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ABSTRACT

Motivation: Genetic variation at classical HLA alleles influences
many phenotypes, including susceptibility to autoimmune disease,
resistance to pathogens and the risk of adverse drug reactions.
However, classical HLA typing methods are often prohibitively
expensive for large-scale studies. We previously described a method
for imputing classical alleles from linked SNP genotype data. Here,
we present a modification of the original algorithm implemented in a
freely available software suite that combines local data preparation
and QC with probabilistic imputation through a remote server.
Results: We introduce two modifications to the original algorithm.
First, we present a novel SNP selection function that leads to
pronounced increases (up by 40% in some scenarios) in call rate.
Second, we develop a parallelized model building algorithm that
allows us to process a reference set of over 2500 individuals. In
a validation experiment, we show that our framework produces
highly accurate HLA type imputations at class I and class II loci for
independent datasets: at call rates of 95–99%, imputation accuracy
is between 92% and 98% at the four-digit level and over 97% at the
two-digit level. We demonstrate utility of the method through analysis
of a genome-wide association study for psoriasis where there is a
known classical HLA risk allele (HLA-C*06:02). We show that the
imputed allele shows stronger association with disease than any
single SNP within the region. The imputation framework, HLA*IMP,
provides a powerful tool for dissecting the architecture of genetic risk
within the HLA.
Availability: HLA*IMP, implemented in C++ and Perl, is available from
http://oxfordhla.well.ox.ac.uk and is free for academic use.
Contact: mcvean@stats.ox.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
An individual’s Human Leukocyte Antigen (HLA) type, which
describes the primary structure of the antigen-presenting classical
HLA proteins, is an essential immunogenetic parameter, which
influences susceptibility to many autoimmune and infectious
diseases (Blackwell et al., 2009; Cooke and Hill, 2001), the risk
of certain types of cancer (Brennan and Burrows, 2008; Wang
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et al., 2010), transplant compatibility (Szabolcs et al., 2010) and
the likelihood of adverse drug reactions (Chung et al., 2007). In
many autoimmune diseases, the HLA contributes the major fraction
of genetic risk (Shiina et al., 2004). It is generally believed that this
is related to variation in the HLA proteins’ binding affinities, but the
exact nature of the underlying mechanisms has remained elusive in
most cases.

Because of the functional importance of the proteins, there is a
considerable need for HLA type data in biomedical research, either
as an explanatory variable (for example, in searching for factors
influencing adverse drug reactions) or a covariate (for example,
in looking for secondary risk factors in the HLA where there
is a well-characterized primary classical risk allele). HLA type
information can be useful in interpreting results from genome-
wide association studies (GWAS). For example, a recent GWAS on
psoriasis identified a SNP at the ERAP1 locus, which is associated
with a significant increase in disease risk, but only in HLA-C*06:02
positive individuals (Strange et al., 2010).

However, lab-based HLA genotyping (through either direct
sequencing, allele-specific amplification or hybridization) is
typically slow and relatively expensive (costs are several hundred
dollars per individual for high-quality allelic information at key class
I and class II loci). In contrast, imputation of classical alleles from
linked SNP data, while it can never achieve the degree of certainty of
lab-based methods, is fast and inexpensive. This is particularly true
for samples for which genome-wide SNP data have been collected as
part of a GWAS. In such situations, imputation can be performed at
no additional cost and with sufficient accuracy to enable the analysis
of large-scale datasets (Leslie et al., 2008).

Imputation of classical HLAalleles is complicated by the genomic
features of the HLA including extensive polymorphism (e.g. HLA-
B with >1600 alleles), long-range haplotype backgrounds and the
influence of natural selection (Horton et al., 2008; Hughes, 2002;
Traherne et al., 2006). de Bakker et al. (2006) have shown that
while some classical alleles can be tagged by single SNPs, this
is not generally true and experience has shown that standard SNP
tagging approaches do not perform consistently well. To overcome
these problems, we previously developed a probabilistic approach to
classical HLA allele imputation (Leslie et al., 2008), here referred to
as the LDMhc algorithm, which assesses the degree of relatedness
between a chromosome with unknown HLA type but known SNP
types in the region and a reference set of both SNP and HLA-typed
chromosomes, based on SNP genotypes alone. Prior to the actual
imputation procedure, the employed statistical model is constructed
by iteratively selecting informative SNPs in the reference set from
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those that are typed in both the reference set and the sample to be
typed. The performance of LDMhc is influenced by the size and
diversity of the training set and the initial model building algorithm
(Leslie et al., 2008).

