RCTs

sponsored by the NCI COGs conducted and published from 1955

to 2006 [8]. We limit our analysis to 280 out of the 624 trials that

considered survival as their primary outcome. In these trials

researchers explicitly set out to improve survival by testing new

therapeutic agents. These trials used superiority design aiming to

address the question if one treatment is superior to another. There

were no non-inferiority trials in which success would have been

deemed as one treatment being equal or non-inferior to another.

Treatment discovery
In general, treatment success in cancer can be measured by [8]: (1)

assessing the proportion of statistically significant trials favoring new

or standard treatments, (2) determining the proportion of trials in

which new treatments are considered superior to standard treatments

based on investigators’ overall judgments, and (3) quantitatively

synthesizing data for main clinical outcomes (overall and event-free

survival). Each of these measures has its advantages and disadvan-

tages, but, at least, in life-threatening diseases such as cancer, assessing

survival seems to be the key determinant of true success rate. Hence,

we consider that the best metric of research efforts to discover new,

effective treatments is improvement in patients’ outcomes. In this

work, we choose the survival hazard ratio (HR), as reported in each

RCT, as the crucial metric of treatment success. That is, successful

trials are considered as those with a statistically significant survival

hazard ratio with value greater than 1 (at p value #0.05).

Social Networks
As per our hypothesis, there exists a relationship between RCT

interactions and the treatment discovery process. If that is the case,

then trials with extensive interactions are expected to be associated

with improvements in survival. We used social network analysis to

study the effects of these socials interactions on treatment success.

An RCT network is represented as a set of nodes, each node

denoting a trial, and a set of ties, each tie denoting an interaction

between trials. Since it is impossible to determine precisely how

RCTs communicate, we assume that RCT interactions could be

formed in three ways: (1) based on shared characteristics between

trials, (2) based on the treatment success of trials, and (3) at

random. We then analyze how treatment success is related to its

connections in each type of network.

Model 1: RCT interactions based on shared

characteristics. The first model postulates that RCT

interactions are confined between trials in related fields. Therefore,

interactions between trials occur (a) at the level of each COG (which

ultimately proposes the trial to be carried out among the member

institutions) (figure 2a), (b) type of disease, since the treatment

discovery is typically a disease-oriented process (i.e. breast cancer,

gastrointestinal cancer, gynecologic cancer, etc.) (figure 2b), and (c)

type of treatment, which defines the category of therapeutic agents

(i.e. adjuvant, curative/definitive, induction, etc.) (figure 2c).

Ultimately, there are many levels of trial interactions such as the

investigator’s institution, the study section, the funding source, etc.

However, all these types of interactions eventually filter to interactions

at the level of COG, type of disease and treatment, which we believe

represent the most salient aspects of the RCT system.

The combination of all possible interactions generates 7

different networks, referred to as shared characteristics networks

in the rest of the manuscript. In our analysis we have omitted the 3

networks created using interactions at the level of single

characteristics since these networks are comprised by isolated

groups of trials corresponding to each cooperative group, type of

disease, or treatment.

Model 2: RCT interactions based on the previous

treatment success. The second model theorizes that RCTs

interact selectively across the RCT spectrum, specifically, that

interactions between the most successful trials are favored (‘‘success

Figure 1. Distribution of treatment success in oncology.
Distribution of treatment success in oncology expressed as survival
hazard ratio (HR), where higher HR indicates more successful
treatments. The curve illustrates slightly increased number of successful
treatment consisted with a power law function.
doi:10.1371/journal.pone.0018060.g001

Social Interactions in Controlled Trials
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breeds success’’). Our hypothesis stems from researchers’ tendency

to interact mostly with established and well known peers. A model

for network formation based on such interactions is the preferential

attachment model [19,20]. According to this model, nodes are

connected at random with a bias towards the most connected nodes.

In our setting, we argue that the most connected nodes are

represented by the most successful trials, particularly those with

HR.1 and p value,0.05. Therefore, we construct the RCT network

assuming that the probability of an RCT receiving a tie is

proportional to the success of the RCT as measured in terms of

survival hazard ratio (HR), and the statistical significance of the

reported results as indicated by the p value. We call this network the

preferential attachment network in the rest of the manuscript.

