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Summary
Statistical models that include random effects are commonly used to analyze longitudinal and
correlated data, often with the assumption that the random effects follow a Gaussian distribution.
Via theoretical and numerical calculations and simulation, we investigate the impact of
misspecification of this distribution on both how well the predicted values recover the true
underlying distribution and the accuracy of prediction of the realized values of the random effects.
We show that, although the predicted values can vary with the assumed distribution, the prediction
accuracy, as measured by mean square error, is little affected for mild to moderate violations of
the assumptions. Thus, standard approaches, readily available in statistical software will often
suffice. The results are illustrated using data from the Heart and Estrogen/Progestin Replacement
Study using models to predict future blood pressure values.
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1. Introduction
Statistical models that include random effects are commonly used to analyze longitudinal
and clustered data. These models are often used to derive predicted values of the random
effects, for example in predicting which physicians or hospitals are performing
exceptionally well or exceptionally poorly (e.g., Austin et al., 2003, 2004) or in plant or
animal breeding experiments (Muir, 2005). In typical applications, the data analyst specifies
a parametric distribution for the random effects (often Gaussian) although there is little
information available to guide this choice. Recently, Zhang et al. (2008) used mixed models
with a nonstandard random effects distribution to predict patients with rapid disease
progression. Are predictions sensitive to the specification of this distribution?

Previous work has generally shown that misspecification of the random effects distribution
is not serious for estimating fixed effect parameters, such as slope coefficients, (e.g.,
Neuhaus et al., 1992, 1994; Butler and Louis, 1997). There have been some exceptions to
these general conclusions (e.g., Litiere et al., 2007, 2008), though Neuhaus et al. (2010)
challenge some of the results of Litiere et al. (2007). This has led to calls for flexibly
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modeling the random effects distribution to protect against incorrect assumptions. Laird
(1978) suggested using a nonparametric estimate of the mixing distribution, which ends up
being a discrete distribution. This has been criticized as unrealistic (Magder and Zeger,
1996) and leads to the proposal to fit a smooth version of the nonparametric mixing
distribution. Verbecke and Lesaffre (1996) suggested using mixtures of Gaussian
distributions, and Zhang and Davidian (2001) proposed using a “seminonparametric” mixing
distribution. All of these have traded computational complexity for a flexible distributional
model for the random effects.

There have been far fewer investigations of the effects of misspecification on random effects
prediction and with less clear results. Verbecke and Lesaffre (1996) investigate the situation
where the true random effects distribution is a mixture of Gaussian distributions and show
that the distribution of the predicted random effects may not match the underlying true
random effects distribution. In particular, they show using simulation studies and real
examples, that the distribution of the predicted random effects may not be able to distinguish
a single Gaussian distribution from a mixture of Gaussian distributions. Agresti et al. (2004),
via simulation, show that extreme departures from Gaussian (specifically a two-point
random effects distribution with a large variance) can cause loss of efficiency for prediction
of random effects from a model that assumes Gaussian. For less extreme examples, the false
assumption of a Gaussian distribution was relatively innocuous. Rabe-Hesketh et al. (2003)
show, in the context of correcting for covariate measurement error and again via simulation,
that biased predictions can result for certain ranges of the random effects. As an alternative
they suggest using a discrete mixture distribution. Zhang et al. (2008) propose and
investigate a linear mixed model with log-gamma distributed random slopes. Via simulation
they show that predicted values can be sensitive to the assumed distribution but demonstrate
only modest increases (their Table 2) in mean square error of prediction when the model is
incorrectly assumed to be Gaussian.

Unlike previous work, we address the question of effects of misspecification on prediction
of random effects using a number of approaches. We consider a variety of true and assumed
smooth distributions for the random effects. For example, for a linear mixed model, which
we consider in Section 3, how does the best predicted (BP) value behave under an assumed
Gaussian distribution, when the true distribution is heavy-tailed? For linear mixed models,
assuming the variance components are known, we address these questions via both
theoretical and numerical calculations.