Here, we present three developments of the LDMhc algorithm:
a modification of the original SNP selection algorithm that leads
to improved imputation call rates and accuracy; a parallelization
of this algorithm that enables rapid analysis of large datasets; and
an integrated software suite (HLA*IMP) that enables researchers
to perform classical HLA allele imputation from genotype data
collected from several available genome-wide SNP sets through
reference to a reference dataset of over 2500 samples of European
ancestry with dense SNP data and classical HLA allele types.
We demonstrate that our framework produces highly accurate
imputations (92–98% of imputations agree with lab-derived HLA
types, at call rates of 95–99%) in an independent validation
experiment and demonstrate the utility of the imputed genotypes
in the context of a disease association analysis.

2 MATERIALS AND METHODS

2.1 Inference
The statistical model for inference is identical to the original implementation
of LDMhc and based on the Li and Stephens (2003) approximation to the
coalescent (henceforth referred to as L&S). Given a set SL of selected SNPs
for HLA locus L and a set Hi,l (i = 1 .. # reference haplotypes, l = 1 .. #
typed SNPs) of HLA-typed reference haplotypes, we define the probability
that a phased SNP haplotype c with unknown HLA type carries allele A at
locus L by

P(hla_typeL(c)=A;H,SL)= PL&S
(
c|SL,H [A]

)
∑

B∈T PL&S
(
c|SL,H [B]

) ,

where T is the set of HLA alleles at L present in the reference dataset, H[X]
is the set of haplotypes in H that carry allele X at L and PL&S

(
c|SL,H [X]

)

is the L&S emission probability of c based on the group H[X], reduced to
the SNPs present in SL and using a fine-scale recombination map for the
SNPs in SL (Myers et al., 2005). PL&S

(
c|SL,H [X]

)
can be interpreted as the

probability that c is derived from a population consisting of chromosomes
that carry the X allele. The model presented here assumes uniform priors on
possible HLA alleles, but incorporating other priors (e.g. based on population
frequency) is straightforward. The accuracy of PL&S

(
c|SL,H [A]

)
depends on

the training set H , the alleles present in T and SL , the set of SNPs used for
inference. We thus seek a means of finding an optimal form of SL .

2.2 SNP selection optimality measure
Before describing the SNP selection optimality measure used in our
implementation, we outline the general SNP selection framework as
described in Leslie et al. (2008). SL is constructed iteratively, independently
for each locus, in a forward-selection backward-elimination manner. For
now, assume we have a loss function M. Let NL be the set of SNPs already
selected, possibly empty, and RL =NL , be the set of SNPs not currently in
the imputation set. For the forward step, compute the loss function, M, for all
possible additional SNPs to NL , to find smin, the SNP with the lowest score:

smin =argmin
s∈RL

M(NL ∪s)

Set NL =NL ∪smin. In the backward elimination step, compute

smax =argmax
s∈NL

M(NL �s)

Fig. 1. Visualization of the L&S Hidden Markov Model (HMM) states
for a group of reference chromosomes carrying the A allele. Usually, the
computation of an emission probability for a given chromosome c would
involve filling the corresponding forward table (Rabiner, 1989) from s1 to sn

and summing over the entries in sn. However, the emission probability can
also be calculated at any point s in the HMM, by combining the forward-
and backward-tables up to s. In our parallelization approach, we compute
both tables for each chromosome in advance (gray cells in the figure,
polymorphisms highlighted in dark gray) and add the specific transition
probabilities for any given SNP s (middle column), which can be performed
in parallel without changing the precomputed table values.

and remove the SNP smax with the highest score from NL , unless smin =
smax. Continue alternating forward and backward steps, until a predetermined
maximum number of SNPs has been reached or the reduction in M for two
subsequent added SNPs has fallen below a predefined threshold; then, set
SL =NL .

Now, we describe the new SNP selection optimality measure. In our
implementation, M is the sum of posterior error probabilities in a leave-
one-out cross-validation analysis of all chromosomes in the reference
set H:

M(X)=
∑

c∈H

1−P(hla_type(c)=V(c);{H �c};X),

with the dependence on locus L omitted here and V(c) being the known
true HLA type of chromosome c. Our approach aims to maximize positive
predictive power by optimizing the confidence in true calls during the model
building procedure. In Leslie et al. (2008), optimality was measured by the
product of call rate and accuracy conditional on a set threshold. Note that
our definition removes the dependence on a set threshold for SNP selection.
See Section 3.1 for an evaluation of the new SNP selection function’s
performance.

