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Abstract
Corneal Confocal Microscopy (CCM) imaging is a non-invasive surrogate of detecting,
quantifying and monitoring diabetic peripheral neuropathy. This paper presents an automated
method for detecting nerve-fibres from CCM images using a dual-model detection algorithm and
compares the performance to well-established texture and feature detection methods. The
algorithm comprises two separate models, one for the background and another for the foreground
(nerve-fibres), which work interactively. Our evaluation shows significant improvement (p ≈ 0) in
both error rate and signal-to-noise ratio of this model over the competitor methods. The automatic
method is also evaluated in comparison with manual ground truth analysis in assessing diabetic
neuropathy on the basis of nerve-fibre length, and shows a strong correlation (r = 0.92). Both
analyses significantly separate diabetic patients from control subjects (p ≈ 0).

1 Introduction
Diabetic Peripheral Neuropathy (DPN) is one of the most common long-term complications
of diabetes. The accurate detection and quantification of DPN are important for defining at-
risk patients, anticipating deterioration, and assessing new therapies. Current methods of
detecting and quantifying DPN, such as neurophysiology, lack sensitivity, require expert
assessment and focus only on large nerve-fibres whereas the earliest signs of neuropathy are
likely to be found among small nerve-fibres. On the other hand, small nerve-fibre damage is
currently assessed using skin/nerve biopsy, which is highly invasive and is not suitable for
repeated investigations.

However, recent research [15,10,8] using Corneal Confocal Microscopy (CCM) suggests
that this non-invasive, and hence reiterative, test might be an ideal surrogate endpoint for
human diabetic neuropathy. These studies demonstrate that measurements made by CCM
accurately quantify corneal nerve fibre morphology. The measurements reflect the severity
of DPN and relate to the extent of intra-epidermal nerve-fibre loss seen in skin biopsy.
However, the major limitation preventing extension of this technique to wider clinical
practice is that analysis of the images using interactive image analysis is highly labour-
intensive and requires considerable expertise to quantify nerve-fibre pathology. To be
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clinically useful as a diagnostic tool, it is essential that the measurements be extracted
automatically.

The first critical stage in analysis of CCM images (an example is shown in Figure 1(a)) is
the detection of nerve-fibres. This is challenging as the nerve-fibres often show poor
contrast in the relatively noisy images. The literature on this topic is not extensive, although
the problem has a superficial similarity to other, more widely investigated, applications,
such as detection of blood-vessels in retinal images. Ruggeri et al. [17] describe a heuristic
method that was adapted from retinal analysis. In [2] we conducted a preliminary
comparison of methods for contrast enhancement of nerve-fibres, comparing a Gabor
wavelet with a well-established line detector.

This paper presents a dual-model algorithm for automatic detection and measurement of
nerve-fibres in CCM images. Using a 2D Gabor wavelet and a Gaussian envelope, the dual-
model of foreground (nerve-fibres) and background is constructed and applied to the
original CCM image. The detection relies on estimating the correct local and dominant
orientation of the nerve-fibres. Identifying low-contrast fibrous structures is a commonly
encountered problem in several areas of investigation. Examples include mammography,
retinopathy, angiography and detection of asbestos fibres. A number of methods have been
developed and successfully applied in these applications. We evaluate our dual-model in
comparison with some of these methods and with appropriate well-established feature
detectors. While our analysis focuses on CCM images, our results suggest that the this may
be an appropriate contrast enhancement method in other application domains. In addition to
the evaluation of the nerve-fibre detection responses, we have also evaluated the clinical
utility of the method by a comparison with manual analysis.

2 Linear-Structure and Feature Detection
A method of linear structure detection (Line Operator - Linop), originally developed for
detection of asbestos fibres [4] has also been shown to be effective in detecting ducts in
mammograms [18]. Linop exploits the linear nature of the structures to enhance their
contrast by computing the average intensity of pixels lying on a line passing through the
reference pixel for multiple orientations and scales. The largest values are chosen to be
corresponding to the line, the strength of which is determined by the difference with the
average intensity of the similarly oriented square neighbourhood.

In a preliminary study [2], we use the 2D Gabor filter [9] to detect nerve-fibres in CCM
images. The filter is a band-pass filter that consists of a sinusoidal plane wave with a certain
orientation and frequency, modulated by a Gaussian envelope. This spatial domain
enhancement is based on the convolution of the image with the even-symmetric Gabor filter
that is tuned to the local nerve-fibre orientation.

Frangi et al. [6] used a multiscale decomposition of the Hessian matrix to detect and
measure blood vessels in Digital Subtraction Angiography images. They derived a
discriminant function based on the eigenvalues and eigenvectors that has maximum response
for tube-like structures. The external energy is used to attract the curve towards points which
have a high likelihood of lying on a central vessel axis.

