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Abstract
MRI is a sensitive method for detecting subtle anatomic abnormalities in the neonatal brain. To
optimize the usefulness for neonatal and pediatric care, systematic research, based on quantitative
image analysis and functional correlation, is required. Normalization-based image analysis is one
of the most effective methods for image quantification and statistical comparison. However, the
application of this methodology to neonatal brain MRI scans is rare. Some of the difficulties are
the rapid changes in T1 and T2 contrasts and the lack of contrast between brain structures, which
prohibits accurate cross-subject image registration. Diffusion tensor imaging (DTI), which
provides rich and quantitative anatomical contrast in neonate brains, is an ideal technology for
normalization–based neonatal brain analysis. In this paper, we report the development of neonatal
brain atlases with detailed anatomic information derived from DTI and co-registered anatomical
MRI. Combined with a diffeomorphic transformation, we were able to normalize neonatal brain
images to the atlas space and three-dimensionally parcellate images into 122 regions. The
accuracy of the normalization was comparable to the reliability of human raters. This method was
then applied to babies of 37 to 53 post-conceptional weeks to characterize developmental changes
of the white matter, which indicated a posterior-to-anterior and a central-to-peripheral direction of
maturation. We expect that future applications of this atlas will include investigations of the effect
of prenatal events and the effects of preterm birth or low birth weights, as well as clinical
applications, such as determining imaging biomarkers for various neurological disorders.
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Introduction
Recent advances in obstetrics and neonatology have led to a marked improvement in
survival of babies with perinatal insults. However, the neurological and psychological
morbidities associated with these problems still remain (D'Angio et al., 2002; Marlow, 2004;
Vohr et al., 2000; Wilson-Costello et al., 2005). These resultant challenges are not restricted
to obvious disabilities, such as cerebral palsy, epilepsy, and mental retardation, but also
include impaired academic achievement and behavioral disorders that manifest after these
children reach school-age (Hack and Fanaroff, 1999; Hack et al., 2000; Perlman, 2001).
Despite the importance of treatment, there are currently a limited number of interventional
options to reduce or prevent the neurologic morbidity suffered by babies with prenatal
problems (Als et al., 2004; Blauw-Hospers and Hadders-Algra, 2005). One of the reasons
such treatments have not been developed is that the diagnosis depends on the neurological
evaluation, which can detect only substantial brain damage, while many neuro-cognitive
symptoms are not easily detectable during the first year of life. To develop new treatments,
methods are needed that can detect and quantify even subtle abnormalities of the neonatal
brain.

Imaging modalities have played an important role in detecting damage to the neonatal brain.
MRI, in particular, has advantages in showing subtle abnormalities, such as small
hemorrhagic lesions, ischemic lesions, and signal abnormalities that cannot be appreciated
by other modalities like CT or ultrasound. Previous studies have reported that there is a
substantial correlation between several types of abnormalities and their prognosis (De Vries
et al., 1999; Hayakawa et al., 1996; Inder et al., 2005; Roelants-van Rijn et al., 2001; Shah et
al., 2006; Woodward et al., 2006). However, there are several reasons why MRI has not
been routinely used to evaluate the neonatal brain. First, MR contrast in the neonate brain
varies considerably with age, and it is difficult to understand what constitutes a normal
appearance and what degree of variability constitutes a pathological condition. Second, the
location and the extent of abnormalities may vary considerably. To make MRI truly
applicable to evaluate abnormalities in the neonatal brain, a quantitative characterization of
the entire normal brain anatomy is an essential first step. For MRI analysis of the adult
brain, normalization-based quantitative analysis methods are widely used, which is an
effective way to quantitatively characterize the brain anatomy. For pediatric brain analysis,
attempts have been made to create age-specific brain templates (Fonov et al., 2010; Wilke et
al., 2008; Wilke et al., 2003; Yoon et al., 2009). However, for the neonate population, there
are only a small number of studies using image normalization (Kazemi et al., 2008; Kazemi
et al., 2007; Shi et al., 2009). One of the major issues has been the lack of a reliable method
for delineating neonatal brain structures, which is required for accurate normalization of one
brain to another. This difficulty is due to a reduction in gray matter/white matter contrast in
both T1- and T2-weighted images compared to the adult brain. There have been attempts to
increase the accuracy of tissue segmentation, using a region-wise comparison approach and
a multi-modal image set registration, which successfully increased the accuracy of the tissue
classification (Shi et al., 2010). This method could increase the normalization accuracy,
based on the T1- and T2-weighted images (Lorenzen et al., 2006; Shi et al., 2009). Accurate
registration of intra-white matter structures is, on the other hand, still challenging due to the
lack of contrasts.
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Diffusion Tensor Imaging (DTI)–derived contrasts (diffusion anisotropy and fiber
orientation) can provide rich anatomical information about the pre-myelinated neonatal
brain (Huang et al., 2006); in fact, most of the white matter structures seen in the adult brain
with DTI have already been established in the neonatal brain and can be visualized by DTI
(Zhang et al., 2007). Therefore, DTI contrast has the potential to guide normalization of the
neonatal brain more accurately than conventional relaxation-based MRI. In addition, DTI
can provide quantitative measures related to water diffusivity, which is believed to reflect
certain maturation processes, such as axonal growth and myelination (Beaulieu, 2002;
Dubois et al., 2008; Mori and Zhang, 2006; Mukherjee et al., 2002; Ramenghi et al., 2009).
These quantitative measures could be statistically analyzed in a tract-specific manner using
normalization-based DTI analyses, even for the pre-myelinated neonatal brain (Anjari et al.,
2007; Goodlett et al., 2009).