For the binary matched pairs situation we work out the BPs and their behavior under a
variety of distributions (Section 4). For more complicated models and situations in which
the variance components must be estimated, we use simulation studies (Section 5) to assess
the simultaneous impact on estimating the variance components and predicting the random
effects.

In Section 6 we consider data from the Heart and Estrogen Replacement Study (HERS)
(Hulley, et al, 1998). HERS was a randomized, blinded, placebo controlled trial for women
with previous coronary disease. 2,763 women were enrolled and followed annually for 5
subsequent visits. We develop models based on data from the baseline and first three visits
to predict outcomes at visits four and five and assess prediction error under different
distributional assumptions.

Our main message is that, although predictions themselves can be sensitive to the assumed
distribution, the overall accuracy of prediction is little affected for mild to moderate
violations of the assumptions. This is particularly useful because our results suggest that, for
prediction, inferences are relatively impervious to this hard-to-check aspect of the model.
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2. A Generalized Linear Mixed Model
We consider a generalized linear mixed model for clustered data with random, cluster-
specific terms, bi. Let Yit represent the tth observation (t = 1,…, ni) within cluster i (i = 1,…,
m). We assume that, conditional on the random effects, the Yit are independent:

(1)

where g(·) is a known link function, β is the parameter vector for the fixed effects, zit links
the random effects to the observations, and xit is a vector of covariates for cluster i at time t.
Our main focus will be on random intercepts but we also report some simulation results for
random slopes and intercepts and illustrate fitting of random slopes and intercepts for the
HERS example.

2.1 Best Predicted Values
Our main interest is in predicting the values of bi with a key focus on the minimum mean
square error predicted values. For a scalar bi is straightforward to show (McCulloch et al.,
2008) that the predictor that minimizes the overall mean square error of prediction is given
by

(2)

A natural way to calculate (2) is to use the conditional specification in (1):

(3)

3. Linear Mixed Models
The first class of models we consider are linear mixed models, e.g., (1) with FY Gaussian
and an identity link function. In that case, we write the random intercept version of (1) as

(4)

3.1 Best Predicted Values
For model (4) the conditional distribution of bi given Y depends on Y only through Ȳi·, the
sample mean for the ith cluster. This simplification is due to the fact that the conditional
distribution of Y given bi in (3) is Gaussian and Ȳi· is a sufficient statistic for bi. Therefore,
the best predicted values are given by

McCulloch and Neuhaus Page 3

Biometrics. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(5)

To explore the behavior of b̃i we will use four different distributions for fbi, which will then
be scaled to have standard deviation σb:

1.
Gaussian. .

2. A skewed and truncated distribution: Exponential(1) shifted to have mean 0. fbi (b)
=e−(b+1)I{b>−1}.

3. A heavy-tailed distribution: T distribution with 3 d.f., scaled to have variance 1 (the

smallest d.f. that can be normalized to have variance 1). .

4. A mixture distribution: fbi (b) is a mixture of two Gaussian distributions with
probabilities p and 1 − p, means −δ(1 − p) and δp and variance τ2 = 1 − δ2p[1 − p].
These are chosen so that the mean of the mixture distribution is zero and it has
variance 1. Two versions of the mixture distributions were used. An “outlier”
mixture to represent a few (5%) extreme values, three standard deviations away
from the main distribution (δ = 3, p = 0.95) and a symmetric, distinctly bimodal
distribution (δ = 1.75, p = 0.5).

We chose the last three distributions to represent a wide variety of distributional deviations
from Gaussian. The exponential distribution is heavily skewed, has high kurtosis and is
truncated on the left. The t-distribution is heavy-tailed but symmetric. The outlier mixture
distribution is skewed and we chose it to represent the situation where a small percentage of
the random effects have outlying values, and where inference might focus on identifying
those outlying values. The symmetric mixture is another symmetric, but highly non-
Gaussian distribution. Further, these distributions also reflect the types of variations
previously proposed in the literature, i.e., the skewed distributions considered in Zhang et al.
(2008) and the mixture distributions considered by Verbecke and Lesaffre (1996).