2.3 SNP selection parallelization
The SNP selection algorithm iteratively optimizes a sum of Hidden Markov
Model (HMM) emission probabilities. The Markov property of the HMM
leads naturally to parallelization as M can be calculated independently
for each c and each s. To compute the L&S HMM emission probability
PL&S

(
c|SL,H [X]

)
, the position of s relative to the SNPs already in SL is

determined. sl denotes the left neighbour of s, and sr the right neighbour.
Then, by the Markovian structure of the L&S approximation, the forward
tables for PL&S

(
c|SL ∪s,H [X]

)
and PL&S

(
c|SL,H [X]

)
are identical up to the

state relating to sl , and the same holds for the backward tables up to the state
relating to sr . Therefore, PL&S

(
c|SL ∪s,H [X]

)
can be constructed from the

forward- and backward-tables for PL&S
(
c|SL,H [X]

)
by adding the transition

elements for sl →s and s→sr , as PL&S
(
c|SL,H [X]

)
is independent of s

(Fig. 1). The state transition probabilities for sl →s and s→sr have to be set
according to recombination probabilities; it is therefore natural to evaluate
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possible SNPs s in their chromosomal order, to be able to linearly move
along the recombination map in use. With these modifications, it is possible
to precalculate the forward and backward tables for PL&S

(
c|SL,H [X]

)
for

∀c and ∀A and propagate them over all computation nodes, then assign each
node a linearly ordered subset of S. Finally, by applying the loss function M
locally on each node, a local minimum is identified and sent to the controlling
node, where the global minimum (best SNP) is determined. The backward
elimination step is parallelized in a similar manner.

2.4 SNP data preparation
The following cohorts were combined into a large reference set:

• the 1958 Birth Cohort (http://www.b58cgene.sgul.ac.uk/), typed both
on the Illumina 1.2M and Affymetrix Genome-Wide Human SNPArray
6.0 chips (The Wellcome Trust Case Control Consortium, 2007). Where
SNP genotype data overlapped, stringent thresholds for agreement were
applied, resulting in 2420 genotype samples × 7733 SNPs (post QC,
see below) in the extended HLA region.

• The HapMap CEU samples (The International HapMap Consortium,
2007) and CEPH CEU+ additional samples (de Bakker et al., 2006)
(92 samples × 7733 BC58-overlapping SNPs)

A missing data threshold of 5% was applied to SNPs and individuals
and all SNPs were checked for strand inconsistencies. SNP haplotypes for
the 1958BC and CEU+ samples were phased using IMPUTE v2 (Howie
et al., 2009) using the trio-phased HapMap samples as a reference dataset.
Classically typed HLA genotypes were then phased into SNP haplotypes
by using PHASE (Stephens and Scheet, 2005) applying standard settings for
multiallelic loci. The combined reference dataset consists of 5024 haplotypes
with data on 7733 SNPs in the HLA region. This splits up into 2474 (HLA-A),
3090 (HLA-B), 2022 (HLA-C), 175 (HLA-DQA1), 2629 (HLA-DQB1), 2665
(HLA-DRB1) locus-specific haplotypes which are used for inference.

Data for the validation experiment were generated by conducting a random
2/3 – 1/3 split of the set of reference data, using the 2/3 part as reference data
to impute the HLA types of the remaining 1/3. For the validation experiment,
the model is built using only the 2/3 part of the data to avoid overfitting to
the 1/3 part, which is used as validation data. The 1/3 part of the data was not
rephased; however, we established empirically that the phasing results from
the internal haplotype imputation module of HLA*IMP are very similar to
the results from IMPUTE.

The data for the disease association example presented in this article were
prepared by the WTCCC2 and is described elsewhere (Strange et al., 2010).

2.5 HLA*IMP software implementation
HLA*IMP is implemented in C++ and Perl. It consists of a front end and
a back end. The front end is designed to assist end users in preparing
their data—it has inbuilt modules for quality control, SNP strand alignment
and haplotype phasing. Users are guided through these steps in a wizard-
like sequential manner (Fig. 2). Output files from some popular genotype
callers, including PLINK (Purcell et al., 2007), Birdsuite (Korn et al.,
2008) and CHIAMO (Marchini et al., 2007), can be read in directly, as
well as a simple generic format. The back end part, implemented as an
online web service, carries out the computationally intensive parts of the
imputation process. It can automatically process the files generated by the
front end and notifies the end user via email of completed processes. As
the result of the parallelized SNP selection depends on the initial set of
available SNPs, we have preselected SNPs for some popular Affymetrix
and Illumina SNP genotyping platforms; uploads from other platforms are
currently not supported. HLA*IMP is free for academic use and available
from http://oxfordhla.well.ox.ac.uk. The online resource includes detailed
user information and a tutorial with a sample dataset.

Fig. 2. The front end of HLA*IMP controls for missing data, aligns
complementary SNPs and phases haplotypes in a largely automated manner.
In this screen shot: graphical output from the alignment procedure,
comparing SNP allele frequencies in the user dataset to HapMap allele
frequencies, before (left) and after (middle) alignment. Complementary SNPs
are aligned using an expectation-maximization (EM)-based procedure. A
straight line of data points (right) indicates that there are no gross deviations
between EM estimated and HapMap frequencies.