In this study, we created an MRI atlas for neonate brain analysis. This includes a group-
averaged atlas and a single-subject-based atlas that includes T1- and T2-weighted contrasts
and DTI-derived contrasts. One hundred and twenty-two brain structures were parcellated in
the atlas. In the past, we have developed a multi-contrast (T1-, T2-weighted, and DTI) adult
brain atlas (JHU -MNI atlas) and a normalization-based quantification analysis method for
quantitative MRI analysis (Oishi et al., 2009; Oishi et al., 2008). Here, we extended this
method to enable analysis of neonatal brains by combining the neonatal brain atlas and
multi-contrast diffeomorphic warping. The method was applied to the DTIs from normal-
term infants to measure the accuracy of atlas-based segmentation. In addition, the age
dependency of DTI parameters was characterized using 33 neonatal images from infants
who ranged in age from 37 to 53 post-conceptional weeks. Finally, the normal average
values and standard deviations of diffusion parameters of 24 brain structures were
characterized from normal-term neonates from 37 to 43 post-conceptional weeks to create a
term-equivalent database of DTI parameters.

Methods
Creation of multi-contrast MRI atlases

We created group-averaged atlases and a single-subject atlas. The purpose of a group-
averaged atlas is to determine the average shape and size of the neonate brain. This atlas can
be used as a template for the brain normalization using linear transformations or nonlinear
transformations with image “smoothing.” However, as a result of averaging, the sharpness
of the image contrast can be lost. Therefore, a single-subject atlas with the size adjusted to
that of the group-averaged atlas was created as well, providing a template for highly elastic
nonlinear transformations, which require sharp image features (Oishi et al., 2009).

Subjects—The data used to create the atlas were based on a de-identified database of
normal neonate brain MRI scans. The subjects recruited to create the database were born at
the Johns Hopkins Hospital, which is a regional referral, subspecialty care center. The
database contains 25 brain images from 0- to 4-day-old (38 to 41 post-conceptional weeks)
healthy, full-term neonates, including 15 boys and 10 girls. For the database creation,
permission was obtained from the Johns Hopkins Medicine Institutional Review Board and
written, informed consent was provided by the infants’ parents.

MRI scans—The scans were performed without sedation with infants asleep. To ensure
that neonates were sleeping during the scan, neonates were well fed before the scan and
were well wrapped in a blanket with the ears covered with an ear muff. The subjects were
then placed in cushions that occupied the space between the subject and the RF coil. Images
were acquired using a 3.0 T Philips scanner equipped with gradients of up to 8.0 G/cm per

Oishi et al. Page 3

Neuroimage. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



direction. The RF was transmitted by a body coil and the receive coil was an 8-element
SENSE coil, in which two of the coils were combined to be connected to a 6-channel
receiver. After T1-weighted scout imaging, Diffusion Tensor imaging (DTI), Double-echo
fast spin-echo (DE-FSE), and Magnetization-Prepared Rapid Gradient Echo (MPRAGE)
sequences were used to obtain images.

A single-shot EPI with SENSE acquisition was used for DTI (Bammer et al., 2001;
Jaermann et al., 2004; Pruessmann et al., 1999). The imaging matrix was 80 × 80 with a
field-of-view of 150 × 150 mm, which gave a nominal 1.88 mm isotropic in-plane
resolution. These were zero-filled to 256 × 256 mm. The slice orientation was axial with a
1.9 mm thickness parallel to the anterior–posterior commissure (AC - PC) line. Forty to fifty
slices covered the entire hemisphere and the brainstem. Echo time was 71 ms and repetition
time was more than 3s. A SENSE reduction factor of 3 was used. Diffusion-weighting was
applied along 30 independent axes (Jones et al., 1999) with b = 700 s/mm2, in addition to 5
minimally diffusion -weighted images. The scanning time for one complete DTI dataset was
approximately 5 min. Co-registered DE-FSE images were also acquired with a first echo
time of 27.7 ms, a second echo time of 120 ms, and a repetition time of 4.5 sec. The imaging
matrix was 80 × 70 with a field of view of 150 × 150 mm, zero-filled to 256 × 256, and an
axial slice thickness of 1.9 mm. For MPRAGE, we used an echo time of 4.6 ms and a
repetition time of 9.9 ms with an imaging matrix of 160 × 160 × 80 - 100 and a field of view
of 150 × 150 × 72 – 90 mm, zero-filled to 256 × 256 × 80 - 100 matrix acquired parallel to
the AC - PC line

