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Abstract

DNA methylation is a key component of mammalian gene regulation and the most classical
example of an epigenetic mark. DNA methylation patterns are mitotically heritable and stable over
time, but they undergo considerable changes in response to cell differentiation, diseases and
environmental influences. Several methods have been developed for DNA methylation profiling
on a genomic scale. Here, we benchmark four of these methods on two sample pairs, comparing
their accuracy and power to detect DNA methylation differences. The results show that all
evaluated methods (MeDIP-seq: methylated DNA immunoprecipitation, MethylCap-seq:
methylated DNA capture by affinity purification, RRBS: reduced representation bisulfite
sequencing, and the Infinium HumanMethylation27 assay) produce accurate DNA methylation
data. However, these methods differ in their ability to detect differentially methylated regions
between pairs of samples. We highlight strengths and weaknesses of the four methods and give
practical recommendations for the design of epigenomic case-control studies.
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Introduction

Twenty-five years of research on cancer epigenetics have firmly established the prevalence
of aberrant DNA methylation in cancer cells1-5. Moreover, recent studies have investigated
the role of DNA methylation for neural and autoimmune diseases, its correlation with
physiological conditions and its response to environmental influences6—8. Comprehensive
mapping of DNA methylation in relevant clinical cohorts is likely to identify new disease
genes and potential drug targets, help establish the relevance of epigenetic alterations in
diseases other than cancer, and provide a rich source for biomarker development9. In a
biotechnology context, DNA methylation profiling could also facilitate quality control of
cultured cells, exploiting the fact that cell states and differentiation potential of stem cells
are reflected in their DNA methylation patterns10.

Several methods have been developed to enable DNA methylation profiling on a genomic
scale. Most of these methods combine DNA analysis by microarrays or high-throughput
sequencing with one of four ways of translating DNA methylation patterns into DNA
sequence information or library enrichment: (i) Methylated DNA immunoprecipitation
(MeDIP) uses an antibody that is specific for 5-methyl-cytosine to retrieve methylated
fragments from sonicated DNA11,12. (ii) Methylated DNA capture by affinity purification
(MethylCap) employs a methyl-binding domain protein to obtain DNA fractions with
similar methylation levels13-15. (iii) Bisulfite-based methods utilize a chemical reaction
that selectively converts unmethylated (but not methylated) cytosines into uracils, thus
introducing methylation-specific single-nucleotide polymorphisms into the DNA
sequencel0,16,17. (iv) Methylation-specific digestion uses prokaryatic restriction enzymes
to fractionate DNA in a methylation-specific way18-20.

The diversity of methods and absence of an uncontested commercial market leader raise
questions about each method’s strengths and weaknesses — questions that researchers have
to answer for themselves when selecting the most appropriate technology for any given
project. The goal of this study was to perform a comprehensive benchmarking of four
popular methods, with a special emphasis on their practical utility for biomedical research
and biomarker development. We selected MeDIP-seql1, MethylCap-seql3, RRBS21 and
the Infinium HumanMethylation27 assay16 for inclusion in this comparison, based on the
following considerations: (i) All four methods are relatively easy to set up because detailed
protocols have been published and / or commercial kits are available. (ii) We chose RRBS
rather than genome-wide bisulfite sequencing because its per-sample cost are comparable to
the other methods and realistic for large sample sizes. (iii) The Infinium
HumanMethylation27 assay was included because of its wide use and easy integration with
existing genotyping pipelines; it is the only microarray-based method in our comparison.
(iv) Methods that utilize tiling microarrays were excluded because they have been
benchmarked previously19 and because next-generation sequencing enables higher
resolution and/or higher genomic coverage at competitive cost. (v) Methylation-specific
digestion was excluded because no algorithm exists that could accurately infer quantitative
DNA methylation data from digested read frequencies18. An outline of the experimental and
analytical procedure of this technology comparison is shown in Figure 1.
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Results
DNA methylation mapping using MeDIP, MethylCap, RRBS and Infinium

Genome-wide DNA methylation mapping is most commonly used as a discovery tool, in
order to identify differentially methylated regions (DMRs) as candidates for further
research. Typical examples are cancer-specific DMRs, which play an increasing role as
biomarkers for cancer diagnosis and therapy optimization9. To emulate the case-control
approach that is widely used for epigenetic biomarker development, our study focuses on
sample pairs that we statistically compare with each other. Specifically, we selected two
human embryonic stem (ES) cell lines that were derived from genetically unrelated
embryos22, and a matched pair of colon tumor and adjacent normal colon tissue obtained
from the same donor. We applied each of the four methods (MeDIP, MethylCap, RRBS,
Infinium) to all four samples (HUES6 ES cells, HUESS8 ES cells, colon tumor, matched
normal colon tissue), generating a total of 16 genome-scale DNA methylation maps. All data
were processed with a standardized bioinformatic pipeline, and the technical data quality
turned out to be similarly high across all samples and methods (Table 1).

When plotting the DNA methylation data as genome browser tracks we found excellent
visual agreement between all four methods (Figure 2; tracks are available online for
interactive browsing: http://meth-benchmark.computational-epigenetics.org/). MeDIP and
MethylCap gave rise to peaks of methylated DNA that were similar in shape, size and
location, indicating that MeDIP’s monoclonal antibody and MethylCap’s methyl-binding
domain enrich for similar DNA fragments. However, MeDIP exhibited higher baseline
levels and lower peak heights than MethylCap. This reduced dynamic range is already
apparent from Figure 2 (note the different scale of the y-axis) and becomes more obvious
when plotting MeDIP and MethylCap tracks along an entire chromosome (Supplementary
Figure 1). This observation was quantitatively confirmed by plotting the mean read
frequency for enriched and depleted fractions of the genome (Supplementary Figure 2). We
also observed high visual agreement between RRBS and Infinium, with the limitation that
Infinium covers two orders of magnitude fewer CpGs than RRBS (Table 1). Finally, the
bisulfite-based methods (RRBS, Infinium) generally confirm the results of the enrichment-
based methods (MeDIP, MethylCap), although there are deviations in repeat-rich as well as
in CpG-poor genomic regions (Supplementary Figure 3).