The preferential attachment RCT network is formed iteratively,

starting with a small number of RCTs. At each iteration, a new

RCT is added to the network and a predetermined number of

interactions with existing trials are imposed. The probability that

an existing trial, i, receives a tie depends on its success during the

previous testing in RCTs and is expressed in terms of survival

hazard ratio (HR) and statistical significance:

Pi~
HRi(1{pvaluei)Pn

j~1 HRj(1{pvaluej)
ð1Þ

where the summation is over all the nodes in the network at the

current iteration, n.
Model 3: Random RCT interactions. The third and final

model, assumes that trials interact at random. We construct five

sets of Erdos-Renyi [21] random networks each of which is

composed of 280 nodes representing each of the trials. The

average number of ties in each set matches the average number of

ties in the first 5 networks (4 constructed on the basis of shared

characteristics and 1 on the basis of preferential attachment). The

random networks are then compared with the shared

characteristics and the preferential attachment networks.

Network topology
To identify the topology of the RCT networks in order to

compare the different structures, we computed the three most

important measures of connectivity for each network: the average

Figure 2. Network configurations of social interactions of RCTs in cancer*. Each node in the network represents a trial cited as the triplet
denoting the COG it belongs to, the type of disease and treatment it studies. The networks have been constructed considering relationships between
COG (a), type of disease (b), type of treatment (c), and the conjunction of all possible interactions (d). *For illustration reasons, only a limited number
of RCTs is shown.
doi:10.1371/journal.pone.0018060.g002
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shortest path distance between all reachable nodes in a network,

the global clustering coefficient, and the degree distribution. The

shortest path distance shows how accessible the network is; small

values are desirable for a tightly connected network. The global

clustering coefficient measures the overall tendency of nodes to

form clusters in which the connections of one node are themselves

connected to each other forming distinct groups. The degree

distribution is the distribution of the nodes’ connections in the

Table 1. Network topology characteristics for undirected networks.

Network
Average shortest
path distance

Global Clustering
coefficient Number of nodes Average number of ties

Group and Disease 1.80 ; 1.74* 0.68 ; 0.25* 279 71

Group and Treatment 1.57 ; 1.56* 0.73 ; 0.43* 279 120

Disease and Treatment 1.67 ; 1.61* 0.77 ; 0.38* 279 106

Group, Disease and Treatment 1.52 ; 1.52* 0.69 ; 0.47* 279 133

Preferential attachment 1.88 ; 1.87* 0.24 ; 0.13* 279 36

The asterisk corresponds to measures of random networks with the same number of nodes and ties.
doi:10.1371/journal.pone.0018060.t001

Figure 3. Connectivity distributions for different network configurations. The connectivity distribution for the shared characteristics
network of group, treatment and disease (a) is described by a single scale distribution. The connectivity distribution for the preferential attachment

network (c) is described by a power law distribution (The power law is of the form
a{1

xmin

x

xmin

� �{a

, with a = 2.83, xmin = 27, and p

value = 0.138). For brevity, we do not include the shared characteristics networks generated by the: group, treatment; group, disease; disease,
treatment.
doi:10.1371/journal.pone.0018060.g003
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network. The pattern of the degree distribution is very important

in network analysis since it shows the number of interactions each

node (RCT) has. A glossary defining each of these terms is

provided at the end of the manuscript.

Node analyses
Not all the nodes in a network are of the same importance.

Based on their position in the network, some nodes can interact

more easily with other nodes, or are on many short paths

between other pairs of nodes. These two properties are captured

by the centrality measures of closeness and betweenness.

Closeness measures the average distance a node has to all others

in the network – shorter values mean greater ease of interaction

with all others. Betweenness measures how important a node is in

connecting other nodes [22] . Other centrality measures of

importance are authority and hub [23]. Authority is a centrality

measure that shows how influential a node is in the network

while, a node is considered a hub if it is connected with many

authorities. By computing centrality measures in the RCT

networks we can identify the most central nodes and analyze

their characteristics. A final node level measure is the local

clustering coefficient. It measures the extent to which a node’s

connections are themselves connected to one another. High

values mean the node is a member of a tightly knit cluster of

nodes; low values, the opposite.

Results

Network topology
To identify the topology of the RCT networks we computed the

average shortest path distance, the global clustering coefficient,

and degree distribution for each network. We then compared

these values to the corresponding values of a random network with

the same number of nodes, and average number of ties.

Table 1 summarizes the values of global clustering coefficient

and average shortest path distance for the networks studied and

their corresponding random networks. The networks have been

treated as undirected but within the constraint of time flow (i.e.,

only trials performed later in time could connect to trials

conducted earlier in time). The preferential attachment network

Figure 4. Average HR as a function of node connectivity for trials reporting survival outcomes. The plots (a, b, and d) show that there is
no direct relationship between treatment success and connectivity. However, for the preferential attachment network (c), there is an increasing trend
relationship between treatment success {as measured by survival HR (hazard ratio)} and connectivity arguing that better connected researchers may
discover more life-saving treatments! For brevity, we do not include the networks generated by the shared characteristics: group, treatment; group,
disease; disease, treatment.
doi:10.1371/journal.pone.0018060.g004
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as well as the shared characteristics networks resulted in small

average path distances, comparable to the distances in the

corresponding random graphs but, global clustering coefficients

much higher than their corresponding random networks (Table 1).