DIT data processing—The raw diffusion-weighted images (DWIs) were first co-
registered to one of the minimally diffusion-weighted images and corrected for participant
motion and the linear portion of eddy current distortions using a 12-parameter affine
transformation of Automated Image Registration (AIR) (Woods et al., 1998). The six
elements of the diffusion tensor were calculated for each pixel with multivariate linear
fitting using DtiStudio (H. Jiang and S. Mori, Johns Hopkins University, Kennedy Krieger
Institute, lbam.med.jhmi.edu or www.MriStudio.org) (Jiang et al., 2006; Mori et al., 2008;
Pierpaoli et al., 2001). After diagonalization, three eigenvalues and eigenvectors were
obtained. For the anisotropy map, fractional anisotropy (FA) was used (Pierpaoli and Basser,
1996). The eigenvector (v1) associated with the largest eigenvalue was used as an indicator
of fiber orientation. For the mean diffusivity (MD) map, the average of three eigenvalues of
the tensor was used. A 24-bit, color-coded orientation map was created by assigning red,
green, and blue channels to the x (right-left), y (anterior-posterior), and z (superior-inferior)
components of the v1, where intensity was proportional to FA (Makris et al., 1997; Pajevic
and Pierpaoli, 1999). DTIs were then re-sliced to 0.6 mm isotropic resolution (180 × 220 ×
180 matrix). B0-susceptibility distortion was corrected using a previously published method
(Huang et al., 2008). Briefly, the least diffusion-weighted image (b0) of the DTI was warped
to the T2-weighted contrast of the DE-FSE image (echo time: 120 ms) that was resliced to
0.6 mm isotropic resolution (180 × 220 × 180 matrix), using a large deformation
diffeomorphic metric mapping (LDDMM) (Beg et al., 2005; Miller et al., 2006), and the
warping was applied to the tensor field. The tensor transformation was based on a method
proposed by (Xu et al., 2003). MPRAGE was also resliced to the same image matrix and
was linearly co-registered to the DE-FSE using a six-parameter rigid transformation of AIR.
These procedures resulted in a co-registered set of MPRAGE, DE-FSE, and B0–distortion-
corrected DTI, with a 0.6 mm isotropic resolution. All images were reviewed for artifacts,
and twenty DTIs, twenty T2-weighted images, and fourteen T1-weighted images were
selected out of 25 images as high quality images suitable for creating an atlas with the
following procedure.
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Atlas creation—The procedure followed six steps (Fig. 1) similar to the concept for
creating the adult group-averaged atlas (ICBM-152) (Mazziotta et al., 2001;Mazziotta et al.,
1995) and the single-subject atlas (colin27)(Aubert -Broche et al., 2006;Collins et al.,
1998;Holmes et al., 1998), all of which are commonly used in the neuroimaging community.
The key is to align the anterior commissure-posterior commissure (AC–PC) line using a
linear transformation. However, for the neonate brain, a single-subject atlas, like the
Talairach atlas for adult brains, which can be used as a reference for the AC–PC line has not
been established yet. Therefore, the common AC–PC line was set according to the shape and
size of the averaged brain. First, the orientation of the midline and the AC–PC line of each
T2 weighted image were aligned along the Y-axis of the image by rigid rotation using two-
point landmarks. Then, all images from the 20 subjects were aligned at the AC. The shift
and rotation matrices used for the co-registration were also applied to the MPRAGE and the
DTI. Second, an average image of the co-registered T2-weighted images was created. This
averaged image worked as a tentative template for the next step (1st template). Third, each
co -registered T2-weighted image was normalized to the 1st template using an affine
transformation of AIR to create the average image (2nd template). Fourth, each co -
registered T2-weighted image was normalized to the 2nd template using an affine
transformation to create the average image. The purpose of this step was to obtain a sharper
edge of the averaged image than that of the 2nd template. The linear transformation matrices
derived from this step were also applied to the co-registered MPRAGE and DTI to create an
averaged MPRAGE and DTI. The set of averaged T2-weighted images, MPRAGE, and DTI
were named the JHU-neonate-linear, since these images were created by averaging linearly
normalized images. Fifth, a single-subject image with the brain shape best fitted to that of
the JHU- neonate-linear was selected from the 20 images, and linearly normalized to the T2-
weighted image of the JHU-neonate-linear. The resultant transformation matrix was applied
to the co-registered MPRAGE and DTI to create a single-subject atlas with a brain size and
shape almost identical to that of the JHU-neonate-linear. These images were named the
JHU-neonate-SS. Finally, co-registered DTI images were nonlinearly normalized to the
single-subject atlas using dual-channel LDDMM (Ceritoglu et al., 2009), with MD and FA
maps to drive the transformation. The resultant nonlinear transformation matrices were also
applied to the co-registered MPRAGE and T2-weighted image to create a set of averaged
MPRAGE, T2-weighted image, and DTI. This set was named the JHU-neonate-nonlinear,
since these images were created by averaging nonlinearly normalized images. All
normalization was performed using DiffeoMap (www.mristudio.org, Johns Hopkins
University).

Parcellation of the MRI atlas—The deep white matter structures identified in our
previous studies of adult brains (Mori et al., 2008; Mori et al., 2005; Oishi et al., 2009)were
readily identified in the neonate brains using DTI contrasts. We manually parcellated these
structures on the JHU-neonate-SS using a color-coded orientation map as a guide (Appendix
fig.1). The parcellation followed the definition of our previous adult atlas as much as
possible. As previously reported (Zhang et al., 2007), the superior longitudinal fasciculus of
neonates was not necessarily clear for its entire length and had a fragmented appearance.
Therefore, the approximate location was estimated by extrapolating the location from the
adult atlas, and connecting the fragmented sections. After the core white matter regions were
defined, we identified the cortical surface and the subcortical gray matter using the
MPRAGE and T2-weighted images. Between the brain surface and the deep white matter,
we located the cerebral cortex and the superficial white matter adjacent to the cortex. We
parcellated this area according to the gyral pattern. The nomenclature followed our previous
adult MRI atlas (Oishi et al., 2009), based on Talairach’s atlas (Talairach and Tournoux,
1988). For these manual parcellation procedures, ROIEditor (www.Mristudio.org) was used
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with inspection of all three slice orientations. A total of 122 structures were parcellated, as
shown in the Appendix.

Application to DTI of normal-term infants
We applied the JHU-neonate-SS atlas and LDDMM to DTI datasets from healthy neonates
to measure the size and DTI parameters of each segmented brain structure. The
segmentation accuracy was also measured by comparing the automated results with manual
segmentation for selected brain structures. We used a de-identified database of normal infant
brain MRI scans who were born at the Queen’s Medical Center, Honolulu, Hawaii. The
database contains 33 brain images from 22 healthy full-term babies (ranging from 37 to 53
post-conceptional weeks), including 9 boys and 13 girls. For the brain imaging, permission
was obtained from the Co-operative Institutional Review Board of the Queen’s Medical
Center and the University of Hawaii, and written informed consent was provided by the
infants’ parents or legal guardians.