Accuracy of DNA methylation mapping

For a more quantitative assessment of measurement accuracy, we compared the results of
the three sequencing-based methods (MeDIP, MethylCap, RRBS) with the Infinium
HumanMethylation27 assay as a common reference. The Infinium assay was used as
reference because its quantitative accuracy has been established in previous studies16,23,
which reported correlation coefficients around 0.9 relative to the GoldenGate and
MethyL.ight assays. Note however that the probes of the Infinium assay cover only a small
percentage of all CpGs in the genome and are preferentially located in unmethylated
promoter regions. To compensate for this potential source of bias, we calculate two
correlation coefficients, one across the entire spectrum of methylation levels and the other
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focusing only on those CpGs that exhibit at least 20% methylation according to the Infinium
assay.

RRBS and Infinium data can be compared directly and without normalization, because both
methods measure absolute DNA methylation levels. For a total of 5,088 single CpGs that
were covered by both an Infinium probe and at least five RRBS reads, we observed a
Pearson correlation of 0.92 across all DNA methylation levels, and a Pearson correlation of
0.83 when we excluded unmethylated CpGs. Because neighboring CpGs tend to exhibit
highly correlated DNA methylation levels17,24 we also evaluated the correlation for RRBS
measurement averages over a 200 basepair sequence window around each Infinium probe.
Again, we observed excellent agreement between the two methods (Figure 3C), with an
overall Pearson correlation of 0.92 across all DNA methylation levels and a Pearson
correlation of 0.84 when we excluded unmethylated CpGs. This second comparison supports
the hypothesis that a single-CpG measurement can often act as an indicator of the DNA
methylation levels at neighboring, unmeasured CpGs.

Comparison with MeDIP and MethylICap is less straightforward because both methods
measure the relative enrichment of methylated DNA rather than absolute DNA methylation
levels. When we correlated the number of sequencing reads per 1-kilobase region with the
DNA methylation measurements of the Infinium assay, the Pearson correlation did not
exceed 0.6 across all DNA methylation levels and 0.4 when we excluded unmethylated
CpGs (Supplementary Figure 3A and B). High density of repetitive DNA was identified as
the major source of spurious read enrichment in regions with low absolute DNA methylation
levels, and low CpG density gave rise to low read numbers in regions with high levels of
DNA methylation (Supplementary Figure 3C and D). The confounding effect of DNA
sequence is also visible in Figure 2: Low read counts can indicate either the relative absence
of CpGs (example: region 1 in Figure 2) or the absence of DNA methylation in the presence
of CpGs (region 2); and strong peaks can occur in genomic regions that are incompletely
methylated if the CpG density is sufficiently high to give rise to substantial read enrichment
(region 3).

It has previously been reported that statistical correction for CpG density can improve the
quantification of DNA methylation levels based on MeDIP datal1,25. We therefore
constructed a linear regression model that corrects for the confounding effect of DNA
sequence (see Methods section for details), and we observe substantially improved results
(Figure 3A and 3B). Across all DNA methylation levels the correlation between the
statistically corrected read counts and the DNA methylation measurements of the Infinium
assay amounted to 0.84 for MeDIP and to 0.88 for MethylCap. However, the correlations
dropped to 0.57 (MeDIP) and 0.66 (MethylCap) when we excluded unmethylated CpGs.
These results indicate that MeDIP and MethylCap can almost as precisely distinguish
between methylated and unmethylated region as RRBS, but are less accurate for quantifying
the DNA methylation levels in partially methylated genomic regions.

Genomic coverage of DNA methylation mapping

The single-basepair resolution of the two bisulfite-based methods comes at the cost of
reduced genomic coverage compared to the two enrichment-based methods: RRBS reads are
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clustered in approximately 1% of the genome10,26 and Infinium focuses on the methylation
status of slightly less than 15,000 gene promoters, while MeDIP and MethylCap reads are
theoretically able to identify methylated genomic regions located anywhere in the genome.
To assess the empirical genomic coverage of each method, we calculated the number of
reads (MeDIP, MethylCap) or CpG methylation measurements (RRBS, Infinium) for each
of the following genomic regions: (i) CpG islands, (ii) gene promoters, and (iii) a 1-kilobase
tiling of the genome. The results are shown in Figure 4, and coverage details for a total of 13
types of genomic regions are available online (http://meth-benchmark.computational-
epigenetics.org/).

As expected, MeDIP and MethylCap provide broad coverage of the genome, whereas RRBS
and Infinium are more restricted to CpG islands and promoter regions. However, the
practically relevant differences in genomic coverage are lower than Figure 4 may suggest.
This is because a minimum number of reads are required in at least one sample to reliably
detect differential methylation among a given pair of samples. We illustrate this point by
two statistical power calculations, which were performed with G*Power 327. Assume that a
genomic region is covered by five MeDIP or MethylCap reads in one sample. Then it has to
contain at least 20 reads in the second sample to be detected as hypermethylated (assuming a
statistical power of 80% and a p-value of 5% without multiple-testing correction). Similarly,
RRBS would detect a DNA methylation increase from 30% to 70% only when at least 25
measurements are available in each sample (again assuming a statistical power of 80% and a
p-value of 5% without multiple-testing correction).

Identification of differentially methylated regions with MeDIP, MethylCap and RRBS

Genome-wide DNA methylation mapping is most commonly used for detecting DNA
methylation differences, for example between diseased and healthy tissue or between
genetically modified and unmodified control cells. To assess how well MeDIP, MethylCap
and RRBS perform on this task, we developed a bioinformatic method that identifies
statistically significant DMRs from multiple types of sequencing data (the Infinium assay
requires a different approach and is discussed in a separate section below). For a pre-defined
set of genomic regions we count the numbers of sequenced reads (for MeDIP and
MethylCap), or alternatively the numbers of methylated vs. unmethylated CpGs (for RRBS),
and we test for statistically significant differences between two samples using Fisher’s exact
test. When applied to a complete tiling of the human genome, this method performs
genome-wide DMR detection. Alternatively, it can be targeted to specific region types such
as CpG islands, gene promoters or putative enhancers, which can lead to more sensitive
detection of small difference because the multiple-testing burden is reduced compared to
genome-wide DMR detection. We pursued both the unbiased and the annotation-guided
approach in parallel, focusing our comparison on three types of genomic regions: (i) CpG
islands, (ii) gene promoters, and (iii) a 1-kilobase tiling of the genome (Figure 5,
Supplementary Figures 4 to 8).

