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Apoptosis, also called programmed cell death, is physiologically and pathologically involved in cellular homeostasis. Escape
of apoptotic signaling is a critical strategy commonly used for cancer tumorigenesis. Ceramide, a derivative of sphingolipid
breakdown products, acts as second messenger for multiple extracellular stimuli including growth factors, chemical agents, and
environmental stresses, such as hypoxia, and heat stress as well as irradiation. Also, ceramide acts as tumor-suppressor lipid because
a variety of stress stimuli cause apoptosis by increasing intracellular ceramide to initiate apoptotic signaling. Defects on ceramide
generation and sphingolipid metabolism are developed for cancer cell survival and cancer therapy resistance. Alternatively,
targeting ceramide metabolism to correct these defects might provide opportunities to overcome cancer therapy resistance.

1. Introduction

Apoptosis, also named programmed cell death, is a nor-
mal component for cellular homeostasis involving embry-
onic/organ development and health in human. For tumori-
genesis, oncogenic factors are generally involved in acti-
vation of antiapoptotic signaling pathways, whereas tumor
suppressor factors are normally proapoptotic [1]. During
the past two decades, studies of sphingolipids reveal the
important role of bioactive sphingolipids, such as ceramide,
in regulation of multiple biological functions especially in
apoptosis [2–6]. The cytopathic effects of ceramide are
proapoptotic as well as necroticlike, depending on the cell
types and the dosages of stimulation. Thus, apoptotic signal-
ing caused by ceramide is diverse because several intracellular
organelles are generally involved [7]. Inhibiting cell death
by interference on ceramide signaling is a key strategy for
tumorigenesis escape from apoptotic stimuli. Therefore, for
the development of cancer therapy, ceramide metabolic
pathways become candidate target currently [8–11].

The antiproliferative activities of ceramide for cancer
therapy depend on the induction of various apoptotic
pathways as demonstrated previously [12–14]. Most of
these studies are based on the exogenous administration

of ceramide analogue, particularly C2- and C6-ceramide.
Endogenous generation of ceramide through the newly
de novo synthesis or the hydrolysis of sphingomyelin is
also reported to trigger signaling pathways after apoptotic
stimulation. However, it remains controversial for verifying
the different molecular mechanisms between these two
experimental approaches. In this article, we briefly discussed
the link of ceramide and organelle dysfunction in apoptosis
and also summarized several ceramide-based mechanisms of
cancer therapy resistance as well as strategies by targeting
ceramide metabolism for cancer therapy sensitization.

2. Apoptotic Signaling through the Multiple
Intracellular Organelle Failure

Under apoptotic stimuli, cells undergo programmed cell
death generally through the extrinsic pathway, also called
the death receptor pathway, and the intrinsic pathway,
also named the mitochondrial pathway [1]. In general,
extrinsic pathways are activated by the death receptors
through the interaction between their natural ligands or
by inducing death receptor clusterization. Death receptors
belong to the tumor necrosis factor (TNF) superfamily
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and interact with their ligands to form death receptor
complexes, including Fas (CD95/Apo1)/Fas Ligand (CD95
ligand) [15], TNF receptor 1 (p55)/TNF and lymphotoxin
[16], TRAMP (WSL-1/Apo3/DR3/LARD)/TWEAK (Apo3
ligand) [17], TRAIL-R1 (DR4)/TRAIL (Apo2 ligand) [18],
and TRAIL-R2 (DR5/Apo2/KILLER)/TRAIL [19]. Upon
the activation of extrinsic pathway, the intracellular death
domain (DD) of death receptors interacts with an adaptor
protein Fas-associated death domain (FADD) directly or
indirectly via the TNF receptor-associated death domain
[19]. The FADD complex interacts with a typical initial
procaspase-8 to form a death-inducing signaling complex
required for the activation of caspase-8 [19]. Caspase-8 is
able to cleave Bid to form a truncated form of Bid (tBid)
and causes a reduction of mitochondrial transmembrane
potential (MTP) followed by the release of cytochrome c,
which binds to Apaf-1 and promotes caspase-9 and caspase-3
activation [20, 21].

In addition to the extrinsic pathway, the involvement of
mitochondrial injury in apoptosis is proposed to be via an
intrinsic pathway. Generally, activation of proapoptotic Bax
and Bid, the members of the Bcl-2 family with proapoptotic
roles, leads to its translocation to the mitochondria and
disrupt the membrane integrity to induce MTP [22–24].
In contrast, Bcl-2 and Bcl-xL, the members of the Bcl-
2 family with antiapoptotic roles, protect these effects by
maintaining the MTP through the inhibition of Bax or other
proapoptotic factors [22]. Dysregulation on the balance of
Bcl-2/Bax contributes to the progression of apoptosis of
intrinsic pathway.