MRI scans and image processing—A setup that was similar to the scans performed to
create the JHU-neonate templates was used to scan these infants without sedation. Infant
motion was minimized by wrapping the infants in a vacuum immobilization mat (Noras
MRI Products, Hoechberg, Germany) with earmuffs. Images were acquired using a 3.0 T
Siemens TIM Trio scanner (Siemens Medical Solutions, Erlangen, Germany) equipped with
a twelve-channel, phased-array RF coil for parallel imaging. A single-shot EPI with SENSE
acquisition was used for DTI. The imaging matrix was 160 × 160 with a field-of-view of
160 × 160 mm, which resulted in a 1.0 mm isotropic in-plane resolution. The slice
orientation was axial with 2.0 mm thickness. Forty to fifty slices covered the entire cerebral
hemisphere. Echo time was 106 ms and repetition time was 7 to 9 sec, depending on the
specific absorption rate limitations. Diffusion-weighting was applied along 12 independent
axes with b = 1000 s/mm2, in addition to a minimally diffusion-weighted image. The DTI
processing followed exactly the method we used to create the JHU-neonate templates. The
procedures resulted in DTI maps with a 0.6 mm isotropic resolution and a 180 × 220 × 180
matrix.

Normalization of the images—Data from each subject was first co-registered to the
JHU-neonate-SS space and then linearly normalized to the JHU-neonate-SS using 12-
parameter affine transformation. The resultant matrix was applied to the tensor field to
create an affine-normalized tensor field as described in (Xu et al., 2003). FA and MD were
calculated from the normalized tensor field and then nonlinearly normalized to the FA and
MD map of the JHU-neonate-SS using LDDMM. The resultant matrix was applied to the
affine-normalized tensor field to create an LDDMM-normalized tensor field. During this
procedure, reverse-transformation, which can transform the JHU-neonate-SS atlas to each
co-registered image, was also created. DiffeoMap was used to run LDDMM, as described
elsewhere (Oishi et al., 2009).

Measurement of registration quality—To measure the accuracy of the white matter
registration, we selected five images from neonates of 40 post-conceptional weeks and four
images from infants of 49 - 52 post-conceptional weeks. Two types of accuracy
measurements, Dice’s coefficient (Dice) and L1 error, were used. We first delineated ten
brain structures on the normalized images manually (manual delineation), which worked as
a benchmark for the registration accuracy measurement. Then, we overlaid the parcellation
map onto the JHU-neonate-SS atlas to delineate the brain structures automatically
(automated delineation), and see how accurately the overlap reflected the manual
delineation.
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Manual delineation: Ten brain structures were delineated manually on five pre-determined
2D slices of the normalized images. The criteria for structural delineation closely followed
the method of parcellation in the JHU-neonate-SS atlas. Table 1 shows the list of these WM
structures. The delineated set of structures was named the “standard ROI set.” To investigate
inter-rater variability, two raters (K.O. and A.F., neurologist and neuroradiologist)
performed the manual delineation.

Automated delineation: The “standard ROI set” was readily identified by superimposing
the parcellation map of the JHU-neonate-SS atlas onto the normalized images.

Accuracy measurements: The various structures defined by automated and manual
delineation were saved as binary maps, in which the structure of interest was defined as “1”
and the rest of the pixels were “0.” By superimposing the binary maps from the automated
and manual methods, each pixel could be categorized into one of three classes: (1) pixels
that were outside the structures (“0”) in either method (nn); (2) pixels that were defined as
the structure of interest (“1”) in only one of the two methods (pn, np); and (3) pixels that
contained the structure in both methods (pp). After this categorization, reliability analyses
were performed using the Dice metric, which evaluates overlap of the two areas defined as
2pp/(pn + 2pp + np), and the L1 error, which evaluates misclassification error defined as (1-
pp/(pp+pn+np))/2 (Ratnanather et al., 2004). The Dice and L1 error metrics within the
manual trials by two different raters provided the level of precision for manual delineation,
which was treated as the gold standard. Then, the Dice and L1 error metrics comparing the
automated and manual delineation were calculated for each ROI.

DTI measurement of the segmented brain structures—To test the feasibility of the
atlas-based analysis to detect the diffusion properties of the infant brain using the JHU-
neonate-SS and LDDMM, we measured FA and MD of 20 white matter structures and four
deep gray structures of the 33 DTIs normalized to the JHU-neonate-SS. By using ROIEditor,
the parcellation map was overlaid on the normalized FA and MD maps to calculate the mean
and standard deviation for each structure. The cortical areas, brain stem, and the cerebellar
areas were omitted because only DTI was available, and about half the images did not cover
the entire brainstem or cerebellum.

Power analysis to detect FA and MD alterations—A power analysis was performed
to test the ability to detect subtle abnormalities, such as a 10% alteration of FA and MD for
each brain structure using the JHU-neonate-SS atlas and LDDMM. Past literature indicates
that the DTI parameters for several white matter bundles change drastically during the
month after birth (Dubois et al., 2008). Therefore, for the cross-sectional group analysis, we
needed to select subjects from a narrow age range. Since we assumed that the JHU-neonate
atlas would be used to normalize term-equivalent neonatal brains, we selected ten full-term
neonates, scanned at 38–43 post-conceptional weeks, for the analysis. We investigated the
required number of subjects to detect a 10% alteration in MD and FA of the target group,
compared to the control group, with p < 0.05, using a t-test. The software G*power (Faul et
al., 2007) was used for the analysis.