Overall, we observed high correlation for each of the two sample pairs, but also outliers
suggesting the presence of DMRs. Based on the RRBS data we obtained Pearson
correlations around 0.9 for all three region types, both between the two ES cell lines
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(HUES6 and HUESS) and between the colon tumor and matched normal colon tissue. For
MethylCap and MeDIP, the correlations were somewhat lower and ranged from 0.75 to 0.92
(Figure 5, Supplementary Figures 4 to 8). Using the DMR detection algorithm (see Methods
for details), we identified several hundred to several thousand DMRs in each of the two
sample pairs. There was substantial, but by no means perfect, overlap between the DMRs
identified by all three methods. For the two human ES cell lines, 277 out of 44,440 CpG
islands were detected as differentially methylated by each of the three methods (Figure 5D),
and pairwise comparisons for each sample and region type (Supplementary Figures 4 to 8)
confirmed that the agreement between the three methods was statistically significant in all
cases (p<0.01, Fisher’s exact test). In total, we observed that up to 1,000 CpG islands, 405
promoter regions or 1,924 of the 1-kilobase tiling regions (i.e. less than 0.1% of the genome)
were detected as differentially methylated by at least two methods. Note however that it is
not possible to combine these values into a single sum of DMRs because many CpG islands
overlap with promoter regions, and every CpG island and promoter region overlaps with at
least one tiling region. Nor does the number of differentially methylated tiling regions
provide an accurate estimate of the “true” number of DMRs because a sizable number of
DMRs are not statistically significant anymore when split into 1-kilobase regions. Despite
these conceptual difficulties, our data clearly indicate that — on average — MethylCap
identifies more DMRs than RRBS, while MeDIP identifies the lowest number of DMRSs.
This order was observed not only based on the total number of DMRs per method, but also
when focusing only on those DMRs that were detected by at least two methods, indicating
that the comparison is not distorted by high numbers of method-specific artifacts.

Validation of method-specific differentially methylated regions

In order to pinpoint potential problems of MeDIP, MethylCap or RRBS, we manually
inspected a large number of regions that were identified as significant DMRs by only one
method. The most frequent reasons why method-specific DMRs were missed by the other
methods were insufficient genomic coverage (RRBS, Infinium) and low read numbers
conferring insufficient statistical power to detect differential DNA methylation (MeDIP,
MethylCap). No cases were identified in which the RRBS and Infinium data were in direct
contradiction with each other. However, we could identify a few cases in which MeDIP or
MethylCap were inconsistent with RRBS and/or Infinium data. These were almost
exclusively located in repetitive regions, indicating that high copy-number repeats can
amplify minor differences in the efficiency of methylated DNA enrichment and give rise to
a small number of spurious DMRs. In contrast, RRBS seems more robust toward such
fluctuations because it measures DNA methylation based on the DNA sequence of the reads
in a given region, rather than based on their read frequency. We also assessed whether copy-
number variation was a major confounding factor for DMR discovery. This does not seem to
be case for our data: The vast majority of DMRs were shorter than 10kb (Supplementary
Figure 9), while it is not uncommon for cancer-specific as well as germline-transmitted
copy-number variations to extend for much longer distances28,29.

As an additional validation, we selected eight method-specific DMRs based on the ES cell
comparison, and we investigated DNA methylation patterns in the two ES cell lines by
clonal bisulfite sequencing (Table 2). These genomic regions were hand-picked such that
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one method clearly identified them as DMRs while the two other methods did not show a
trend in either direction. Note that this pre-selection makes the validation substantially
harder than confirming randomly selected DMRs, because method-specific DMRs tend to be
weaker than DMRs that are detected by multiple methods. As an additional complication,
some of the selected DMRs are highly repetitive or overlap with known copy-number
variations. Sequencing an average of 11 clones per sample and region we were able to
confirm three out of three MethylCap-specific DMRs and two out of two RRBS-specific
DMRs. In contrast, two MeDIP-specific DMRs could not be confirmed, and for the third
region the agreement was marginal (Table 2, Supplementary Data 1).

To assess the practical relevance of the method-specific differences, we asked whether
biologically interesting hits were missed by any of the three methods. For this analysis we
focused on the colon samples because of the large number of genes with a known or
suspected role in colon cancer. Our results show that several interesting DMRs are detected
by all methods, including tumor-specific hypermethylation in the promoters of GATA230
and GATAS31. However, a significant number of interesting DMRs were missed by
MeDIP, while MethylCap and RRBS both detect them. To give a few examples, this is the
case for tumor-specific hypermethylation in the promoter regions of SOX1732,
POU2AF133 and SEPT934. Somewhat more rarely, we also observed interesting DMRs
being missed by MethylCap or RRBS. For example, MethylCap overlooked tumor-specific
hypermethylation at the promoter of SFRP135, and RRBS missed tumor-specific
hypermethylation at the promoter of DKK236.

The effect of sequencing depth on the performance of MeDIP, MethylCap and RRBS

The three sequencing-based methods use DNA sequencing as a way of counting DNA
fragments, in order to determine the percentage of methylation-enriched reads that align to
specific regions (MeDIP, MethylCap) or to calculate the ratio of methylated and
unmethylated cytosines at single CpGs (RRBS). Conceptually, sequencing can be thought of
as random sampling from a large pool of DNA fragments. It is therefore expected that the
performance of these methods increases when sequencing more DNA fragments, until it
levels off as the sequencing depth approaches saturation. To quantify this effect, we repeated
the accuracy analysis (Figure 3) and the DMR detection (Figure 5) on randomly sampled
subsets of sequencing reads. First, we benchmarked each method against the Infinium data,
assessing their ability to quantify DNA methylation levels based on reduced read numbers
(Supplementary Figure 10). The results show that all three methods give rise to accurate
DNA methylation measurements based on as few as 20% of the total read coverage, and
almost no improvement was observed between 50% and 100% sequencing depth. While
these data suggest that relatively low sequencing depths are often sufficient for obtaining
accurate DNA methylation levels, this cannot be generalized to the entire genome: Infinium
probes tend to be located in CpG-rich genomic regions, which are also preferentially
covered by MeDIP, MethylCap and RRBS measurements (Figure 4), such that saturation is
reached earlier in the vicinity of Infinium probes than in CpG-poor genomic regions.

