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ABSTRACT

Summary: Differential dependency network (DDN) is a caBIG®
(cancer Biomedical Informatics Grid) analytical tool for detecting
and visualizing statistically significant topological changes in
transcriptional networks representing two biological conditions.
Developed under caBIG®’s In Silico Research Centers of Excellence
(ISRCE) Program, DDN enables differential network analysis and
provides an alternative way for defining network biomarkers
predictive of phenotypes. DDN also serves as a useful systems
biology tool for users across biomedical research communities to
infer how genetic, epigenetic or environment variables may affect
biological networks and clinical phenotypes. Besides the standalone
Java application, we have also developed a Cytoscape plug-in,
CytoDDN, to integrate network analysis and visualization seamlessly.
Availability: The Java and MATLAB source code can be downloaded
at the authors’ web site http://www.cbil.ece.vt.edu/software.htm
Contact: yuewang@vt.edu

Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

Gene regulatory networks are context specific and dynamic in nature
(Beyer et al., 2007; Clarke et al., 2008). Under different conditions,
different regulatory components and mechanisms are activated,
leading to rewired regulatory network and topological changes.
Accurate detection of the topological changes in transcriptional
networks between disease and normal conditions, or under different
stages of cell development, would be of great biological importance.
For example, a deviation from normal regulatory network topology
may reveal the mechanism of pathogenesis (Hood et al., 2004), and
the genes that undergo the most network topological changes may
serve as biomarkers or drug targets.

*To whom correspondence should be addressed.

We developed the differential dependency network (DDN)
method to detect statistically significant topological changes in
transcriptional networks between two conditions and to infer
most likely mechanistic network markers (Zhang et al., 2009).
DDN aims to detect and learn from gene expression data the
rewiring of the underlying biological network triggered by outside
stimuli or different conditions. We use local dependency models to
characterize the regulatory dependencies of genes in the network
and represent them as local network structures. Local dependency
models decompose the entire network into a series of local networks,
which serve as the basic elements of the network for statistical
testing. Unlike other dependency models that consider only pairwise
relationships (Choi et al., 2005; Fuller et al., 2007; Kostka and
Spang, 2004; Watson, 2006) or binding triples (Qiu ez al., 2007), the
local dependency models select the number of dependent variables
automatically by the Lasso method (Tibshirani, 1996), and thereby
learn the local network structures. Subsequently, permutation tests
are performed on the local dependency models under two conditions
and P-values are assigned to each of the local structures. The
permutation test on individual local structures assures the statistical
significance of the detected network topological changes, so that
only genes that exhibit network topological changes between two
conditions, above a given significance level, will be identified.
Lastly, the extracted subnetworks showing significant topological
changes are visualized using Cytoscape (Shannon et al., 2003).

DDN is an open-source differential network analysis and
network marker identification tool developed through the caBIG®
In Silico Research Centers of Excellence (ISRCE) effort and is
freely available to the cancer and broader biomedical research
communities. As a caBIG® adopted data analytic tool, DDN will
be integrated into Georgetown Database of Cancer (G-DOC) and
offers users across the cancer and broader biomedical research
communities a unique yet effective network analysis tool for
differential pathway network inference. To harness the powerful
visualization capability of Cytoscape (Shannon et al., 2003), we
have also developed a Cytoscape plug-in, CytoDDN, to streamline
the network analysis and visualization. Here, we applied DDN and
CytoDDN to four case studies, specifically selected from diverse
biological settings, to demonstrate the effectiveness and applicability
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Fig. 1. The components and input/output of DDN.

of the proposed tools in identifying significant network changes and
key network players.

2 DESCRIPTION

2.1 Software

The components of DDN and their input/output flowchart are
illustrated in Figure 1. We use existing caBIG® tools to load,
preprocess and normalize gene expression data from in-house (i.e.
G-DOC) or public databases (e.g. caArray, TCGA). The core
algorithms of DDN include an efficient learning procedure to
learn the local dependency models using the Lasso method, and a
permutation test to detect significant network topological changes.
We first implemented DDN algorithms in MATLAB and then used
the MATLAB compiler to generate C++ shared libraries. Supported
by a Java-based user interface, C++ shared libraries are called from
Java using the Java Native Interface. DDN has been tested on
Microsoft Windows and Linux platforms, and can readily run on
any computer without an installed version of MATLAB.