Results
Multi-contrast neonatal brain atlas

Fig. 2 shows the images from the JHU-neonate-linear, the JHU-neonate-nonlinear, and the
JHU-neonate-SS. The gray matter/white matter contrasts of the T1- and T2-weighted images
were opposite to those of adults, and had poor contrast inside the white matter area.
Conversely, DTI provided superior contrast to reveal the white matter anatomy. The core
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white matter structures, in particular, such as the internal capsule, were easily identified
even in the group-averaged images. The rightmost column shows the parcellation map
overlaid on the JHU-neonate-SS. This parcellation map works as a set of pre-defined ROIs
for automated brain parcellation after the normalization.

Measurement of registration quality
Fig. 3 shows the original neonate images and the images normalized to the JHU-neonate-SS
atlas, overlaid by the parcellation map that can qualitatively demonstrate the registration
accuracy. Structures that are grossly mis-registered are indicated by yellow arrows. After
affine transformation, overall brain shapes were well-normalized to the JHU-neonate-SS
space. However, registration accuracy of the inner structures was low, as can be appreciated
from the mismatch between the superimposed parcellation map and underlying white matter
structures. These registration errors were much improved after LDDMM transformation.

Fig. 4 shows the result of Dice and L1 error analyses. In most areas, the Dice scores between
automated and manual delineation were over 0.8, which indicate almost perfect registration
accuracy. Even in the thin, string-like structure of the cingulum, the Dice measure was more
than 0.75, which indicates substantial registration accuracy. Misclassification measured by
L1 error was comparable to that of the inter-rater comparison (Fig. 4B). There was no
difference in the registration accuracy measured by Dice and L1 errorbetween brains from
40 post -conceptional weeks and 49–52 post-conceptional weeks. There was also no
difference in the accuracy between manual–automated ROI registration and manual–manual
ROI registration (inter-rater variability). Therefore, this method could successfully
normalize the brain images ranging from 40 to 52 post-conceptional weeks, thus rivaling the
reproducibility of the manual segmentation.

Diffusion properties of the normal-term-birth neonate brain
Overall, we found a general trend toward decreasing MD and increasing FA with age, which
is interpreted as the maturation of the brain structures. In addition, there is a structure-
specific maturation pattern. The slope and the intercept (40 post -conceptional week
estimated value) of MD and FA against the age were calculated by linear regression. Fig. 5
shows a chart with scatter plots that indicate the relation between the MD slope and the FA
slope (Fig. 5A), the estimated MD at 40 post-conceptional weeks and the MD slope (Fig.
5B), and the estimated FA at 40 post -conceptional weeks and the FA slope of the 24
structures (Fig. 5C). In Fig. 5D, three representative areas with markedly different slopes
and intercepts are shown, which should provide an idea about the relationships between data
variability and effect size. Generally, the gray matter, limbic fibers (the fornix, the stria
terminalis, and the cingulum), and some of the association fibers (the uncinate, the external
capsule, and the inferior fronto-occipital fasciculus) show relatively slow decreases in MD
and slow increases in FA with age. There was a tendency of inverse relationship between the
slope and the 40-week intercept for MD(Fig. 5B) but not for FA (Fig. 5C). Within projection
fibers, fibers that are located distant from the brainstem (the corona radiata, posterior
thalamic radiation, and the sagittal striatum) show a higher MD at 40 weeks and a faster MD
decrease with age than those that are located close to the brainstem (the posterior limb of the
internal capsule, the retrolenticular part of the internal capsule, and the cerebral peduncle).
Areas with rich crossing fibers (the corona radiata and the anterior limb of the internal
capsule) show a lower FA at 40 weeks and a slower FA increase with age than those with
less crossing fibers (the posterior limb of the internal capsule, the retrolenticular part of the
internal capsule, the cerebral peduncle, the posterior thalamic radiation, and the sagittal
striatum). Within association fibers, the superiorly located structures (the superior
longitudinal fasciculus and the superior fronto-occipital fasciculus) show a higher MD at 40
weeks and a faster MD decrease with age than inferiorly located structures (the external
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capsule, the inferior fronto-occipital fasciculus, and the uncinate), even though the FA at 40
weeks and the FA slopes were similar.

Required number of subjects to detect a 10% alteration in FA and MD
To detect a 10% alteration in FA and MD, most of the 24 structures required fewer than 20
subjects, which was sensitive enough for the subsequent cross-sectional group analysis
(Table 2). However, we anticipate that this method will not be suitable to detect FA
differences less than 10% in the basal ganglia, such as in the caudate, the putamen, and the
globus pallidus, since the standard deviation of the FA was too high.

Discussion
Multi-contrast-based atlas for neonatal brain normalization studies

The atlases created in this paper contain three types of MR contrasts: T1-weighted; T2-
weighted; and DTI. This enabled us to perform not only the DTI-based studies described in
this paper, but also T1- or T2- weighted image-based normalization studies. There are
studies about the effects of the atlas sharpness and the elasticity of the transformation (warp
regularization), which suggest that better normalization accuracy can be achieved by the
proper choice of atlas sharpness and warp regularization(Van Leemput, 2009; Yeo et al.,
2008) . To respond to the various transformation methods with various warp regularizations
used in the neuroimaging studies, we created two types of the group-averaged atlases and a
single-subject atlas.

JHU-neonate-linear—This atlas was created by linearly averaging MRI data from 20
neonates (DTI and T2-weighted image) and 14 neonates (T1-weighted image). Since this
linear transformation is not based on a single representative template, the shape and size
represent average features of neonate brains. A group-averaged MRI template based on
linear transformation has been widely used as a template for both linear and nonlinear
normalizations (Mazziotta et al., 2001; Mazziotta et al., 1995).