Second, we tested how many DMRs were still detected among the two sample pairs when
the number of sequencing reads in each of the samples was reduced (Supplementary Figure
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11). For MeDIP, the number of detected DMRs dropped to less than half when the
sequencing depth was reduced to 50%, and there was little indication that the number of
MeDIP DMRs approaches saturation even at the highest sequencing depth. For MethylCap
the reduction is less dramatic and there is a trend toward saturation. RRBS quickly
approaches saturation especially for the ES-cell comparison (Supplementary Figure 11).
Overall, the saturation analysis reinforced a conceptual difference between RRBS on the one
hand and MeDIP and MethylCap on the other hand: In RRBS, all sequencing is focused on a
well-defined, CpG-rich “reduced representation” of the genome, which leads to relatively
early saturation but limited coverage of DMRs in CpG-poor genomic regions. In contrast,
MeDIP and MethylCap reads are widely distributed over the genome (albeit with a
significant tendency toward high coverage in CpG-rich regions), and deep sequencing
increasingly uncovers weak DMRs located in CpG-poor genomic regions.

DNA methylation mapping of repetitive DNA

DNA methylation differences in repetitive regions have frequently been ignored by genome-
wide studies, due to technical difficulties such as ambiguous read alignment (for
sequencing) and cross-hybridization (for microarrays). This is unfortunate given that loss of
DNA methylation in repetitive DNA was the first epigenetic alteration shown to play a role
in cancer3 and has been an area of active research ever since37. In the current study, we
explored two complementary approaches to test for repeat-associated DNA methylation
differences. First, we included repetitive regions alongside non-repetitive regions in the
DMR detection described above (Figure 5, Supplementary Figures 4 to 8), rather than
discarding all sequencing reads that map to repetitive portion of the genome. It was thus
possible to identify repeat-associated DMRs in a similar way as non-repetitive DMRs, and
we could validate several such cases by clonal bisulfite sequencing (Table 2). However, the
focus on specific genomic regions makes it difficult to detect global trends that affect certain
repeat classes independent of their exact location in the genome. We therefore developed a
second approach, which was motivated by the common origin of many repetitive regions
from a small number of retrotransposons. The basic concept was to align sequencing reads
to prototypic sequences (e.g., of Alu and L1 elements), in order to obtain DNA methylation
measures per repeat class rather than per repeat instance.

To that end, we obtained a manually curated list of 1,267 prototypic repeat sequences that
spans the spectrum of repetitive DNA present in the human genome38, and we aligned the
sequencing reads of all three methods to this collection of repeat sequences. Approximately
20% of all MeDIP, MethylCap and RRBS reads could be aligned with high confidence,
enabling us to estimate the global DNA methylation levels for 553 prototypic repeat
sequences. The results of the three methods were in excellent agreement with each other
(Supplementary Data 2) and detected substantial differences in the DNA methylation levels
of different repeat classes: Among Alu, SVA and satellite repeat sequences we observed
consistently high levels of DNA methylation, while most LINE, LTR and DNA repeat
sequences exhibited low levels of DNA methylation in the four samples that we
investigated. However, we found that the repeat sequences with the highest copy-number
throughout the genome were highly methylated for all repeat classes.
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When we compared the DNA methylation levels in the two sample pairs (Supplementary
Data 3), we observed widespread but relatively moderate hypomethylation in the colon
tumor relative to matched normal colon tissue. The most common targets were Alu, SVA
and satellite repeat sequences, consistent with previous reports about cancer-specific
hypomethylation37. An interesting difference was identified between the two ES cell lines
on the one hand and the two colon samples on the other hand: the only human-specific LINE
repeat sequence in our collection (L1HS_5end) exhibited high levels of DNA methylation in
the two colon samples, but was largely unmethylated and even marked by histone H3K4
trimethylation in the two ES cell lines (Supplementary Data 2). These data suggest that
young retrotransposons find ways to evade silencing by DNA methylation in pluripotent
cells, which may contribute to their ability to maintain activity in spite of an elaborate
epigenetic genome defense39.

Utility of the Infinium HumanMethylation27 assay for DMR discovery

Our study used the Infinium HumanMethylation27 assay as a common reference for
evaluating the accuracy of the sequencing-based methods, which was justified by prior
studies showing high quantitative accuracy of the Infinium assay16,23. However, no prior
study investigated the Infinium HumanMethylation27 assay’s power to detect DMRSs on a
genome-wide scale, hence we could not use the Infinium assay as reference when evaluating
DMR discovery by the sequencing-based methods. In fact, one might expect that the utility
of the Infinium assay for DMR discovery is quite limited (despite its well-established
accuracy) because the assay’s genomic coverage is low (Figure 4). To systematically assess
the utility of the Infinium HumanMethylation27 assay for DMR discovery, we initially
performed statistical testing in much the same way as for Figure 5. However, most CpG
islands were covered by only two Infinium probes, which resulted in low statistical power to
detect significant differences. Specifically, paired-samples t-tests identified just three
significant DMRs among the ES cell lines and two DMRs between the colon tumor and
matched normal colon tissue (data not shown).

Thus, we reformulated our question and asked how many true DMRs exhibited suggestive
(albeit insignificant) DNA methylation differences in the Infinium data. As an
approximation of true DMRs, we focused on those CpG islands that were detected by at
least two sequencing-based methods (which are unlikely to contain a high number of
technical artifacts according to the comparative validations described above). Between the
two ES cell lines a total of 1,000 consensus DMRs were identified (corresponding to the
sum of all center fields in Figure 5), of which 251 were covered by at least one Infinium
probe. Similarly, we identified 463 consensus DMRs between the colon tumor and matched
normal colon tissue, of which 177 were covered by at least one Infinium probe. In most
cases, the directionality of the difference was consistent between the consensus DMRs and
the Infinium data (Supplementary Figure 10). But when we imposed a minimum threshold
of 20 percentage points DNA methylation difference in the same way as for RRBS, the
number of Infinium-detected DMRs dropped to 162 (ES-cell comparison) and 95 (colon
cancer comparison). In other words, the Infinium assay detected approximately a fifth of the
consensus DMRs that we identified by the sequencing-based methods.
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Discussion

Over the last decade, DNA methylation mapping played an important role in establishing the
prevalence of altered DNA methylation in cancer40,41. Furthermore, researchers have
started to systematically study the role of DNA methylation in a wide range of non-
neoplastic diseases42. This is indeed a good time to probe for epigenetic alterations that
contribute to human diseases: Genome-wide association studies have been completed for all
common diseases, and their results point to a major role of non-genetic factors in the
etiology of most diseases43. Furthermore, it has been suggested that epigenetic events could
provide a tractable link between the genome and the environment, with the epigenome
emerging as a biochemical record of relevant life events44,45. Systematic investigation of
these topics requires powerful, accurate and cost-efficient methods for identifying DNA
methylation differences between samples.