The software takes as input the data files under two conditions
and gene names, which correspond to each row of the data files.
There are three user-adjustable parameters: predictive dependency
threshold 7', the maximum size of the gene predictor set K and
P-value cutoff value, which are set to default values when the
program starts. Results of DDN analysis are visualized as networks.
Nodes in the network denote genes and edges with different colors
represent condition-specific dependencies.

2.2 Case study

DDN has been used in several ongoing cancer research projects.
Using expression data from normal adult rat mammary glands
exposed in utero to E2, we have applied DDN to reveal key yet
unknown transcription factors and signaling that mediates the effects
of in utero estrogenic environment on later estrogen sensitivity and
breast cancer risk, as shown in Figure 2.

Since the exposure was in utero while DDN analysis was done
in adulthood, the altered gene networks over time could be a
consequence of transcriptional programming, possibly regulated
by promoter methylation status, e.g. ER, BCL2, LEP (leptin)
and EGR1. Each is known to be epigenetically regulated and
differentially expressed in needle aspirate samples in women from
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Fig. 2. DDN between control group and excess E2 in utero group generated
by CytoDDN. The red lines represent the connections that exist only in
control group, and the green lines represent the connections that exist only
in excess E2 in utero group.

non-BRCA1/2 breast cancer families. In addition, AKT1 can alter
methylation patterns in some promoters, which may explain the
nature of the AKT1-EGR1 edge present only in the control mammary
glands, generating a novel hypothesis for further study.

In another application to identifying distinct clinicopathological
network features between different histological subtypes of ovarian
cancer, namely clear cell carcinoma and endometrioid carcinoma,
DDN also provides some promising observations. As we can
see in Supplementary Figure S9, different pathways detected
by DDN, namely, ARID1A-POUSR and ARID1A-CTNNBI, are
associated with the lead gene ARIDIA in the development of
endometrioid carcinoma and clear cell carcinoma, respectively.
Since somatic mutation of ARID1A has been identified in both clear
cell and endometrioid carcinoma of the ovary (Jones et al., 2010;
Wiegand et al., 2010), it is possible that the precursor lesions may
utilize different pathways involving ARID1A for their tissue-type
differentiation from the same cell origin, i.e. endometriosis.

More DDN application case studies on breast cancer, ovarian
cancer and muscular dystrophy are included in the Supplementary
Material.

3 DISCUSSION

DDN presents a differential network analysis approach to
detect significant topological changes of biological networks
in response to genetic/epigenetic/environmental variants. It also
provides an alternative way for defining mechanistically relevant
network biomarkers. For example, genotypes (epigenetic status
or environmental factors) can be used to assign samples into
conditional groups, and DDN is then used to infer how the genotype
status affects the phenotype(s) via rewired biological networks. The
degree of connection changes may be used to prioritize the ‘hot-
nodes’ in the relevant subnetworks, and Monte Carlo Markov Chain
simulations may be performed to identify the ‘driver nodes’ based
on their roles in determining phenotypic transitions.

We plan to incorporate biological knowledge and other datatypes
into DDN to create a more comprehensive network inference.
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For example, by incorporating protein—protein interaction data and
known biological pathway knowledge, we can further refine the
structure learning algorithm to make the network inference more
biologically informative. There are several workflow pipelines for
using DDN. For example, we first download gene expression
datasets associated with two different biological conditions from
TCGA, then normalize and label the data using caBIG® tools, such
as GenePattern, and feed the processed data to DDN. The network
topological changes identified by DDN will be sent to iProXpress
for visualization and mapping onto known signaling pathways.
Eventually, the DDN analysis workflows will be compatible with
the Taverna workbench and made publicly available to the research
community.
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