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SUMMARY

Prompted by several recent papers on the inference on median and mean residual life time, we note
that the testing involving the mean or median residual life function in censored survival data can be
obtained by an easy application of the general empirical likelihood ratio test. This approach has
several advantages: (1) there is no need to estimate the variance/covariance at all, which may become
prohibitively complicated for other procedures that require the estimation of such. (2) When inverting
the tests to obtain confidence regions/intervals, this procedure inherits all the good properties of a
likelihood ratio test. (3) Free software implementation of the test is readily available.
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1. INTRODUCTION

Jeong et al. (2008) [1] recently proposed a score-type test for the median residual life time.
They argue that “the need for such estimates is becoming more critical in breast cancer research
as long-term courses of secondary therapies are now being considered for patients who remain
recurrence free after several years of initial treatment”. Using the concept of the median residual
lifetimes in statistical inference would also help patients and physicians understand the efficacy
of a new drug in a more intuitively straightforward way than using the traditional tools based
on such as the hazard function or probability of survival.

Despite the practical usefulness of the median residual life function, however, it is well known
that the inference on the median residual life function in survival data can be prohibitively
challenging because it involves nonparametric estimation of the density function of the
unknown failure time distribution under censoring. Therefore, Jeong et al. [1] considered a
method directly dealing with an estimating equation to avoid estimation of the density function,
like in the Berger et al. [2], proposing a score-type (possibly stratified) test to compare median
residual lifetimes between two or more groups. But their procedure still involves estimation
of the variance of score function to evaluate the test statistic through the martingale theory. In
this paper, we note that an even simpler procedure is available via the empirical likelihood
ratio test for censored survival data, which does not require estimation of any variance at all.
Furthermore, the empirical likelihood approach inherits all the good properties of the likelihood
ratio test and can handle more general types of censored data.
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There are also a couple of recent papers dealing with the mean residual life function using the
empirical likelihood approach [3,4]. Qin and Zhao [4], however, proposed a different approach
using an estimating function that involves nuisance parameters. The version of empirical
likelihood they proposed does not have a regular chi-squared limiting distribution under null
hypothesis, unlike ours.

In Section 2, the median residual life function is defined and an empirical likelihood ratio test
is proposed. In Section 3, the similar procedure applies to the mean residual life function. In
Section 4, an existing statistical software that can facilitate the empirical likelihood ratio-based
inference is briefly introduced. In Section 5, performance of the proposed empirical likelihood
ratio test for the median residual life function is compared with the score-type test proposed
by Jeong et al. [1] through a simulation study. In Section 6, the proposed method is illustrated
with two real data examples. In Section 7, we conclude with a brief remark.

2. MEDIAN RESIDUAL LIFE

In survival data, the median residual lifetime at age x is defined as the median of the distribution
of failure times among survivors beyond time x, i.e. P(T — x> 0|T > x) = 0.5, where 0 is the
median of the remaining lifetimes at time x. Therefore the median residual lifetime is
quantitatively defined as the number 0 that solves the equation

1 - F(x+6)

0.5,
1-F(x)

where F(:) is the cumulative distribution function of failure times. Other quantiles of the
residual life distribution can be defined similarly. Even though we shall focus on developing
the test for the median residual life function in the sequel, it can be easily modified to test any
quantile residual life function.

Let us denote the median residual lifetime at age x as Med(x). Clearly 6 = Med(x) is also the
solution to
1 — F(x+6)=0.5{1 — F(x)}.

After rearranging the terms, we see that 0 is the solution to

0.5=F (x+6) — 0.5F(x).

If we define a function gy, (t) as

8v(D=I1s<(x+b)] — 0.5I1<x1 — 0.5, )

then the hypothesis Hy : Med(x) = b can be tested by testing

Hy: f i v (H)dF(1)=0.

This, in turn, can be accomplished by an empirical likelihood ratio test.
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2.1 Empirical Likelihood Ratio Test

The empirical likelihood ratio tests, first proposed by Thomas and Grunkemeier [5] and Owen
[6], attracted much attention since then. The empirical likelihood methods developed in the
last 20 years has emerged as a very competitive nonparametric test procedure for quite general
settings, including the test of a parameter defined by | g(t)dF(t) with censored survival data. It
parallels the theory of the parametric likelihood ratio test, except the parametric likelihood is
replaced by a nonparametric one. The book of Owen [7] summarized many of the results
(Chapter 6 in particular). Other relevant papers include Murphy and van der Vaart [8], Pan and
Zhou [9], and Zhou [10]. The following is an adaptation/summary of the relevant results from
above sources suitable for our applications.

Suppose Tj, i =1, 2, ..., n, are independent and identically distributed (iid) event times of
interest with a distribution F(t). Due to censoring, we only observe a censored sample Y; = min
(T;, C;) and §; = I(T; < C;) is an indicator function. We assume the censoring time C;j is
independent of the event time T;.