3 RESULTS AND DISCUSSION

3.1 Effects of modified SNP selection
To assess the effects of the new SNP selection function, we
repeated one of the validation experiments from Leslie et al. (2008),
using exactly the same datasets and exactly the same validation
methodology. We find that the new SNP selection algorithm based
on optimizing posterior probabilities typically outperforms the old
SNP selection function, particularly when a threshold is applied to
the certainty of calls (Supplementary Table S1). This effect is largely
driven by an increase in call rate rather than any increase in accuracy,
e.g. from 29% up to 75% for HLA-DQB1 at a call threshold of
T = 0.9. At this threshold, the total number of correctly imputed
alleles increases by 44% across all loci. At lower thresholds, this
number is typically, though not consistently, increased. Note that
much greater gains in accuracy are obtained by increasing the size
of the reference panel (see below).

3.2 Cross-validation experiment
The new reference set of over 2500 samples was split in two parts
and one of the two parts (2/3) was used to impute HLA types of the
remaining part (1/3). Imputations were validated at the haplotype
level and at four-digit (amino acid identity)/two-digit (sharing of
serotypical features) resolution (see Table 1). A call threshold of
T = 0.7 on the modes of the posterior HLA type distributions was
employed, as our experience suggests that T = 0.7 represents a good
compromise between accuracy and call rate. At two-digit resolution,
between 97% (HLA-C) and 99% (HLA-DQB1) of calls are correct
(i.e. they agree with the lab-based types), at call rates between
98% and 100%. At four-digit accuracy, call rates are from 95%
(HLA-DRB1) to 99% (HLA-DQB1) and accuracy ranges from 92%
(HLA-DRB1) to 98% (HLA-DQA1, HLA-DQB1). As the 1/3-part
which was used for validation was completely excluded from model
building, it can be regarded as if it had been sampled independently
from the same population as the training data.
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Table 1. Accuracy and call rate for a 2/3 (training data) – 1/3 (validation data) cross-validation experiment, using a call threshold of T = 0.7 .

Locus Number of validated Call rate (2-digit) Accuracy (2-digit) Call rate (4-digit) Accuracy (4-digit)

HLA-A 816 0.98 0.98 0.98 0.97
HLA-B 1009 0.98 0.98 0.98 0.96
HLA-C 635 0.98 0.97 0.97 0.97
HLA-DRB1 858 0.99 0.98 0.95 0.92
HLA-DQA1 51 1 0.98 0.98 0.98
HLA-DQB1 867 1 0.99 0.99 0.98

User datasets are always imputed using the full set of training data, which should result in greater accuracy.

Table 2. P-values and odds ratios for imputed HLA-C*06:02 alleles and the
most predictive SNP from Strange et al. (2010)

Locus/allele P-value Odds ratio

HLA-C*06:02 5.44E-221 5.55
rs10484554 3.05E-202 4.64

3.3 Disease association experiment
To illustrate the utility of the imputed alleles in an empirical study,
we imputed classical HLA types for case and control samples
(where classical alleles were not available; note that the control
samples include members of the 1958 Birth Cohort, for most of
whom we have direct typing) within the WTCCC2 psoriasis disease
association study (Strange et al., 2010). In psoriasis, the allele HLA-
C*06:02 is well known to be the key genetic risk factor (Nair et al.,
2006). Therefore, to assess the practical value of our methodology in
realistic circumstances, we addressed the following two questions:
would the association with C*06:02 be recovered from our imputed
HLA types, and would a disease model based on imputed C*06:02
status be more predictive of disease (in terms of an associated model
fit) than the most predictive SNPs? Table 2 summarizes the results.
The C*06:02 association is clearly recognized as the strongest effect
of any HLA allele, and it is also more significantly associated with
psoriasis disease risk than any typed SNP. Using imputed HLA types
in a conditional analysis also enabled the characterization of a novel
interaction between HLA-C*06:02 and the ERAP1 locus (Strange
et al., 2010).

4 CONCLUSIONS
We have presented an integrated imputation framework for classical
HLA types, based on a modified version of the LDMhc algorithm,
a new parallelized model-building algorithm and a large set of
carefully assembled training data. We have demonstrated that the
accuracy of our approach at the four-digit level is >92%, at call
rates >95%, where we note that our validation samples and reference
set come from populations of similar (European) ancestry. Finally,
we have shown that imputation of classical alleles can be used to
identify and dissect genetic risk factors within the HLA in GWAS
and related experimental designs. HLA*IMP is implemented as a
user-friendly front end/back end system with inbuilt support for
standard genotyping platforms. Our framework is freely available
for academic use.
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