Such a pattern of connectivity corresponds to small world networks

[24]. Characteristics of small world networks are: (a) small average

shortest path distances, (b) large global clustering coefficients (larger

than the corresponding random network), and (c) connectivity

distributions described by either a scale free, broad scale or single

scale distribution [25,26]. The shared characteristics networks are

small world networks with single scale connectivity distributions

(figure 3a), while the preferential attachment network is a small world

network with a power law (scale free) distribution of the form
a{1

xmin

x

xmin

� �{a

(figure 3c). Since there is an uncertainty associated

with the formation of the preferential attachment network we run 250

simulations out of which 225 have power law connectivity distribution

with (a(mean = 2.8, variance = 0.18), xmin (mean = 26, variance = 4.5) and p

value.0.1 based on the algorithm presented in [10], which indicates

that when p value.0.1, the power law is a plausible hypothesis for the

data). The remaining 25 networks had p value,0.1.

Thus, the process of discovery of new therapeutics in cancer

under the NCI umbrella, represented either as a shared

characteristic network or a preferential attachment network, fits

a pattern of connection that can be described as a small world

network in which each trial is connected to any other trial in the

network through just a few ties. This finding is probably not

surprising since previous work showed that the structure of

scientific collaboration networks often takes the form of small

world networks [27], but it has never been studied in the setting of

clinical research.

Treatment discovery
We hypothesized that a positive relationship exists between the

extent of a trial’s interactions and treatment success. That is, the

trials with many interactions will have greater treatment success

than trials with few interactions. To test this hypothesis, we plotted

the average value of survival hazard ratio for nodes as a function of

their connectivity (degree). Figure 4a depicts the results for the

shared characteristics network, while figure 4c shows the results for

the preferential attachment network. Figures 4b,d illustrate the

results for the corresponding random networks. Both figures 4a

and 4c suggest that it is impossible to predict a particular trial’s

success based on its connectivity (degree). Furthermore, if RCT

interactions are actually formed based on shared characteristics,

then, despite the small world connectivity, the relationship

between treatment success and RCT interactions is random with

overall success rate slightly above 50% [8,11]. Thus, trial success

confined within the interactions at the level of the group,

treatment, or disease is only slightly associated with the extent of

connectivity. However, when trial success (HR) is plotted for the

preferential attachment model (figure 4c), a different pattern

emerges: the greater the extent of connectivity, the bigger is

treatment success (HR) i.e. the higher are the chances that

researchers discover new life-saving treatments! While this is a very

intriguing result which can best explain the skewed distribution

Figure 5. Average HR as a function of centrality measures for the shared characteristics network: group, disease, treatment. There is
no identifiable pattern between survival HR and the various centrality measures.
doi:10.1371/journal.pone.0018060.g005
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seen in figure 1, it could be argued that it is only reflection of the

restrictions imposed on our model.

To address the latter issue, we assess the relationships between

treatment success and other centrality measures- the results that

we believe could not be obviously predicted from the preferential

attachment model. We, therefore, express treatment success as a

function of closeness, betweenness, and local clustering coefficient.

As expected, there is no identifiable pattern in the case of shared

characteristics networks (figure 5). For the preferential attachment

network, however, there is an increasing trend between treatment

success and the measures of betweenness and closeness and a

decreasing trend between treatment success and local clustering

coefficient (figure 6). One interpretation of this finding is that those

trials (researchers) with easy access to information (those with high

betweenness and closeness) are more successful than others, while

those researchers who tend to interact within a closed group (as so

have high local clustering coefficients) are less exposed to good

ideas/information and so are less successful [28].

Node analyses
To identify characteristics of individual nodes in the network,

we used the centrality measures described in the Methods section.

Table 2 summarizes the characteristics for the nodes (trials) that

present the highest centrality measures as well as the average

survival HR values. We are interested in identifying the

characteristics that make trial(s) distinctive.