Let p; denote the probability mass put on observation Y;, then the empirical likelihood (EL) for
the above censored data is defined as

n

EL=[ ot Y o

i=1 Y;>Y; (2)

The maximization of the above EL with respect to p;, subject to p; >0 and > p; = 1, is well
known to be achieved by (the jumps of) the Kaplan-Meier estimator computed from (Yj, &;)
(Owen [7], pg 142). Let us denote the maximum empirical likelihood value achieved as EL
(KM).

In order to form the likelihood ratio, we also need to maximize the above EL with respect to
pi under an extra constraint (the Hp)

n
Zg(Yi)PFH,
i=1 )

where g(t) is a given function such that 0 < Var g(T) < o0 and 6 is the value we wish to test.

The variance of the quantity > g(Y;)w; with w; being the jumps of the Kaplan-Meier estimator,
may not always have a finite asymptotic variance. We need the following extra condition to
guarantee this variance is finite:

f 8D pi<o,
1-G(t-) (4)

where G(-) is the distribution function of the censoring variable C;.

The Empirical Likelihood Theorem asserts that under the null hypothesis, Hq : 6 = Eg(T), —2
log empirical likelihood ratio has an asymptotic chi-squared distribution. The proof of the
following theorem is provided in the APPENDIX A.

Theorem Consider the right censored data and its empirical likelihood defined above.
Suppose [Eg(T) = 0. Assume also that condition (4) holds. Then we have
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max EL 2

W(@)=-2 logm —)/\/% asn— oo,

where the numerator max is carried out over all probabilities p; that satisfy (3).

Testing the equality (or the ratio) of two median residual times from two samples (or from one
sample at two different ages) can be carried out similarly as outlined in Jeong et al. [1].

If we are to test Hp : Medq(x1)/Medy(x2) = ¢, where Medy (xx) (k = 1, 2) denote the median
residual time from sample k at age X, we shall first obtain two empirical likelihood ratio
statistics for testing the two auxiliary hypotheses: Hpq : Med4(xq) = ¢ and Hgy : Medy(xo) =
0. Let us denote the two resulting test statistics by W1(c6; x1) and W»(0; X2). Note that the value
of ¢ will be fixed once the alternative hypothesis is specified. Then the original hypothesis
Hp : Med4(x1)/Medy(x5) = ¢ can be tested by using the statistic

QO)=inf{Wi(ct;x)+ Wa(0:x2)}, ®)

which follows a chi-square distribution with 1 degree of freedom under Hp : ¢ = 1 (see
APPENDIX B for the proof). Note that a special case of the null hypothesis gives Hy :

Med; (x)/Med(x) = ¢, which will be considered on our simulation study and real examples as
in Jeong et al. [1]. Another special case may be to test the ratio of two median residual lifetimes
from the same sample but at two different ages x; and X, i.e. Hp : Med(x1)/Med(x,) = ¢. The
inference procedure will be similar to the above, except we need to replace the two auxiliary
hypotheses by Hgg : Med(x1) = ¢6, Med(xy) = 6.

For the score-type test, the latter case would be much more involved, since the covariance
between Med(x;) and Med(x») needs to be estimated. This is even more so when we are dealing
with the mean residual time. On the contrary, the empirical likelihood ratio inference inherits
the nice properties of a likelihood ratio-based confidence region, i.e. range respecting and
transform invariant, in addition to the advantage of no need for nonparametric estimation of
the density function for the variance calculation.

Specifically to evaluate the test statistic under the null hypothesis of equivalence of two median
residual lifetimes at a fixed time point (tg), first ¢ needs to be fixed as 1. Then for all the possible
support values of 8 (recall that 6 is also a time point), evaluate W\ (6; tg) in each group by using
the R function el . cen. EM2, denoting them by W1(6; tg) and Wo(6; tp), respectively. Now our
observed two-sample statistic will be the minimum of the function U(0) = W1(6; tg)+W-(6;
to) over 6. Since W follows a2 distribution with 1 degree of freedom [1], the p-value associated
with the observed value of the test statistic can be obtained under the distribution.

3. MEAN RESIDUAL LIFE

The mean residual lifetime of a random variable T, at a given age x, is defined as

[ sdF(s)  [Td{1-F(s))
1-Fn  1-F(

Mx)=E(T|T =2 x) — x=

For a given x value, we first notice that the hypothesis
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Hy:M(x)=u
is equivalent to the following hypothesis
[T sdF(s)
Ho'l——F(x)_(xﬂl)’
which is also equivalent to
Ho: [ sdF(s)=[1 = F(x)](x+p).