We evaluate the behavior and performance of the best predicted values under various
combinations of assumed and true random effects distributions. We will use a superscript T
or A to distinguish the true versus the assumed random effects distribution. So, for example,

 would represent the true c.d.f. of bi.

3.2 Assuming bi Gaussian
The initial work (e.g., Searle, 1971) on mixed effects models and much commercial
statistical software allows only the assumption of a Gaussian random effects distribution so
we begin with that case. That is, we use an assumed Gaussian distribution, , for the
purposes of calculating the best predicted values. Of course, the true distribution may have a
different form. For this assumed model, the best predicted value of bi, assuming known
values of , and β, is well known to be (McCulloch et al., 2008)
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(6)

(7)

with x̄i·= Σtxit/ni and , the traditional shrinkage factor in linear mixed
model prediction.

We evaluate the performance of b̃i by first considering the conditional distribution b̃i given
bi. This is a convenient representation because it separates the influence of the assumed

distribution for bi, which governs the form of , from the true distribution, . It is easy to
show that if the assumed distribution for bi is Gaussian then the conditional distribution is
given by

(8)

There are a number of immediate consequences of this representation, many of which are
well-known:

• b̃i is conditionally biased towards 0 by the shrinkage factor λi,

• The conditional bias and the variance go to zero as ,

• As ni → ∞, the distribution of b̃i converges to the distribution of bi,

• Irrespective of the true distribution of the bi, the unconditional distribution of b̃i has
mean 0 and variance equal to ,

• The variance of b̃i is also smaller than the variance of bi by the shrinkage factor, λi.

The true distribution of b̃i is the convolution of (8) and Fb:

(9)

Under the assumed Gaussian random effects distribution and using numerical methods, it is
straightforward to evaluate (9) for the distributions given above. Figure 1 displays the true
random effects distribution and the distribution of the BP (Best Predictor) for the
exponential and outlier mixture distributions and for a number of sample sizes per cluster,
using  and .

In both cases, the distribution of the BPs fails to capture the shape of the true underlying
distribution even with a cluster size of ni = 20. This is especially the case for the true
exponential distribution, which has limited support whereas the assumed Gaussian
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distribution does not. Only for larger sample sizes (around ni = 20) does the additional
Gaussian component in the mixture density become evident.

3.3 Best predicted values for other assumed distributions
It is also possible to work out the best predicted values for a linear mixed model when the
assumed distribution for the random effects is either a mixture of Gaussian distributions or
an exponential distribution. Details are given in Web Appendix A.

3.4 Comparison of the calculated BPs under different distributional assumptions
While (5) cannot be calculated in closed form for all the distributions, it is straightforward to
numerically evaluate the integrals in order to understand the degree of agreement or lack of
agreement under different assumed distributions. As noted above, the BPs depend on the
data only through Ȳi·. Figure 2 shows the values of the BPs calculated under each of the five
distributions noted above for given values of the within cluster deviation , for cluster
size ni = 6 and using  and .

The solid, straight line in the figure shows the constant shrinkage of the BP under the
assumed Gaussian distribution, in this case corresponding to a shrinkage factor of

. The most notable deviation is for the exponential distribution for
negative deviations, because the exponential assumption does not allow predicted values
less than the truncation point of −σb. The t-distribution assumption does not shrink extreme
deviations as much – a reflection of its heavy tails. Both the outlier mixture distribution and
exponential distributions have heavy right tails and do not shrink large positive deviations as
much as the Gaussian distribution.