The Dual-Tree Complex Wavelet Transform (DTCWT) [11] is an extension of the Discrete
Wavelet Transform (DWT), which provides a sparse representation and characterisation of
structures and texture of the image at multiresolutions. The DTCWT utilises two DWT
decompositions (trees) with specifically selected filters that gives it the properties of
approximate shift-invariance and good directionality. The key feature of the DTCWT
operation lies in the differences between the filters in the two trees.
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The Monogenic signal [5] (a variant of a 2D analytic signal) is an extension of the analytic
signal using quaternionic algebra in an attempt to generalise the method so it is capable of
analysing intrinsically 2D signals e.g. structures within images. The Monogenic signal is
based on the Riesz transform, which is a 2D generalization of the Hilbert transform used in
the conventional analytic signal. The Monogenic signal is defined as the combination of the
original signal and the Riesz-transformed one in the algebra of quaternions.

3 Dual-Model Nerve-Fibre Detection
In order to quantify the CCM images the nerve-fibres have to be detected. These captured
images of nerve-fibre structures could suffer from several types of corruption due to some
acquisition conditions, and nerve-fibres may appear faint due to small size or being only
partly in the focus plane. Therefore, a nerve-fibre contrast enhancement algorithm is needed
to exploit the linear structure of the nerve-fibres and distinguish them from the background
noise. All of the methods described in the previous section are capable of providing this
enhancement. In the next section we describe our approach.

3.1 Nerve-Fibre Contrast Enhancement
For this purpose the foreground model  is an an even-symmetric and real-valued Gabor
[9,3] wavelet and the background model  is a two-dimensional Gaussian envelope.

(1)

(2)

(3)

(4)

The x and y axes of the dual-model coordinate frame xθ and yθ are defined by a rotation of θ,
which is the dominant orientation of the nerve-fibres in a particular region within the image
(see Section 3.2). This dual-model is used to generate the positive response  =  + 
and the negative response  =  −  that are applied to the original CCM image and can
be represented as in Equations (5) and (6) respectively.

(5)

(6)

Dabbah et al. Page 3

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2011 March 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The equations of  and  assume that the Gaussian envelope of both responses are

identical i.e. they have the same variances  and the same aspect ratio γ. The magnitude
of the Gaussian envelope α defines the threshold in which a nerve-fibre can be distinguished
from the background image. The value of α can be set empirically to control sensitivity and
accuracy of detection. The wavelength λ defines the frequency band of the information to be
detected in the CCM image. Its value might be computed for a subregion within the image
that has significant variability of nerve-fibre width. However for simplicity, λ is chosen to be
a global estimate of the entire image based on empirical results.

This in turn enhances the nerve-fibres that are oriented in the dominant direction, and
decreases anything that is oriented differently by increasing the contrast between the
foreground and the noisy background, whilst effectively reducing noise around the nerve-
fibre structure as shown in Figure 1(b). This pixel-wise operation adjusts the models to suit
the local neighbourhood characteristics of the reference pixel at f(i,j) by modifying the
parameters of the foreground and background models. The dot products of the models and
the reference pixel’s neighbourhood (Equations 7 and 8) are then combined to generate the
final enhanced value of this particular reference pixel g(i,j) (Equation 9).

(7)

(8)

(9)

The neighbourhood area of the reference pixel is defined by the width ω. The sharpness of
the transition of the enhanced image value at a particular pixel g(i,j) is controlled by k. A
larger k amounts to a sharper transition when Γn = 0.

3.2 Nerve-Fibre Orientation Estimation
In CCM images, the nerve-fibres flow in locally consistent orientations everywhere. In
addition, there is a global orientation that dominates the general flow. This orientation field
describes the coarse structure of nerve-fibres. Using the least mean square (LMS) algorithm
[7], the local orientation of the block centred at certain pixel is computed as in [16].

Since the orientations vary at a slow rate, a low-pass Gaussian filter is applied globally in
order to further reduce errors at near-nerve-fibre and non-nerve-fibre regions. The LMS
produces a stable smooth orientation field in the region of the nerve-fibres; however when
applied on the background of the image, i.e. between fibres, the estimate is dominated by
noise due to the lack of structure and uniform direction.

4 Experimental Results and Analysis
The evaluation has been conducted on a database of 525 CCM images captured using the
HRT-III1 microscope from 69 subjects (20 controls and 49 diabetic patients). The resolution
is 1.0417μm and the field of view is 400 × 400μm2 of the cornea. For each individual,
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several fields of view are selected manually from near the centre of the cornea that show
recognisable nerve-fibres. Using the Neuropathy Disability Score (NDS) [1], 48 patients
were categorised into four groups according to severity of neuropathy (asymptomatic: 0
≥NDS≤ 2 (n = 26), mild: 3 ≥NDS≤ 5 (n = 9), moderate: 6 ≥NDS≤ 8 (n = 10) and severe: 9
≥NDS≤ 10 (n = 3)).