This in turn can be written as (since fleF(s):l - F(x)

Ho: [7[s = (x+u)]dF(5)=0. ©

Testing the above hypothesis can be performed by a one-sample empirical likelihood ratio test
for censored survival data, similar to the median case, but with a different definition of the g-
function, i.e. g(s) = [s — (X + W]l[s>x)-

Testing the ratio of two mean residual times from two independent samples (or from the same
sample but at two different time points) can be done following the same procedure outlined in
Section 2.1.

4. AVAILABLE STATISTICAL PACKAGE

A publicly downloadable software implementation of the empirical likelihood ratio tests with
censored survival datais enpl i k, which is an extension package to be used with the R software
[12]. In particular, the function el . cen. EM inside the package enpl i k carries out the above
test. A real data example of calculating confidence intervals using the function is described in
the APPENDIX C, together with Section 6.

Since the procedure el . cen. EM2( ) can handle doubly censored data as well, the same test
procedure outlined above can test median residual lifetime with doubly censored data. Left
truncated and right censored data can be treated similarly, but another function

enpl i kH2. test ( ) inside the enpl i k package needs to be used after reformulating the
hypothesis in terms of cumulative hazard.

5. A SIMULATION STUDY

A simulation study was performed to compare the two-sample testing procedure from Jeong
etal. [1] and one based on the empirical likelihood approach. For both groups simulated, failure
times were generated identically from a Weibull distribution with censoring proportions of
0%, 10%, 20% and 30% similarly as in Jeong et al. [1]. For a fair comparison, the non-smoothed
version of the empirical likelihood ratio test was considered. The proportion of rejecting the
null hypothesis of the equality of the two medians were compared for different sample sizes
at various time points. Table | summarizes the results from 1000 repetitions to compute 95%
coverage probabilities. One can notice that the results from the empirical likelihood method
approaches the true nominal level faster than Jeong et al.’s method as the sample size increases.
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6. REAL EXAMPLES

First, we take a data set cancer from the R package sur vi val . It contains 228 survival times
from lung cancer patients with 63 right-censored observations. We shall find the 90%
confidence interval for the mean and median residual lifetimes at year one (365.25 days) i.e.
confidence interval for M(365.25) and Med(365.25).

When inverting the empirical likelihood ratio tests to get the confidence intervals, it is often
very helpful to know where is the ‘center’ of that confidence interval, i.e. when testing for this
‘center’ value, one should get a p-value of one. For the empirical likelihood ratio tests described
in the previous sections, the “center’ is given by the nonparametric maximum likelihood
estimator based on the Kaplan-Meier estimator.

Detailed steps to evaluate a 90% confidence interval by using the function el . cen. EM2 are
illustrated in the APPENDIX C. Following the steps, we find the 90% confidence interval for
the median residual time as [184.75, 321.75]. Notice that, due to the discrete nature of the
quantile function, we do not get an exact p-value of 0.1. Smoothing the indicator function in
(1), however, always enables us to get the exact p-value. Another benefit of smoothing is
(potentially) a more accurate p-value, as indicated by Chen and Hall [11]. If we use the linear
smooth function or the cubic smoother function with a bandwidth of 1/20, we get a 90%
confidence interval of [184.74, 321.71] and [184.77, 321.73], respectively. These intervals are
practically very close to one from the non-smoothed approach. They are also very similar to
the confidence interval estimate obtained by the score-type test as [184.75, 321.74].

The second example comes from a breast cancer study (NSABP Protocol B-04) as described
in Jeong et al. [1]. The data include 586 node positive patients and 1079 node-negative patients.
In this example, we first estimate the median residual lifetimes among node-positive and node-
negative patients separately by using the empirical likelihood approach and then statistically
compare them by using the 95% confidence intervals of the ratio estimated from both Jeong

et al.’s (J) and the empirical likelihood (EL) ratio method. From Table 11 we see that the two
approaches provided almost identical results for the 95% confidence intervals for the ratio of
the two medians.

7. A REMARK

In this note, we proposed a method to infer the median or mean residual lifetimes by using the
empirical likelihood ratio approach for censored survival data. A major advantage of the
proposed method is no need for nonparametric estimation of any kind of variance for statistical
inference, especially for the median case. The results from the proposed method were similar
to ones from a score-type test statistic recently proposed, implying that the empirical likelihood
ratio method may be an important alternative, but simpler, method for inferring median or
mean residual lifetimes in censored survival data.

APPENDIX A: Proof of the Theorem

We begin with the hypothesis about median residual time 9,

1 - F(x+6)

1_—M_O.5.

By applying the product limit formula 1 — F (t) = [[s<t {1 — AA(S)} in the above, we have
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I—[ss.er(){l — AA(s)) _
I—[xs.x{l - AA(S)} o

which can be written on a log scale as

D logll - AA(s)} = ) log{1 - AA(s)}=log(0.5),

s<x+6 s<x

which is equivalent to

Z log{1 — AA(s)}=10g(0.5).

x<s<x+6

A continuous version of the last equation is given by

[T cci<csglogll — AA()}=l0g(0.5).