Figure 2 illustrates that, for a given value of the data, the different assumed distributions can
generate different predicted values. However, those values are unlikely. We simulated data
under each of the true distributions and the vast majority of the possible values occur in the
central range where BPs under any of the distributions are very similar. In fact, over 95% of
the within-cluster deviations (under any of the assumed distributions) occur between −2.25
and 2.75 and over 99% are between −3.5 and 4.5. So this is a reflection of Winsor’s
principle (Mosteller and Tukey, 1977, p.12): “Any observed distribution is Gaussian in the
middle.” For more extreme values of the random intercept variance, under which more
extreme values are more likely, we might expect to see more substantial differences.

The plots in Figure 2 suggest that the best predicted values are monotonic functions of the
deviation within a cluster. This is, in fact, true in general. Letting , it is
straightforward to show that the derivative of (5) with respect to νi is positive:

for any assumed random effects density fbi (bi). Thus, the transformation (5) from νi to b̃i is
monotone, that is, order-preserving.

An important consequence of this is that, for a given cluster size, BPs under any assumed
distribution will be ordered based on their within cluster deviation. So, if the cluster sizes are
similar then rank correlations of the predicted values in a dataset will be high across
different assumed random effects distributions. However, if cluster sizes are quite different,
then the different amounts of shrinkage associated with different random effects
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assumptions can come into play to change the ordering of predicted values. For example
suppose, under the assumption of a heavy tailed distribution, a cluster with a very large
sample size was ranked as smaller than one with a small sample size. Under a light tailed
distribution the large cluster size prediction will be about the same, but it might dramatically
shrink the small cluster size prediction to be smaller than that of the large cluster size, giving
a different ranking than under the heavy tailed distribution.

3.5 MSE of prediction
We will see that, although the shape of the distribution of the BPs does not necessarily
match the shape of the true distribution, this does not necessarily translate into poorer
performance in the metric by which BPs are defined, namely mean square error of
prediction. The monotonicity of predictions and the fact that predicted values are similar for
the most likely values (i.e., Figure 2) across a wide variety of assumed distributions
contribute to this.

3.5.1 MSE of prediction under an assumed Gaussian distribution—Under an
assumed Gaussian distribution for the random effects we can easily derive the mean square
error of prediction. Again, we temporarily drop the subscript i to simplify the presentation.

(10)

(11)

where (10) is derived using result (8). Somewhat surprisingly, this is independent of the true
distribution of b. This fact also contributes to the robustness of the mean square error of
prediction under different true distributions: lower mean square error of prediction will only
be obtained under true distributions for which prediction is “easier.”

3.5.2 Comparison of MSE of prediction under various true and assumed
distributions—As shown in Web Appendix A, it is straightforward to numerically
evaluate the mean square error of prediction under assumed exponential and mixture
distributions. That allows us to compare the prediction error under a variety of assumed and
true distributions.

Figure 3 displays the MSE of prediction versus sample sizes under four (Gaussian,
exponential, outlier mixture, and symmetric mixture) assumed and the same four true
distributions calculated using numerical integration. Each column has a different true
distribution, each row is a different variance of the random effect, σb, and, in each graph,
each line represents a different assumed distribution. We used  in these calculations.
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In the left most column (true Gaussian distribution), the assumed Gaussian and assumed
mixture BPs give virtually identical results. The assumed exponential distribution performs
poorly, especially for large random effects variances. This is due to the limited range of
support of the exponential distribution, which causes it to generate biased predictions below
its truncation point of −σb. For example, for the n=10, σb = 2 scenario, the MSEP for the
exponential is 0.41 while the Gaussian is 0.10. The average of the BPs for the assumed
exponential is badly off at 0.16 when it should be 0. However, the MSEP for predictions in
which the true value of bi is greater than −σb is 0.09 for both the assumed Gaussian and
assumed exponential distributions; above the truncation point for the exponential
distribution, incorrectly assuming the random effects to be exponential produces little
increase in MSEP.

In the second column (true exponential distribution), using an assumed exponential
distribution performs very slightly better than the Gaussian or mixture assumptions. The
third and fourth columns (assumed symmetric and outlier mixture distributions respectively)
are similar in that the Gaussian and mixture assumptions give similar results, but outperform
the exponential assumption. In each case there is a modest gain in MSEP when using the
true distribution as the fitted distribution.