JHU-neonate-nonlinear—Researchers have attempted to create templates based on
nonlinear transformation because such templates provide a sharper contrast for each brain
structure than that of linear transformation-based templates. This may possibly improve the
registration accuracy, even though the choice depends on the study design. Therefore, we
also created a nonlinear transformation-based template so that researchers can use the
template of their choice. This could be a valuable template if nonlinear transformation with
isotropic spatial smoothing is used. A traditional pair-wise approach was used to create the
JHU-neonate nonlinear atlas. This method is intuitive, and is commonly used for atlas
creation. On the other hand, the shortcoming of using a pair-wise approach is that, even after
averaging of the normalized images, the averaged image is still inevitably biased by the
selected single-subject image that was used as the template. To avoid this bias, group-wise
registration methods have been developed (Bhatia et al., 2004). However, we still adopted a
pair-wise approach, because we needed to use the resultant JHU-neonate nonlinear atlas to
guide the manual parcellation of the deep white matter structures, as mentioned in the next
paragraph. In addition, we intended to keep the consistency between group averaged atlas
and the single subject atlas.

JHU-neonate-SS—When using highly nonlinear normalizations without isotropic spatial
smoothing, our experience has shown that the blurred anatomical definitions in the group-
averaged template could confuse the transformation process (Oishi et al., 2009). This
prompted us to construct the single-subject MRI atlas. Compared to the group-averaged
atlases, the advantage of the single-subject atlas is that it contains sharp definitions of

Oishi et al. Page 9

Neuroimage. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



anatomical structures. In particular, the structures near brain surface cannot be appreciated
in group-averaged atlases since those structures are highly variable across individuals.
However, this can also be a disadvantage of the single-subject atlas since it contains
anatomical features that exist only in the arbitrarily selected subject. Therefore, to create the
parcellation map of the white matter, we selected only the structures with less variability that
could be appreciated even in the JHU-neonate-nonlinear atlas. One idea about creating an
unbiased atlas with the image sharpness comparable to the single-subject atlas is to create a
Bayesian template (Ma et al., 2008) from a large number of neonatal images, which will be
the focus of our future study.

Accuracy of the registration
It was essential to determine the accuracy of the atlas-based anatomical segmentation. We
used the parcellation map of the JHU-neonate-SS and compared the segmentation results to
manual-based delineation. The average Dice measure was 0.82 +/− 0.061 (40 post-
conceptional weeks) and 0.82 +/− 0.058 (49–52 post-conceptional weeks), while the average
Dice of the manual method was 0.82 +/− 0.075. The average L1 error was 0.15 +/- 0.045 (40
post-conceptional weeks) and 0.15 +/− 0.041 (49–52 post-conceptional weeks), while the
average L1 error of the manual method was 0.15 +/− 0.051. Thus, the accuracy of the atlas-
based anatomical segmentation achieved the same accuracy as manual segmentation.
However, this level of accuracy was achieved for normal subjects and may not hold for
pathological brains. If mis-registration occurs due to severe brain abnormality, the
automated segmentation may report erroneous results for FA and MD measurements.
Therefore, it is essentialto carefully interpret the results.

DTI measurements of normal neonate brain
Analysis of neonate brains is expected to have a significant value for future assessment of
various abnormalities at birth. If we can establish a quantitative tool to evaluate the
anatomies of these abnormalities, and compare them with normal values, it is expected to
complement the routine, qualitative evaluation of the images.

Based on the MRI atlas developed in this study, we characterized DTI parameter changes
during the normal brain development process within three months after birth. Myelination
processes have been studied in postmortem tissue (Yakovlev and Lecours, 1967) and,
recently, with MRI (Berman et al., 2005; Cascio et al., 2007; Dubois et al., 2008; Dubois et
al., 2006; Gao et al., 2009; Huppi et al., 1998; Lobel et al., 2009; Neil et al., 1998; Partridge
et al., 2005; Paus et al., 2001; Provenzale et al., 2007). The result of this study is congruent
with these studies that indicate a basic pattern to the maturation process, such as an FA
increase and an MD decrease with age, and a posterior-to-anterior and a central-to-
peripheral direction of maturation. We also found several patterns of the relationship among
the MD and FA at 40 post-conceptional weeks, age-dependent FA increasing slope, and the
age-dependent MD decreasing slope. Namely, we observed that in the more superior
locations, the MD was higher and decreased faster with age in the corticofugal pathway (i.e.,
the superior corona radiata > the posterior limb of internal capsule > the cerebral peduncle),
and in the more anterior regions, the MD was higher and decreased faster with age in the
corona radiata (the anterior portion > the superior portion > the posterior portion). These
tendencies seen in MD were not observed in the FA analysis, especially for the structures
with rich crossing fibers, such as the corona radiata. Our analysis suggested that the time-
dependent FA changes may provide more information about the development of the crossing
fibers, compared with the time-dependent MD change. However, this is outside the scope of
this paper and requires further longitudinal investigations.
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When interpreting the regional FA values based on the proposed method, care must be taken
because FA is the primary contrast that drives the registration of the parcellation map. For
example, if a white matter region has abnormally low FA, it could lead to a reduction in the
size of the segmentation, while the FA value remains unchanged. Any changes in segmented
volumes and FA values must be carefully interpreted.

Potential for future research and clinical applications
The novel aspect of this study is that our measurement is based on 3D regions-of-interest
placed by a fully automated method to evaluate the entire brain. This is important for
clinical and research application studies since manual drawing of 3D regions-of-interest is
prohibitively labor-intensive and subjectivity is difficult to avoid. In addition, our atlas
covers as many as 22 brainstem and cerebellar structures, 38 cerebral white matter
structures, 10 deep gray matter structures, and 52 cerebral cortical structures, for a total of
122 structures bilaterally. The proposed method is, thus, suitable for quantitative screening
of abnormal brain regions.