The goal of this study was to evaluate current methods for global DNA methylation
mapping and to compare their performance in a practical application scenario. To mimic a
typical disease-centered case-control study, we worked with primary patient material (colon
samples) and used lower amounts of input DNA than in most previous studies (MeDIP:
300ng, MethylCap: 1ug, RRBS: 50ng, Infinium: 1pg). Furthermore, we focused on cell
types that are known to exhibit relatively moderate DNA methylation differences30,46, in
contrast to the massive DNA methylation alterations that are frequently observed in cultured
somatic cells10 and cancer cell lines47. Finally, all four methods included in the current
study are widely available and not excessively costly, such that there are few obstacles to
using this technology comparison as a blue print for individual lab efforts as well as large-
scale epigenomic case-control studies investigating the epigenetics of human diseases.

Overall, the data confirmed that all four methods provide accurate DNA methylation
measurements and can be used to detect DMRs in clinical samples. In terms of accuracy, the
bisulfite-based methods (RRBS, Infinium) performed slightly better than the enrichment-
based methods and did not require any statistical correction of CpG bias. The genomic
coverage was moderately higher for MethylCap than for MeDIP, RRBS coverage was by
design focused on CpG-rich regions, and the Infinium assay covered a relatively small
number of preselected genomic regions. Despite the striking differences in genomic
coverage, a substantial fraction of DMRs detected by MeDIP or MethylCap were also
identified by RRBS (and vice versa). This somewhat counter-intuitive observation can be
explained by the role of region-specific read coverage for the ability to identify statistically
significant DMRs: If a genomic region is CpG-poor and thus rarely sequenced by MeDIP or
MethylCap, both methods have low statistical power to detect differential DNA methylation.
In contrast, CpG-rich genomic regions tend to be more amenable to DMR detection by
MeDIP and MethylCap and are also frequently covered by RRBS measurements. Finally,
we observed that MethylCap was able to detect roughly twice as many DMRs as MeDIP at
comparable sequencing depths, RRBS detected more DMRs than MeDIP but fewer DMRs
than MethylCap, and the Infinium assay detected only 20% of the consensus DMRs
identified by the sequencing-based methods. These differences could be reproduced in two
independent pairwise comparisons, providing strong indication that they are robust across
biological replicates and cannot be explained by random experimental variation. On the

Nat Biotechnol. Author manuscript; available in PMC 2011 April 01.



1duosnuen Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bock et al.

Page 11

other hand, we used one specific protocol for each method, and it is quite possible that
protocol variations (e.g., different antibody for MeDIP, different elution procedure for
MethylCap, or different size selection for RRBS) would produce different results.

Our study also reinforces the importance of sequencing depth as a key parameter
determining to power to detect differential methylation with any of the sequencing-based
methods. To allow for a fair and practically relevant comparison, we sequenced
approximately 30 to 40 million reads for each sample and method. However, it became
evident that deeper sequencing would identify further DMRs, especially for MeDIP and
MethylCap (Supplementary Figure 11). For disease-centered studies it is therefore necessary
to make an informed decision about how to distribute the available resources between
sequencing few samples more deeply and sequencing more samples less deeply. Such a
decision can be guided by statistical power calculations when some prior knowledge exists
about the characteristics of expected DMRs (e.g., magnitude of difference, location in CpG-
rich vs. CpG-poor genomic regions), or they can be dictated by practical considerations such
as the number of available samples. MeDIP, MethylCap and RRBS as performed in this
study seem to provide a practically useful compromise between breadth and depth of
sequencing. In contrast, whole-genome bisulfite sequencing48 provides comprehensive
genomic coverage at the cost of having to sequence over a billion reads per sample. On the
other end of the spectrum, low sequencing depths are often sufficient to detect strong
differences such as global loss of DNA methylation but fail to provide reliable locus-specific
information49.

Finally, genome-wide studies tend to ignore repetitive regions due to technical difficulties,
and the few studies that focused specifically on mapping DNA methylation in repetitive
regions did so at relatively low coverage50-52. The current dataset was well-suited to
analyze DNA methylation in repetitive regions because the joint results obtained by three
different experimental methods helped us to control for technical artifacts that can burden
the analysis of repetitive DNA. We observed that repeat sequences are most highly
methylated when they are CpG-rich and highly prevalent in the human genome
(Supplementary Data 2). In contrast, the DNA methylation levels varied widely among
repeat sequences that are either CpG-poor or infrequent in the genome. These results lend
support to the hypothesis that DNA methylation provides a mechanism for keeping active
retrotransposons in check53. They argue for a highly specific mechanism of repeat
repression, which targets DNA methylation mostly to those repeat sequences that threaten
genome integrity, while many “benign” repeat sequences may remain unmethylated.

In summary, we benchmarked four methods for genome-scale DNA methylation profiling in
terms of their accuracy and power to detect DNA methylation differences. These results will
facilitate the selection of suitable methods for studying the role of DNA methylation in
human diseases.
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Methods

Sample origin and cell culture

Human ES cells were cultured in knockout serum replacement (KOSR) medium according
to established protocols22 and genomic DNA was extracted as described previously54.
DNA for the colon tumor and matched normal colon tissue was purchased from BioChain
(lot number A704198). Both samples originate from the same donor, an 81-year-old male
patient diagnosed with moderately differentiated adenocarcinoma.

Methyl-DNA Immunoprecipitation (MeDIP)

MeDIP11 was performed using the EZ DNA methylation kit (Zymo Research). A total of
300ng DNA per sample was sonicated using Bioruptor (Diagenode) with 8 intervals of
10min (30s on, 30s off), resulting in an average fragment size of 150 basepairs. Sonicated
DNA was end-repaired and ligated with sequencing adapters as described previously11.
Gel-based selection for fragment sizes between 100 and 200 basepairs was followed by
methylated DNA immunoprecipitation according to the manufacturer’s protocol. A total of
1ug of monoclonal antibody against 5-methyl-cytosine (included in the EZ DNA
methylation kit) was used for immunoprecipitation. The immunoprecipitated DNA was
PCR-amplified and the specificity of the enrichment was confirmed by qPCR for selected
loci as described previously55. Two lanes of 36-basepair single-ended sequencing were
performed on the Illumina Genome Analyzer Il according to the manufacturer’s standard
protocol. Mag with default parameters was used to align the sequencing reads to the
NCBI36 (hg18) assembly of the human genome56.