Calculations for the t-distribution (for which we do not have an explicit formula for b̃i) often
shows performance comparable to “better-behaved” distributions. For example, using an
assumed Gaussian distribution with σb = 2 (as in the bottom row of Figure 3), the inflation
of MSEP under a true t-distribution as opposed to a true Gaussian distribution ranges from
21% when n=2, 8% for n=6 and only 2.5% for n=20. These calculations show that the
MSEP is little affected by different distributional assumptions, except in the case of limited
range of support.

4. Binary Matched Pairs
We now turn to a simple binary outcome scenario - that of matched pairs. Our model is

(12)

Suppressing the index i temporarily and using the notation S = Y1 + Y2, we calculate the BP
for a cluster using an assumed distribution for bi, , as

(13)

which shows that the BP depends only on the total number of successes within the cluster
and hence only takes on three values. For any given combination of α, β, and σb and an
assumed distribution for bi it is straightforward to numerically evaluate (13) to obtain the
three possible values of b̃i.
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The distribution of b̃i is governed, of course, by the true distribution of bi, . It can be
found by calculating the probabilities, under the true model, of each of the three values of b̃i
generated by the possible values of y1 and y2, which are given by (13):

(14)

Using (13) and (14) with known values of α, β, and σb, we can numerically evaluate the
performance of the BPs under different true and assumed distributions. For example, when α
= 0, β = 1, and σb = 1, and the assumed distribution is Gaussian, then the three values of b̃i,
corresponding to 0, 1, or 2 successes within the pair are, respectively, −0.85, 0.15 and 0.58.
However, if the distribution is assumed to be exponential then the three values are −0.54,
−0.25 and 0.59, reflecting the truncated left tail of the exponential distribution. Under a true
Gaussian distribution the probabilities of 0, 1 and 2 successes are, respectively, 0.19, 0.42
and 0.39, while under a true exponential distribution, the probabilities are 0.18, 0.45, and
0.36.

We can calculate the mean square error of prediction under different assumed and true
distributions in a similar fashion. For a given value of bi, the mean squared prediction error
is, via iterated conditional expectation,

(15)

The inside expectation (for a given value of bi) is just a weighted average of the three
possible values of (b̃i − bi)2, weighted by the conditional probability of 0, 1, or 2 successes,
which we calculate from

(16)

Those weighted averages can then be numerically integrated against the true distribution of
bi to find the mean square error of prediction.

We did so using an assumed Gaussian distribution but a true exponential distribution for
predicting the random effects in (12) when α = 0 and σb = 1 for various values of β. The
percent increases in the MSEP in using the incorrect Gaussian assumption were 3.5%, 3.0%,
2.1% and 1.4% for β equal to 0, 1, 2, and 3 (respectively). Though we saw that the actual
BPs differed somewhat by whether the assumed distribution was Gaussian or exponential,
there is very little degradation in the mean square error performance when using the
incorrect Gaussian assumption.

5. Simulations
We performed simulation studies to evaluate the performance of the BPs under different true
and assumed distributions in the more realistic situation in which all the parameters were
estimated. We tested three distributions for the random effects: a Gaussian distribution, an
exponential distribution and a Tukey(g, h) distribution. We report the results for the
exponential distribution; results for the Tukey distribution are included in Web Appendix B.
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Using the two random effects distribution, we simulated eight different scenarios. For a
continuous outcome, linear mixed model with Gaussian errors and for a binary outcome,
logistic regression, we simulated the four combinations of assumed and true distributions
(Gaussian and exponential). The simulations used two covariates: one within cluster and one
between cluster covariate. The within cluster covariate was equally spaced between 0 and 1.
The between cluster covariate was binary with a 25%/75% division. The parameter values
were set as follows: β0 = −2, βbetween = 1, βwithin = 1, σb = 1, and, for continuous outcomes,
σε = 1. The number of clusters, m, was set to 100 and a variety of cluster sizes used (n = 2, 4,
6, 10, 20, and 40).