From the normal-term neonate dataset, we estimated the statistical power required to detect
abnormalities using the combination of the JHU-neonate-SS and LDDMM. The required
number was adequate to detect a subtle alteration in MD and FA in most of the core white
matter areas. This is important for research planning since we can reduce the number of
scans required to test research hypotheses. However, note that FA is not suitable to detect
alterations of the basal ganglia, because approximately 200 subjects would be required to
detect a 10% alteration. Instead, we recommend using MD, which requires only 10–12
subjects to test hypotheses.

Future applications of this atlas include scientific investigations, such as determining the
effects of prenatal events (ischemia, infections, or exposure to toxic substances) and the
effects of preterm birth or low birth weight. This method enables us to perform whole-brain
analysis, which is important to visualize structural specificity, but was lacking in previous
studies. These basic studies will lead to more clinical investigations, such as seeking
imaging biomarkers for various neurological disorders. Another future direction is to
optimize the normalization approach. The tensor based or vector based normalization could
potentially improve the registration accuracy.

In summary, we developed neonatal brain atlases for atlas -based, whole-brain analysis.
Combined with a highly elastic nonlinear transformation, the entire brain was three-
dimensionally parcellated into122 regions. This automated approach is fast and avoids the
subjectivity associated with manually drawn ROIs. The accuracy level of our approach was
measured using normal subjects and was comparable to the reliability level of human raters.
This tool is expected to be applied for whole-brain screening to detect developmental
abnormalities. The atlases developed in this study are now available for downloading from
our website (http://lbam.med.jhmi.edu/ or www.mri.kennedykrieger.org). The software
programs used in this study are also available (www.MriStudio.orgor
www.mri.kennedykrieger.org).
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Figure 1.
Diagram showing the steps required to create group-averaged neonate atlases (JHU-
neonate-linear and JHU-neonate-nonlinear) and a single-subject atlas (JHU-neonate-SS).
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Figure 2.
Multi-contrast atlases created in this study. The upper row shows a T1-weighted atlas, the
middle row shows a T2-weighted atlas, and the lower row shows a DTI atlas (color-coded
orientation map of the diffusion anisotropy were used as the representative image). The
JHU-neonate-linear atlas (the leftmost column) represents the average size and shape of the
twenty images used to create the template. The sharpness of the edge of each brain structure
seen in the JHU-neonate-nonlinear atlas (the column next to the linear template) indicates
that the LDDMM transformation was fairly accurate. The JHU-neonate-SS atlas (the
rightmost two columns; right column with the parcellation map) was used as a template for
the normalization using LDDMM.
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Figure 3.
Examples of the normalization using 12-parameter affine transformation of AIR and multi-
channel LDDMM. The original neonate images from 40 post-conceptional weeks (left two
images) and 50 post-conceptional weeks (right two images) are shown in the upper row.
Note that the size of the brain is larger at 50 post-conceptional weeks. The images were
normalized to the JHU-neonate-SS space and overlaid by the parcellation map that can
qualitatively demonstrate the registration accuracy. The mis-registrations seen in the ALIC,
PLIC, RLIC, CC, EC, and PTR after affine normalization were corrected after LDDMM.
See the appendix for abbreviations.
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Figure 4.
The Dice (A) and L1 error (B) measures for each brain structure. The data are from
averageof all ten infants (all: white bars), average of five 40 post-conceptional weeks (40
weeks: bars with dots), average of five 49 – 52 post-conceptional weeks(49 – 52 weeks: ho
rizontal lines), and inter-rater comparison (Inter-rater: black bars). There was no difference
in the Dice and L1 error measures between all and inter-rater, and between 40 weeks and 49
– 52 weeks of age.
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Figure 5.
The relationship between (A) the age-dependent MD decreasing slope and the age-
dependent FA increasing slope, (B) the estimated MD at 40 post-conceptional weeks and the
age-dependent MD decreasing slope, and (C) the estimated FA at 40 post-conceptional
weeks and age-dependent FA increasing slope. The white matter structures were categorized
to the association fibers (black dots: SLF, SFO, ILF, IFO, and UNC), the commissural fibers
(pink dots: CC and TAP), the limbic fibers (blue dots: CGC, CGH, Fx, and ST), and the
projection fibers (green dots: ALIC, PLIC, RLIC, CP, PTR, SS, ACR, SCR, and PCR). (D):
Linear regression analysesof MD and FA from three representative areas. Open squares
indicate data from boys, and black circles indicate data from girls. The MD and FA of each
structure show time-dependent changes with markedly different slopes and intercepts. See
the appendix for abbreviations.
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Appendix figure.
The detail of the parcellation map on the JHU-neonate-SS atlas. Numbers indicated in the
figure are identical to the structure number listed in the appendix table. For the manual
parcellation, we used the following criteria. The first criterion was the clear boundary
defined by fiber orientation difference, which is obvious even in the color-coded orientation
map of the group averaged atlas (JHU-neonate-nonlinear). This procedure allowed us to
parcellate deep gray and white matter structures. The exceptions were between anterior/
superior and superior/posterior subdivision of the corona radiata, and between posterior
thalamic radiation and sagittal stratum, which were arbitrary defined. The second criterion
was a pattern of gyrus/sulcus formation, which is obvious in T1-weighted atlas of JHU-
neonate-SS. Lastly, we extend the sulcus to the deep white matter structures as smooth as
possible. Many boundaries in this paper were consistent with our three previous papers to
establish the adult atlases (Mori et al., 2008; Oishi et al., 2009; Oishi et al., 2008)
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Table 1

List of seven brain structures and slice locations for manual delineation

Axial # structures

z = 91 posterior limb of the internal capsule, the putamen, and the external capsule

z = 80 anterior limb of the internal capsule, thalamus

z = 111 cingulum

Sagittal #

x = 90 corpus callosum
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Appendix