The performance of all methods is obtained by validating the extracted nerve-fibres in
comparison with an expert manual delineation using CCMetrics2. Only the raw response of
each method is taken into account without any further post-processing operations or shade
correction methods as shown in Figure (1). Binary images are obtained by a simple uniform
thresholding operation that is followed by a thinning operation to achieve a one-pixel-wide
skeleton image.

4.1 Comparison of Nerve-Fibre Detection Methods
Three measures have been used in order to quantify the evaluation: the false-positive (FPR),
the true-positive (TPR) and the equal-error rate (EER), which is the average of optimal FPR
and false-negative rate at minimal difference between both. The measurements are taken by
comparing the generated skeleton at different threshold intervals of the methods’ responses
with the manually delineated “ground-truth”. A tolerance of ±3.141μm (3 pixels) was
allowed in determining coincidence between the ground-truth and the detected nerve-fibres.
The Peak Signal to Noise Ratio (PSNR) is also used to evaluate the performance of all
methods. The PSNR is computed with respect to the mean squared error of the detected
nerve-fibres from the manual delineation. The practical implementations of the Hessian, the
DTCWT and the Monogenic signal were obtained from public domain sources [12,14,13],
while the rest are implemented by our research group.

The EER and PSNR values for all the methods are presented in the box-plots in Figure 2 and
Table 1. Each data point in Figure 2 corresponds to the evaluation on one of the 525 CCM
images in the database. The dual-model shows lower EER and higher PSNR than all other
methods (Table 1). These improvements are statistically significant (p ≈ 0 using three
different non-parametric tests). The table also shows that the standard deviations of both
EER and PSNR are low for the dual-model, which indicates a more stable and robust
behaviour. The closest competitor is Linop. The methods designed for linear structures
perform rather better on this test than the more generic DTCWT and Monogenic signal
methods.

The superior performance of the dual-model is borne out by the ROC curves of Figure 2, in
which the dual model shows improved detection at all operation points.

4.2 Assessment of Clinical Utility Results
In previous studies, using manual measurement of nerve-fibres, several features have been
used to quantify the CCM images, including nerve-fibre length (NFL): the total length of
nerve-fibres measured in an image, nerve-fibre density: the total number of nerve-fibres per
unit area and branch density: the number of fibre branches per unit area. Of these nerve-fibre
length proved to be the most discriminating, and we use this measure here to compare
automated with manual measurement of the nerve-fibre images.

The box-plots in Figure 3 show a strong similarity between the manual and the automated
analysis. However the scale of the NFL has slightly changed from (3.68–33.91) for the

1Heidelberg Engineering Inc., modified to acquire corneal confocal images.
2CCMetrics is a purpose built interactive graphical interface which helps experts to manually delineate nerve-fibres in CCM images.
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manual analysis to (5.67–26.53) for the automated analysis. ANOVA analysis results in a p-
value for discrimination among these groups which is slightly higher for the automated than
the manual analysis, though both are significant (p ≈ 0). The automated NFL measurements
show a very strong correlation (r = 0.92) with the manual NFL values, which indicates that
the automated system is successfully identifying the correct nerve-fibres. The coeffient of
variation  of the manual analysis is 0.34, reducing for the automated analysis to 0.29,
which indicates more reliability and robustness of the results.

5 Conclusion
The analysis of CCM images requires the identification of fibre-like structures with low
contrast in noisy images. This is a requirement shared by a number of imaging applications
in biology, medicine and other fields. A number of methods have been applied in these
applications, and we have compared some of these, and more generic methods with a dual-
model detection algorithm devised for this study. The comparison used a large set of images
with manual ground truth. In terms of both error-rates (pixel misclassification) and signal-to-
noise ratio, the dual model achieved highest performance. It seems reasonable to propose
that this filter is likely to prove equally useful in applications of a similar nature. The
question of the clinical utility of the method was also addressed in this paper. The evaluation
has shown that the automatic analysis is consistent with the manual ground truth with a
correlation of (r = 0.92). Similarity in grouping control and patient subjects between manual
and automated analysis was also achieved with (p ≈0). Therefore, it is sound to conclude
that the automated analysis, which can be much quicker, is a potentially more reliable and
practical alternative to manual analysis due to its consistency and immunity to the inter/
intra-observer variabilities.
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Fig. 1.
An illustration of the methods’ responses. (a) the CCM image, (b) Dual-model, (c) Linop,
(d) Hessian, (e) 2D Gabor, (f) Monogenic and (g) DTCWT.
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Fig. 2.
From left to right, the box-plots of the EER and the PSNR are shown for all methods. The
ROC curves are presented at the far right. The box-plots indicate the upper and the lower
quartiles as well as the median (the bar) of the EER and PSNR values respectively; whiskers
show the extent of the rest of the data while crosses indicate outliers for (a) dual-model, (b)
Linop, (c) 2D Gabor, (d) Hessian, (e) DTCWT and (f) Monogenic.
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Fig. 3.
Box-plots showing the NFL scores for each of the NDS groups calculated manually (left)
and automatically (right)
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