It is interesting to note that, regardless of the approach used to

form the RCT networks, the nodes with the highest centrality

measures were the ones that studied curative/definitive treat-

ments (Table 2) in solid tumors. This makes intuitive sense since

large solid tumors (as opposed to hematological malignancies) can

rarely be cured, and one would expect that trials attempting to

test curative or more definitive treatments for these diseases

would attract more attention from other investigators. Similarly,

trials that were considered most central are the trials performed

by ECOG (Eastern Cooperative Group) and studied curative/

definitive type of treatments. This is probably not surprising since

the ECOG is the largest NCI COG and is likely to have more

influence on the trajectory of treatment discoveries than other

NCI COGs. Likewise, curative/definitive treatments for solid

tumors attracted more attention than more established therapies

for lymphomas and other hematological malignancies. It should

be noted that these treatments may not necessarily be less

successful. Effective treatments for hematologic malignancies

were discovered during early existence of the COG and hence it

is not surprising that they received less attention during later

decades of testing in RCTs conducted by the various COGs. This

is particularly true as no major breakthroughs in the management

of these diseases within the COG setting has occurred since the

early 1970s.

Discussion

One of the underlying premises of clinical research enterprise,

including findings of new successful treatments, is that better

scientific understanding should translate into improvement in

patients’ outcomes such as better survival. Such better scientific

understanding is typically ensured via extensive social scientific

Figure 6. Average HR as a function of centrality measures for the preferential attachment network. There is an increasing trend
between treatment success and the measures of betweenness and closeness (a, b), which implies that treatment success is not only a function of
connectivity but also a function of node centrality and ease of access to relevant information. However, there is a decreasing trend between
treatment success and local clustering coefficient (c). We speculated that nodes with high clustering coefficient are those which tend to interact
within a closed group of trials (‘‘silos’’ of information exchange) and consequently are the least successful.
doi:10.1371/journal.pone.0018060.g006
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networking that rely on interactions between past (e.g., via transfer

of knowledge through scientific literature) and current researchers.

We argue that the interactions between researchers who

conduct clinical trials are responsible for previously reported

patterns in therapeutic discovery [8]. That is, treatment success in

cancer is described by a power law distribution in which the

majority of trials operate on the borderline of success and failure,

while few trials are very successful [8].

Modeling interactions between researchers is a rather challeng-

ing process. We proposed three different approaches. First, we

assume that RCT interactions are confined between trials in

related fields such as cooperative group, type of disease or

treatment (network with ‘‘shared characteristics’’). Then, we

generated RCT networks considering treatment success as the

driving force of interactions. Finally, for comparison purposes, we

assumed that RCTs interact at random.

Our results indicate that the networks created based on shared

characteristics as well as those created based on treatment success

are small world networks. Small worlds have been shown to describe

other scientific collaboration networks [27]. However, this is the first

time that they have been shown to apply to networks formed in

clinical settings. The importance of the small world finding is that all

trials are connected through a small number of ties enhancing the

argument that treatment discovery is a social enterprise.

Table 2. Characteristics of the most central trials.

Network Measure Group Disease Treatment Av. HR

Group, Treatment,
Disease

Betweenness
Max = 0.006

ECOG Leukemia Definitive* 1.22

Closeness
Max = 0.75

ECOG GI Definitive* 1.22

Authorities
Max = 0.08

ECOG GI(8/10); GYN(2/10) Definitive* 0.97

Hubs Max = 0.08 ECOG GI(8/10); GYN(2/10) Definitive* 0.97

Random network
based on the
Group, Treatment,
Disease network

Betweenness
Max = 0.002

RTOG Lung Definitive* 0.98

Closeness
Max = 0.69

ECOG Lung Definitive* 0.98

Authorities
Max = 0.06

RTOT (3/10);
ECOG (5/10);
GOG (1/10);
SWOG (1/10)

GI(3/10); Lung (2/10);
GYN (2/10);
H&N Leukemia

Definitive*(6/10);
Adjuvant (2/10);
Supportive(1/10);
Other (2/10)

0.96

Hubs Max = 0.06 RTOT (3/10);
ECOG (5/10);
GOG (1/10);

SWOG (1/10)

GI(3/10); Lung (2/10);
GYN (2/10);
H&N Leukemia

Definitive*(6/10)
Adjuvant (2/10)
Supportive(1/10)
Other (2/10)

0.96

Preferential attachment Betweenness
Max = 0.04

RTOG Prostate Definitive* 2.82

Closeness
Max = 0.66

ECOG Lung Definitive* 2.31

Authorities
Max = 0.18

ECOG Lung Definitive* 2.31

Hubs Max = 0.18 ECOG Lung Definitive* 2.31

Random network
based on the
Preferential
attachment
network

Betweenness
Max = 0.068

SWOG GI Adjuvant 0.75

Closeness
Max = 0.554

SWOG GI Adjuvant 0.75

Authorities
Max = 0.089

ECOG (5/10);
SWOG (2/10);
NCCTG (1/10);
CALGB (1/10);
CHOG (1/10)