Defining g(t) = Ijx<t<x+6], the Theorem in this paper directly follows from [13, Theorem 1],
which was proved in Appendix A of Bathke et al. (2008).

APPENDIX B: Proof that the statistic Q follows a x2-distribution with 1 degree
of freedom

From (1), testing the null hypothesis Hg : Med(x) = b is equivalent to testing f;ogb(r)dF(r):O,
S0 that the two auxiliary hypotheses Ho; : Med1(x) = ¢ =n and Hgy : Medy(x) = 6 imply

[ en(dF(H)=0 and [ ga(H)dF(1)=0, respectively. Define

G1D)=F gy (x+17) = 0.5F 4, (x) = 0.5

and
$2(0)=F 1, (x+6) — 0.5F ., (x) = 0.5,
where Fxm(') is the Kaplan-Meier estimate of the cumulative distribution function under

censoring. Zhou (2010, pg 8, equation (9), under review) showed that W1(n; x) + Wo(0; x) in
the statistic (5) based on the empirical likelihood ratio could be expressed as a quadratic form

n[$10) = 1)1, n[$2(0) — $2(0)]
& & ’

where .ff and g% are the variances of ¢1(n) and $»(0), respectively. Note that ¢1(n) = ¢(6) = 0
under the null hypothesis, and the parameters n and 6 can be estimated by setting ¢1(n) = 0 and

$2(6) = 0.
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Based on the uniform consistency and asymptotic normality of the Kaplan-Meier estimator
and the delta method, the above statistic is asymptotically equivalent to

U@)=n(i - c6)* /0> +n(@ - 6) 2,

where o-f and o-§ are the variances of n and 9, respectively. Now the statistic U(0) is minimized

at 0 = (carm + ap 0)/(cay + ay), where a;=1/c% and a»=1/c73. Substituting this back to U(6)
gives

G- )

U(lp)=———,
©) 1/ay+c%/a»

which asymptotically follows a 2 distribution with 1 degree of freedom, since var(n — cf) =
1/a; + c?/a, for two independent samples.

APPENDIX C: Computation of the empirical likelihood ratio statistic in R

Here we describe in detail some of the computations presented in Section 6. First the packages
enmpl i k and sur vi val need to be loaded into R [package sur vi val is only needed here to
supply the data set cancer].

data(cancer)

time <- cancer$time

status <- cancer$status-1
MMRtime(x=time, d=status, age=365.25)
$MeanResidual

[1] 275.9997

vV V V V

$MedianResidual
[1] 258.75

The following is the result from testing the mean residual times through the confidence interval
approach. First we need to define the g function for the mean residual life.

> mygfun <- function(s, age, muage) {as.numeric(s >= age)*(s-(age+muage))}

> el._cen.EM2(x=time, d=status, fun=mygfun, mu=0, age=365.25, muage=234.49389)
$Pval

[1] 0.1000000

> el.cen.EM2(x=time, d=status, fun=mygfun, mu=0, age=365.25, muage=323.1998)
$Pval

[1] 0.1

Therefore the 90% confidence interval for mean residual time at 365.25 days is [234.49389,
323.1998].
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For testing of the median residual time, we first need to code the gg function defined in (1) and
then use el . cen. EM2 to test.

> mygfun2 <- function(s, age, Mdage) {as.numeric(s<=(age+Mdage))
-0.5*as.numeric(s<=age) -0.5}

> el.cen.EM2(x=time, d=status, fun=mygfun2, mu=0, age=365.25, Mdage=184.75)
$Pval

[1] 0.1135797

> el.cen.EM2(x=time, d=status, fun=mygfun2, mu=0, age=365.25, Mdage=321.7499)
$Pval

[1] 0.1192006

This implies a 90% confidence interval for the median residual time is [184.75, 321.7499].
Note we do not get an exact p-value of 0.1 here. For the smoothed quantile, first define a
(linearly) smoothed g function, then find the confidence limits.

> mygfun22 <- function(s, age, Mdage) {

myfun7(s, theta=(age+Mdage), epi=1/20)-0.5*myfun7(s, theta=age, epi=1/20)
-0.5 }

> myfun7 <- function(x, theta=0, epi) {

if(epi <= 0) stop(“'epi must > 0")

u <- (x-theta)/epi

return( pmax(0, pmin(1-u, 1)) ) }

> el._.cen.EM2(x=time, d=status, fun=mygfun22, mu=0, age=365.25,
Mdage=184.7416765)$Pval

[1] 0.1000000

> el._cen.EM2(x=time, d=status, fun=mygfun22, mu=0, age=365.25,
Mdage=321.71153607)%Pval

[1] 0.1000000
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