Methylated-DNA capture (MethylCap)

MethylCap13 was performed in a robotized procedure using a SX-8G / IP-Star (Diagenode).
2ug of His6-GST-MBD (Diagenode) was combined with 1ug of sonicated DNA in 200l of
binding buffer (BB, 20mM Tris-HCI pH 8.5, 0.1% Triton X-100) containing 200mM NaCl.
This solution was incubated at 4°C for 2 hours. Magnetic GST-beads were prepared by
washing 35ul of a well-mixed MagneGST glutathione particle suspension (Promega) with
200pl of binding buffer plus 200mM NaCl at 4°C. Washing was repeated once and the
supernatant was removed. The GST-MBD-DNA solution was added to the washed and
collected beads, and this suspension was rotated for another hour at 4°C. After removal of
the supernatant (this is the flow-through) the beads-GST-MBD-DNA complexes were eluted
by washing. 200ul of binding buffer with different concentrations of NaCl was added and
the suspension was rotated for 10min at 4°C. Beads were captured using a magnet, and the
supernatant was collected. The elution procedure consisted of 1x 300mM (wash), 2x
400mM (wash), 1x 500mM (“low” eluate), 1x 600mM (“medium” eluate), 1x 800mM NaCl
(“high” eluate). The collected eluates were purified using QIAquick PCR purification spin
columns (Qiagen), eluted with 100ul elution buffer and prepared for sequencing as described
previously13. A single lane of 36-basepair single-ended sequencing on performed on the
Illumina Genome Analyzer Il was performed for the low, medium and high eluates,
respectively. The sequencing reads were aligned to the NCBI36 (hg18) assembly of the
human genome using lllumina’s analysis pipeline (ELAND) with default parameters. The
lanes for each of the three eluates are shown separately in Figure 2, and we tested whether
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the accuracy relative to the Infinium assay could be improved by taking this additional
information into account. However, a linear model that was based on the separate read
counts of the three lanes did not outperform a model that was based on the sum of the three
lanes, which is why we used only pooled read data for the analyses described in this paper.

Reduced representation bisulfite sequencing (RRBS)

RRBS21 was performed according to a previously published protocol54 with some
optimizations for clinical samples and low amounts of input DNA21. The main steps were:
(i) A total of 50ng (ES cells) or 1ug (colon samples) genomic DNA was digested by 5U to
20U of Mspl (New England Biolabs, NEB) for up to 16h. (ii) End-repair and adenylation of
digested DNA were performed in a 20ul reaction consisting of 10U of Klenow fragments (3’
— 57 exo0-, NEB), 2l premixed nucleotide triphosphates (lmM dGTP, 10mM dATP, 1ImM
5" methylated dCTP). The reaction was incubated at 30°C for 30min followed by 37°C for
additional 30min. (iii) Preannealed 5-methylcytosine-containing Illumina adapters were
ligated with adenylated DNA fragments in a 20yl reaction containing of 1pl concentrated T4
ligase (NEB), 1-2ul of 15uM adapters at 16°C for 16 to 20 hours. (iv) Gel-based selection
for fragments with insertion sizes of 40 to 120 basepairs and 120 to 220 basepairs was
performed as described previously21. (v) Bisulfite treatment with the EpiTect Bisulfite Kit
(Qiagen) was conducted following the protocol designated for DNA isolated from formalin-
fixed and paraffin-embedded tissues. Two rounds of conversion were performed in order to
maximize bisulfite conversion rates. The final bisulfite-converted DNA was eluted with 2x
20ul pre-heated (65°C) EB buffer. (vi) To determine the minimum number of PCR cycles
for final library enrichment, analytical (10ul) PCR reactions containing 0.5ul of bisulfite-
treated DNA, 0.2uM each of Illumina PCR primers LPX1.1 and 2.1 and 0.5U PfuTurbo Cx
Hotstart DNA polymerase (Stratagene) were set up. The thermocycler conditions were:
5min at 95°C, varied cycle numbers (10-20) of 20s at 95°C, 30s at 65°C, 30s at 72°C,
followed by 7min at 72°C. PCR products were visualized by running on a 4-20%
polyacrylamide Criterion TBE Gel (Bio-Rad) and stained by SYBR Green. The final
libraries were generated by 8 of 25ul PCR reaction with each one containing 2-3pul of
bisulfite-converted template, 1.25U PfuTurbo Cx Hotstart polymerase and 0.2uM each of
Illumina LPX1.1 as well as 2.1 PCR primers. The libraries were PCR amplified and
sequenced on the Illumina Genome Analyzer Il as described previously21. The sequencing
reads were aligned to the NCBI136 (hg18) assembly of the human genome using a custom
alignment software that was developed for RRBS datal0.

Microarray-based epigenotyping (Infinium)

Infinium16 analysis was performed by the Genetic Analysis Platform at the Broad Institute.
A total of 1ug of genomic DNA per sample was bisulfite-treated according to the
manufacturer’s protocol and hybridized onto Infinium HumanMethylation27 bead arrays
(IMumina). We previously observed almost perfect agreement between technical replicates
(Pearson’s r>0.98), which is why only a single hybridization was performed for each
sample.
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Data preparation and quality control

For MeDIP and MethylCap, the aligned reads were extended to the mean fragment length
obtained during sonication, and from each group of duplicate reads (i.e. reads aligned to the
exact same start position on the same chromosome) all but one read were discarded, in order
to minimize the impact of PCR bias on downstream analysis. For RRBS, the aligned reads
were compared to the reference genome, and the DNA methylation status was determined
using a custom software as described previously21. Infinium HumanMethylation27 data
were processed with Illumina’s BeadStudio 3.2 software, using the default background
subtraction method for normalization. UCSC Genome Browser tracks were constructed by
custom scripts implemented in the Python programming language (http://www.python.org/).

Quantification of absolute DNA methylation levels

We used linear regression models to estimate the absolute DNA methylation levels from the
MeDIP and MethylCap read counts. Based on a number of different feature selection
experiments, we found that the following combination of variables was robustly predictive
of DNA methylation levels: (i) the square root of the total number of MeDIP or MethylCap
reads within the given region, (ii) the square root of the total number of whole-cell extract
(WCE) reads within the region (based on a cross-tissue WCE track that we routinely use for
ChlP-seq data normalization), (iii) the logit of the CpG frequency within the region, (iv) the
relative GC content of the region, (v) the ratio of Cs relative to CpGs, and (vi) the relative
repeat content of the region as determined by RepeatMasker (http://www.repeatmasker.org).
For both MeDIP and MethylCap, we observed that the read frequencies were strongly
positively associated with the absolute methylation level according to Infinium data, while
the repeat content was moderately positively associated. In contrast, the logit of the CpG
frequency was highly negatively associated with DNA methylation, and all other variables
as well as the model’s intercept exhibited a moderately negative association. For model
fitting and performance evaluation, the current dataset was split into equally sized training
and test sets. All model fitting was performed using the R statistics package (http://www.r-
project.org/).