GI (3/10); CNS (2/10);
Lung (2/10);
Leukemia (1/10);
Melanoma (1/10);
Breast (1/10)

Definitive*(5/10);
Adjuvant (3/10)
Maintenance (1/10) Other

1.10

Hubs
Max = 0.089

ECOG (5/10);
SWOG (2/10);
NCCTG (1/10);
CALGB (1/10);
CHOG (1/10)

GI (3/10);
CNS (2/10);
Lung (2/10);
Leukemia (1/10);
Melanoma (1/10)
Breast (1/10)

Definitive*(5/10)
Adjuvant (3/10)
Maintenance (1/10) Other

1.10

For brevity, we do not include the networks generated by the shared characteristics: group, treatment; group, disease; disease, treatment. The numbers in parentheses
denote the memberships of each component in the group of nodes that present the same centrality measures.
doi:10.1371/journal.pone.0018060.t002

Social Interactions in Controlled Trials

PLoS ONE | www.plosone.org 8 March 2011 | Volume 6 | Issue 3 | e18060



In addition, we show that, if RCTs are connected at random

(figures 4d), or on a shared characteristic basis (figure 4a, 4b),

dense interactions do not appear to translate into treatment

success as measured in terms of improvement in cancer survival.

On average, new treatments are only slightly superior to old ones:

a finding explained by the equipoise hypothesis, which suggests

that the requirement for uncertainty in clinical trials is what drives

the RCT system, but which also predicts that new treatments are

not very likely to be much more successful than the established

ones [11,29,30]. However, the equipoise hypothesis does not

explain the existence of a comparatively greater proportion of the

small number of very successful trials among newly developed

treatments [8].

A different picture emerges for the preferential attachment

network: if trials are connected on an individual treatment success

basis (figure 4c), then while for the majority of the trials the

relationship between treatment success and connectivity seems

random and governed by equipoise (figure 4c for degrees less than

100), there are few trials for which there is a proportional

relationship between connectivity and success rate (figure 4c for

degrees greater than 100). This finding agrees with our previously

reported results that showed that treatment success in cancer is

distributed as a power law function with the majority of the trials

operating on the borderline between success and failure, and a

small number of very successful trials [8]. The preferential

attachment model provides an underlying mechanism that could

explain this overall pattern of therapeutic discovery.

We believe that the mechanism responsible for the reported

pattern of treatment discovery in cancer relates to the social

interactions between RCTs as it stems from researcher’s tendency

to interact selectively with established and successful peers. It

should be noted that the social interactions do not violate the

equipoise requirement, rather they complement it. The findings

indicate that the overall cancer RCT system maintains equipoise

via unpredictability in the results at any individual trial, while

providing the avenue for the researchers to increase their odds to

discover new successful treatments which will go beyond 50:50

odds predicted by the original equipoise hypothesis. We, therefore,

argue that the social network analyses along with ethical analyses

of equipoise presented in this paper provide further understanding

of the principles that drive the treatment discovery process.

Our research has some limitations. The main limitation is that

we have used interactions between RCTs as a proxy of the actual

interactions between COG researchers. We had no way to identify

the multitude of factors that actually influence researchers to

determine why and what exactly they choose to study. Neverthe-

less, in the final analysis, many of these formal and informal

mechanisms of interactions do converge to the factors we used in

the analysis presented here. Second, we studied the process of

social interactions within the closed system of NCI COGs. In

reality, the NCI COG researchers interact with the outside

biomedical research community and that may influence the types

of research the NCI COG performs. However, the NCI COG is a

very influential organization, and while it is probably influenced

by outside factors, to some extent, it has its own platform for

research development that, we believe, is accurately reflected in

our analysis. To address the issue of the impact on non-NCI

sources on the type of research performed by the NCI, we

attempted to perform the citation analysis of RCT trials used in

our analysis. Unfortunately, this proved unfruitful as the most

publications did not cite the research leading to their proposals,

thus making it impossible to create meaningful social interactions

patterns.

We conclude that the treatment discovery process in RCTs

could be explained by a small world network model according to

which each trial is connected to any other trial in the network

through a small number of steps. Furthermore, we present

intriguing results that the richer the social interaction, as reflected

in ease and importance of connections (closeness and between-

ness), the greater the chance is that researchers may discover new

life-saving treatments when connections are formed on the basis of

preferential attachment. At the same time, trials which interact

within ‘‘information silos’’ (as reflected by high local clustering

coefficients), are associated with low survival HR arguing that the

limited information exchange may be detrimental to the treatment

discovery process!
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