To each simulated data set we fit two GLMMs with either an identity or logistic link. One
model assumed that the random effects were standard Gaussian while the other assumed the
random effects followed a standardized exponential distribution. Figure 4 gives the results;
the columns give the true distributions (Gaussian and exponential) the rows are for different
random effects variances. Each panel plots the mean square error of prediction versus cluster
size for each of the two assumed distributions.

Because there is evidence (e.g., Litiere et al., 2008) that more complicated random effects
structures can cause special problems, we also conducted a limited set of simulations using
random slopes and intercepts. We did not find qualitatively different results in those
investigations. The details of those simulations results are reported in Web Appendix B.

The main message is that the primary determinant of the MSEP is the cluster size. In each
case, using the incorrect distribution causes only a modest degradation in the MSEP,
especially for smaller cluster sizes (i.e., less than 10) and smaller random effects variances.
There are exceptions. For the large variance, large cluster size case, an assumed exponential
distribution performs poorly compared to the true normal distribution. Under a Gaussian
assumption, the loss in efficiency is less severe. But for large variances in the binary
outcome setting there is some loss.

6. Example - HERS
HERS was a randomized, blinded, placebo controlled trial for women with previous
coronary disease. 2,763 women were enrolled and followed annually for 5 subsequent visits.
We will consider only the subset (N=1,378) that were not diabetic and with systolic blood
pressure less than 140 at the beginning of the study and treat it as a prospective cohort study.
We develop a prediction model based on the baseline and visits 1 through 3 to predict the
systolic blood pressure (SBP) at visit 4.

To predict systolic blood pressure for woman i at visit t (SBPit) we fit the model:

(17)

BMIit is the woman’s body mass index at time t and AGEi is her age at baseline. For the
Gaussian, exponential and discrete distributions we also fit random slope and intercept
models. To obtain a bivariate, correlated exponential distribution we started with a
correlated multivariate normal distribution and transformed each marginal distribution to
exponential. Other predictors not explicitly listed above included whether or not the woman
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became diabetic (after baseline), whether she drank alcohol or not and whether or not she
exercised at least three times per week.

We fit models via maximum likelihood to the data from baseline and visits 1 through 3
using, in turn, each of the assumed random effects distributions given in (17). We chose the
exponential and Tukey distributions to be parametric but quite different from the Gaussian.
The discrete distribution is similar to a nonparametric maximum likelihood fit (differing in
that we did not automatically select the number of mass points).

The six models were used to predict SBPi4, the blood pressure measurement at visit 4 and
were also compared to a fixed effects only model, i.e., one that set the random effects to zero
(in the model fit assuming Gaussian random effects). Table 1 lists the fitted coefficients,
maximized log likelihood values and the root mean square error of prediction.

As expected (Verbeke and Lesaffre, 1997), the fixed effects parameter estimates are quite
similar, even though there are modest differences in the fits of the models as judged by the
value of the maximized log likelihood. The estimated values for the Tukey distribution were
g = 0.10 and h = 0.005, close to a Gaussian distribution (which is g = h = 0).

With respect to prediction, the random effects models outperformed the fixed-effects-only
model with root mean square errors of prediction which are over 20% smaller. However, all
the random effects models have approximately the same prediction error, despite the fact
that (Figure 5) the distribution of the BPs from the models are very different. For random
intercept models, the better fitting (according to Table 1) Gaussian and Tukey random
effects model outperformed the exponential and discrete models by only about 2%. While
statistically significantly better fitting, the random intercepts and slopes models generated
slightly less accurate predictions.

Consistent with the findings in Section 3.4, the Spearman rank correlation among
predictions from the four assumed distributions were uniformly high. For example, for the
random intercept fits, the rank correlation between the Gaussian and Tukey was virtually 1.
The rank correlation between those two and the exponential was 0.99 and between those two
and the discrete was 0.97; finally the rank correlation was 0.96 between the exponential and
discrete. Web Appendix C shows a matrix scatterplot of predictions under the four random
intercept models.