Identification of differentially methylated regions

In our experience, classical peak detection57,58 is not well-suited for DMR identification
because of the high number of spurious hits encountered when borderline peaks are detected
in one sample but not in the other (C. Bock, unpublished observation). Instead, we used a
statistical test to compare two samples directly with each other. For a given region with
RRBS data, we count the number of methylated vs. unmethylated CpGs in both samples and
perform Fisher’s exact test to obtain a p-value that is indicative of the likelihood of the
region being a DMR. Similarly, for MeDIP and MethylCap we count the numbers of reads
that align inside the region for both samples and use Fisher’s exact test to contrast these
values with the total numbers of reads that align elsewhere in the genome. And for the
Infinium assay we use a paired-samples t-test to compare the two samples’ -values of all
Infinium probes inside the region. These tests are performed on a large number of genomic
regions in parallel (e.g., on all CpG islands), and the p-values are corrected for multiple
testing using the g-value method59. Genomic regions with a g-value of less than 0.1 are
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flagged as hypermethylated or hypomethylated (depending on the directionality of the
difference), but only if the absolute DNA methylation difference exceeds 20% (for RRBS
and Infinium) or if there is at least a twofold difference in the read number (for MeDIP and
MethylCap). These thresholds were chosen by their practical utility in a number of
comparisons between different cell types and have no further justification. We also mark
genomic regions with insufficient sequencing coverage, but do not exclude them from DMR
analysis. For MeDIP and MethylCap we require at least ten reads per 10 million total reads
for the sample with higher read coverage, and for RRBS we require a minimum of five
CpGs with at least five reads each in both samples.

This statistical approach to DMR identification requires us to define sets of genomic regions
on which the analysis is being performed. We pursued a two-way strategy to maximize the
chances of finding interesting DMRs. One the one hand, we focused specifically on CpG
islands and gene promoters, which are prime candidates for epigenetic regulation. This
approach provides increased statistical power for regions with well-known functional roles
because the relatively low number of CpG islands and gene promoters reduces the burden of
multiple-testing correction compared to the genome-wide case. On the other hand, we used a
1-kilobase tiling of the genome to detect DMRs that are located outside of any candidate
regions. And to cast an even wider net, we collected a comprehensive set of 13 types of
genomic regions, which includes not only CpG islands and gene promoters, but also CpG
island shores30, enhancers60, evolutionary conserved regions and other types of genomic
regions. DMR data for all of these region sets were calculated using a set of Python and R
scripts and are available online (http://meth-benchmark.computational-epigenetics.org/).

Experimental validation

Based on the CpG islands that were detected as differentially methylated between the two
ES cell lines (Figure 5), we manually selected eight method-specific DMRs for experimental
validation. To that end, those CpG islands that were identified as statistically significant
DMRs by one method (but not by the other two methods) were visually inspected in the
UCSC Genome Browser, and regions were selected for validation only if the data fully
supported their classification as method-specific DMRs. In particular, regions were not
selected if a second method already picked up a suggestive but insignificant trend in the
same direction as the first method, or when the data of the first method already suggested
that the DMR was a false-positive hit (e.g., because of contradictory trends in the vicinity of
the DMR). Experimental validation was performed by clonal bisulfite sequencing following
established protocols61. Primers were designed using MethPrimer62 such that the amplicon
overlapped with those CpGs that exhibited the highest levels of differential methylation
according to our original data. To prepare for bisulfite sequencing, 1ug of DNA was
bisulfite-converted using the EpiTect kit (Qiagen); 50ng of bisulfite-converted DNA was
PCR-amplified (see Supplementary File 1 for primer sequences); and purified amplicons
were cloned using the TOPO TA cloning kit (Invitrogen). For each region an average of 11
clones were randomly chosen for sequencing. All sequencing data were processed using the
BiQ Analyzer software63, and the results are summarized in Supplementary File 1.
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Analysis of repetitive DNA

Repeat sequences were obtained from database version 14.07 of RepBase Update38, which
is publicly available online (http://www.girinst.org/server/RepBase/index.php). From a total
of 11,670 prototypic repeat sequences we selected those 1,267 that were annotated either to
human or to its ancestors in the taxonomic tree, and we combined these prototypic repeat
sequences into a pseudo-genome file. Maq with default parameters was used to align
MeDIP, MethylCap, RRBS, ChIP-seq (H3K4me3) and whole-cell extract (WCE)
sequencing reads against this pseudo-genome56. For RRBS, both the reads and the reference
genome were bisulfite-converted in silico prior to the alignment. The epigenetic status of
each prototypic repeat sequence was quantified as follows: (i) For MeDIP, MethylCap and
ChIP-seq we calculated the odds ratios relative to the WCE data. (ii) For RRBS we
computed the number of methylated CpGs, total number of CpG measurements and
percentage of DNA methylation based on the comparison of the aligned reads with the
prototypic repeat sequence.

We discarded rare repeats with WCE coverage below 100 aligned reads or RRBS coverage
below 25 CpG measurements, resulting in 553 prototypic repeat sequences that were used
for further analysis. Among these were 97 LINE class sequences (92 of them from the L1
family), 51 SINEs (48 of them from the Alu family), 6 SVAs, 62 DNA repeats, 15 satellite
repeats, 315 LTRs, 1 low-complexity repeat and 6 RNA repeats (Supplementary File 2). To
quantify differential methylation between a pair of MeDIP and MethylCap samples, we
calculated the pairwise odds ratio of the read coverage for each prototypic repeat sequence,
while the absolute DNA methylation difference was used in the case of RRBS
(Supplementary File 3). The significance of the difference was assessed using Fisher’s exact
test in the same way as for the non-repetitive genome (described above).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Methylation27)

4. Data normalization
using the lllumina
BeadStudio software

Bock et al. Page 20
DNA for two pairs of samples
= Two human ES cell lines derived from unrelated embryos
= A colon tumor and matched normal colon tissue from the same patient
MeDIP MethylCap RRBS Infinium Validation