Parcellated structures and abbreviations

abbreviation structure left/right volume (mm3)

1 CC corpus callosum left 3677

2 CC corpus callosum right 4194

3 ALIC anterior limb of internal capsule left 883

4 ALIC anterior limb of internal capsule right 889

5 PLIC posterior limb of internal capsule left 1181

6 PLIC posterior limb of internal capsule right 1146

7 RLIC retrolenticular part of internal capsule left 345

8 RLIC retrolenticular part of internal capsule right 337

9 ACR anterior corona radiata left 1031

10 ACR anterior corona radiata right 913

11 SCR superior corona radiata left 1692

12 SCR superior corona radiata right 1946

13 PCR posterior corona radiata left 545

14 PCR posterior corona radiata right 606

15 CGC cingulum cingular part left 1009

16 CGC cingulum cingular part right 1064

17 CGH cingulum hippocampal part left 632

18 CGH cingulum hippocampal part right 559

19 Fx fornix left 865

20 Fx fornix right 1139

21 ST stria terminalis left 785

22 ST stria terminalis right 754

23 TAP tapetum left 688

24 TAP tapetum right 670

25 SLF superior longitudinal fasciculus left 667

26 SLF superior longitudinal fasciculus right 738

27 EC external capsule left 1818

28 EC external capsule right 1696

29 PTR posterior thalamic radiation left 1695

30 PTR posterior thalamic radiation right 1687

31 SS sagittal stratum left 1048

32 SS sagittal stratum right 997

33 Thal thalamus left 3824

34 Thal thalamus right 4209

35 Put putamen left 1301

36 Put putamen right 1153

37 GP globus pallidus left 473

38 GP globus pallidus right 418

39 Cau caudate nucleus left 1181
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abbreviation structure left/right volume (mm3)

40 Cau caudate nucleus right 1254

41 CP cerebral peduncle left 500

42 CP cerebral peduncle right 497

43 SFO superior fronto-occipital fasciculus left 217

44 SFO superior fronto-occipital fasciculus right 234

45 IFO inferior fronto-occipital fasciculus left 437

46 IFO inferior fronto-occipital fasciculus right 438

47 CST corticospinal tract left 157

48 CST corticospinal tract right 191

49 SCP superior cerebellar peduncle left 303

50 SCP superior cerebellar peduncle right 415

51 MCP middle cerebellar peduncle left 696

52 MCP middle cerebellar peduncle right 747

53 ICP inferior cerebellar peduncle left 171

54 ICP inferior cerebellar peduncle right 175

55 PCT pontine crossing tract left 149

56 PCT pontine crossing tract right 210

57 UNC uncinate fasciculus left 163

58 UNC uncinate fasciculus right 203

59 midbrain midbrain left 781

60 midbrain midbrain right 983

61 pons pons left 143

62 pons pons right 192

63 ML medial lemniscus left 112

64 ML medial lemniscus right 163

65 Medulla medulla oblongata left 211

66 Medulla medulla oblongata right 256

67 SFG superior frontal gyrus left 12457

68 SFG superior frontal gyrus right 13720

69 MFG middle frontal gyrus left 10497

70 MFG middle frontal gyrus right 11650

71 IFG inferior frontal gyrus left 6151

72 IFG inferior frontal gyrus right 5565

73 MFOG medial fronto-orbaital gyrus left 2706

74 MFOG medial fronto-orbaital gyrus right 1956

75 LFOG lateral fronto-orbital gyrus left 2912

76 LFOG lateral fronto-orbital gyrus right 2878

77 RG gyrus rectus left 2247

78 RG gyrus rectus right 2857

79 PrCG precentral gyrus left 7618

80 PrCG precentral gyrus right 5993

81 PoCG postcentral gyrus left 6930
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abbreviation structure left/right volume (mm3)

82 PoCG postcentral gyrus right 5443

83 SPL superior parietal lobule left 7535

84 SPL superior parietal lobule right 7957

85 PrCu precuneus left 3289

86 PrCu precuneus right 3925

87 CingG cingular gyrus left 7963

88 CingG cingular gyrus right 9947

89 SMG supramarginal gyrus left 4200

90 SMG supramarginal gyrus right 4093

91 AG angular gyrus left 7268

92 AG angular gyrus right 6439

93 STG superior temporal gyrus left 7056

94 STG superior temporal gyrus right 7140

95 MTG middle temporal gyrus left 6565

96 MTG middle temporal gyrus right 5693

97 ITG inferior temporal gyrus left 4188

98 ITG inferior temporal gyrus right 4326

99 Fu fusiform gyrus left 5078

100 Fu fusiform gyrus right 5412

101 PHG parahippocampal gyrus left 531

102 PHG parahippocampal gyrus right 590

103 ENT entrhinal cortex left 887

104 ENT entrhinal cortex right 903

105 SOG superior occipital gyrus left 2293

106 SOG superior occipital gyrus right 2139

107 MOG middle occipital gyrus left 6702

108 MOG middle occipital gyrus right 6935

109 IOG inferior occipital gyrus left 3135

110 IOG inferior occipital gyrus right 2854

111 Cu cuneus left 3173

112 Cu cuneus right 2787

113 LG lyngual gyrus left 5004

114 LG lyngual gyrus right 5526

115 Amyg amygdala left 286

116 Amyg amygdala right 310

117 Hippo hippocampus left 936

118 Hippo hippocampus right 826

119 Cerebrellum cerebellar hemisphere left 11967

120 Cerebrellum cerebellar hemisphere right 12707

121 Ins insular cortex left 1662

122 Ins insular cortex right 1671
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