7. Summary
We have shown, in the clustered data context, via theory, calculation, simulation and
example that predictions under various assumed distributions can be modestly different in
absolute values but perform similarly in practice. This is true either of their rank order or
their mean square error of prediction. There are important caveats to that conclusion. First,
assuming distributions with limited support may not work well when the true distribution
has a wider range of support. Second, mean square error of prediction performance was very
robust to the assumed distribution when the random effects variance was small to moderate
and cluster sizes were small to moderate. However, for larger variances and larger cluster
sizes loss of efficiency can result.

The theory and the example serve to illustrate several important points:

• Distributions of best predicted values are highly dependent on the assumed
distribution and hence are not reliable indicators of the true random effects
distribution (e.g., Figure 5).
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• Very different distributions for BPs can perform quite similarly in practice (as
gauged by overall mean square error of prediction).

• Random effects distributions which may be statistically significantly better fitting
may not perform better in overall prediction.

Overall, this paper demonstrates that the standard approach of assuming Gaussian
distributed random effects results in good performance of best predicted values across a
wide range of situations with different true random effect distributions. Our results are
particularly useful since it is difficult to verify assumptions about random effects
distributions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Plot of best predictor density for various cluster sizes with an assumed Gaussian but true
exponential density (left panel) or true outlier mixture density (right panel)
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Figure 2.
Plot of best predicted values versus within cluster deviation for clusters of size 6 and a
variety of distributional assumptions
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Figure 3.
Mean square error of prediction with various true and assumed distributions and sample
sizes. Different columns contain different true distributions. Each row is a different value of
the random effects variance and each plot shows the mean square error of prediction as a
function of cluster size with separate curves for different assumed distributions.
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Figure 4.
Mean square error of prediction for continuous and binary outcomes under assumed and true
Gaussian and exponential distributions, random intercepts model
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Figure 5.
Histograms of best predicted values of random effects for the HERS data under four
different distributional assumptions

McCulloch and Neuhaus Page 18

Biometrics. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

McCulloch and Neuhaus Page 19

Ta
bl

e 
1

H
ER

S 
m

od
el

 fi
t c

om
pa

ris
on

s w
ith

 d
iff

er
en

t a
ss

um
ed

 ra
nd

om
 e

ff
ec

t d
is

tri
bu

tio
ns

M
od

el
L

og
 li

ke
lih

oo
d

Pa
ra

m
et

er
 E

st
im

at
es

Pr
ed

ic
tio

n

B
M

I
V

is
it

A
ge

R
M

SE

Fi
xe

d 
ef

fe
ct

s o
nl

y
−
20
61
0.
6

0.
36

2.
20

0.
40

4.
60

17
.4

Ra
nd

om
 in

te
rc

ep
ts

 
G

au
ss

ia
n

−
20
61
0.
6

0.
36

2.
20

0.
40

4.
60

14
.0

 
Ex

po
ne

nt
ia

l
−
20
69
3.
9

0.
37

2.
20

0.
40

4.
83

14
.3

 
D

is
cr

et
e

−
20
62
7.
6

0.
36

2.
20

0.
37

4.
55

14
.3

 
Tu

ke
y

−
20
60
5.
6

0.
36

2.
19

0.
39

4.
56

14
.0

Ra
nd

om
 in

te
rc

ep
ts

 a
nd

 sl
op

es

 
G

au
ss

ia
n

−
20
49
4.
6

0.
35

2.
21

0.
35

3.
79

14
.2

 
Ex

po
ne

nt
ia

l
−
20
56
3.
7

0.
36

2.
19

0.
38

4.
10

14
.6

 
D

is
cr

et
e

−
20
51
0.
0

0.
35

2.
22

0.
32

3.
78

14
.8

Biometrics. Author manuscript; available in PMC 2012 March 1.