1. Primer design

2. Bisulfite conversion
3. PCR amplification
4. Amplicon cloning
5. Sanger sequencing

6. Data processing using
the BiQ Analyzer
software

Bioinformatic analysis

1. Accuracy analysis and quantification of DNA methylation levels
2. Assessment of genomic coverage and statistical power to detect DNA methylation differences

3. Identification of differentially methylated regions (DMRs), cross-method comparison and validation
4. Saturation analysis estimating the effect of sequencing depth
5. DNA methylation analysis of repetitive DNA

Figure 1. Outline of the DNA methylation technology comparison
Four methods for DNA methylation mapping were compared on two pairs of samples. The

resulting 16 DNA methylation maps were bioinformatically analyzed and benchmarked

against each other. In addition, clonal bisulfite sequencing was performed on selected

genomic regions to validate DNA methylation differences that were detected exclusively by
one method.
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Figure 2. Comparison of DNA methylation maps obtained with MeDIP, MethylCap, RRBS and
Infinium

DNA methylation maps were generated using MeDIP (first two tracks, in green), MethylCap
(three tracks in blue, grey and red), RRBS (stacked blue tracks) and Infinium (single black
track with percentage values) and converted into UCSC Genome Browser tracks. The
screenshot shows the HOXA cluster in a human ES cell line (HUES6). Each track represents
data from a single sequencing lane (MeDIP, MethylCap, RRBS) or microarray hybridization
(Infinium). MeDIP and MethylCap data are visually similar to ChlP-seq data, with peaks in
regions that exhibit high density of the target molecule (5-methyl-cytosine) and troughs in
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regions with low density of methylated cytosines. The height of the peaks represents the
number of reads in each genomic interval, for each track normalized to the same genome-
wide read count (note the twofold compressed scaling of the MethylCap tracks relative to
the MeDIP tracks, which is indicative of higher dynamic range for MethylCap compared to
MeDIP). RRBS gives rise to clusters of CpGs with absolute DNA methylation
measurements, separated by regions that are not covered due to the reduced-representation
property of the RRBS protocol. Each data point corresponds to the methylation level at a
single CpG, and dark blue points indicate higher methylation levels than light blue points.
Infinium data is represented in a similar way as the RRBS data, and the methylation levels at
single CpGs are shown as percentage values. The three grey columns highlight regions that
are illustrative of specific properties of the enrichment methods: (1) A promoter region that
is CpG-poor and therefore not detectable by MeDIP or MethylCap — independent of its
DNA methylation level; (2) a promoter region that contains many CpGs but low levels of
DNA methylation, which also results in the absence of MeDIP and MethylCap peaks; and
(3) a CpG island that exhibits a strong enrichment peak for both MeDIP and MethylCap
although the RRBS data indicates that it is only partially methylated. For reference, the CpG
density is indicated by stacked points (black) at the bottom of the diagram, and CpG islands
(red) as well as known genes (blue) are listed as described previously64,65. All DNA
methylation maps are available online as custom tracks for interactive visualization in the
UCSC Genome Browser (http://meth-benchmark.computational-epigenetics.org/).
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A. MeDIP (corrected for sequence bias) B. MethylCap (corrected for sequence bias) C. RRBS (no correction required)
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Figure 3. Quantification of DNA methylation with MeDIP, MethylCap and RRBS
Absolute DNA methylation levels were calculated from the data obtained by MeDIP (panel

A), MethylCap (panel B) and RRBS (panel C), respectively, and compared to DNA
methylation levels determined by the Infinium assay. For MeDIP and MethylCap,
sequencing reads were counted in 1-kilobase regions surrounding each CpG that is
interrogated by the Infinium assay, and a regression model was used to infer absolute DNA
methylation levels. Scatterplots and correlation coefficients were calculated on a test set that
was not used for model fitting or feature selection. For RRBS, the DNA methylation level
was determined as the percentage of methylated CpGs within 200 basepairs surrounding
each CpG that is interrogated by the Infinium assay. Data shown are for the HUES6 human
ES cell line, and regions that did not have sufficient sequencing coverage were excluded.
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Figure 4. Genomic coverage of MeDIP, MethylCap, RRBS and Infinium
Genomic coverage was quantified by the number of DNA methylation measurements that

overlap with CpG islands (top row), gene promoters (center row) and a 1-kilobase tiling of
the genome (bottom row). For MeDIP and MethylCap, the number of measurements is equal
to the number of unique sequencing reads that fall inside each region. For RRBS, it refers to
the number of valid DNA methylation measurements at CpGs within each region (one
RRBS sequencing read typically yields one measurement, but can also give rise to more than
one measurement if it contains several CpGs). For Infinium, the number of measurements is
equal to the number of CpGs within each region that are present on the
HumanMethylation27 microarray. CpG islands were calculated using CgiHunter (http://
cgihunter.bioinf.mpi-inf.mpg.de/), requiring a minimum CpG observed vs. expected ratio of
0.6, a minimum GC content of 0.5 and a minimum length of 700 basepairs64. Promoter
regions were calculated based on Ensembl gene annotations, such that the region starts one
kilo-base upstream of the annotated transcription start site (TSS) and extends to one kilobase
downstream of the TSS. The genomic tiling was obtained by sliding a 1-kilobase window
through the genome such that each tile starts at the position where the previous tile ends. No
repeat-masking was performed for any of the three types of genomic regions. Data are
shown for the HUES6 human ES cell line.

-
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Figure5. Detection of differentially methylated regionswith MeDIP, MethylCap and RRBS
Average DNA methylation measurements were calculated for each CpG island and

compared between two human ES cell lines (HUES6 and HUESS). Total read frequencies
are shown for MeDIP (panel A) and MethylCap (panel B), and mean DNA methylation
levels are shown for RRBS (panel C). Regions with insufficient sequencing coverage were
excluded. The Venn diagram (panel D) displays the total number and mutual overlap of
differentially methylated CpG islands that could be identified by each method. CpG islands
were classified as hypermethylated or hypomethylated (depending on the directionality of
the difference) if the absolute DNA methylation difference exceeded 20% (for RRBS) or if
there was at least a twofold difference in read number between the two samples (for MeDIP
and MethylCap) — but only if Fisher’s exact test with multiple-testing correction gave rise to
an estimated false-discovery rate of differential DNA methylation that was less than 0.1.
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