Stresses on the endoplasmic reticulum (ER), which is
the site of protein synthesis, modification, and folding,
can trigger an unfolded protein response (UPR) following
ER stress [25–27]. ER stress can be caused by the inhi-
bition of glycosylation, the reduction of disulfide bonds,
calcium depletion from the ER lumen, impairment of
protein transport to the Golgi, and expression of mutated
proteins in the ER. UPR of ER stress enhances protein
folding and degradation within the ER and downregulates
protein synthesis until cells have recovered from the ER
stress. However, ER stress may also cause apoptotic cell
death by the prolonged UPR and is demonstrated to be
involved in several apoptotic signaling pathways [25]. The
ER stress-induced transcription factor C/EBP homologous
protein decreases the expression of antiapoptotic Bcl-2 and
increases reactive oxygen species (ROS) production to trigger
cell apoptosis through the mitochondrial pathway [26].
Apoptosis signal-regulating kinase (ASK) 1, an upstream
kinase of c-Jun N-terminal kinase (JNK), is activated in
cells through death receptors and oxidative stress [28].
ER stress can also activate ASK1. Deficiency on ASK1
reduces ER stress-induced JNK activation and cell death
[29]. Cascade activation of caspases is generally involved in
ER stress-induced cell apoptosis. Caspase-4, a specific ER
stress-activated caspase with homology to murine caspase-
12, triggers apoptotic pathways, dependent or independent
of caspase-9 and caspase-3 activation [25]. The crosstalk
between ER and mitochondria is therefore speculated.
Meanwhile, the activation of caspase-2, -3, -7, -8, and -9 has

also been reported in ER stress-induced apoptosis [30–32].
A feedback regulation of these caspases has been proposed
to be mediated by ER stress-activated calcium-dependent
protease calpain. Initially, activated calpain directly causes
the activation of human caspase-4 [33, 34].

For cell death, acidic organelle lysosome plays a piv-
otal role in apoptosis and necrosis caused by oxidative
stress, TNF-α, sphingosine, p53, and staurosporine [35, 36].
Mechanistic studies show that destabilization of lysosomal
membrane and release of lysosomal content into the cyto-
plasm initiate the lysosomal apoptotic pathway. In general,
mitochondrial/lysosomal crosstalk is regularly involved in
cell death process. However, the precise lysosomal pathway
in ER stress-induced apoptosis remains unclear. Signaling
of apoptotic stimuli, such as calcium, ROS, ceramide, sph-
ingosine, phospholipase, Bax, Bim, Bid, and caspase causes
lysosomal membrane permeabilization (LMP) [36, 37]. After
LMP, cathepsins, the lysosomal proteases, translocate to
the cytosol and trigger apoptotic and necrotic pathways
through Bid truncation, caspase activation, and mitochon-
drial damage [38]. Overall, it is speculated that both ER
stress and lysosomal and mitochondrial destabilization may
contribute to the initiation stage of apoptosis. Inducing
mitochondrial pathway is the major proapoptotic actions of
ceramide, meanwhile, ceramide also causes lysosomal and
ER dysfunction to facilitate apoptotic process. The crosstalk
among these organelles in ceramide-induced apoptosis varies
in the context of cell types and stimulations.

3. Sphingolipid Metabolism

Membrane sphingolipids, regulators for cell growth, death,
senescence, adhesion, migration, inflammation, angiogen-
esis, and intracellular trafficking, are bioactive metabolites
including sphingosine, ceramide, sphingosine-1-phosphate
(S1P), and ceramide-1-phosphate (C1P) [2]. Ceramide,
a sphingolipid with sphingosine backbone, is generated
from diverse pathways, including newly de novo syn-
thesis and hydrolysis of sphingomyelin or cerebrosides
[8, 13, 39, 40]. For de novo synthesis, ceramide is pro-
duced by palmitoyltransferase-mediated interaction of serine
and palmitoyl-CoA and then a series of metabolic reac-
tions. Alternatively, extracellular stimulation usually induces
hydrolysis of sphingolipids and sphingomyelin by sphin-
gomyelinase (SMase) and cerebrosides—including galacto-
sylceramide and glucosylceramide by cerebrosidase.

For the homeostasis of sphingolipid metabolism, cer-
amide is subsequently metabolized by ceramide kinase to
generate C1P and by ceramidase to generate sphingosine,
which is further phosphorylated to S1P by sphingosine
kinase. Alternatively again, dephosphorylation of the meta-
bolic derivates also occurs using specific phosphatases, such
as C1P phosphatase and S1P phosphatase. Furthermore,
ceramide can also be produced from sphingosine by
ceramide synthase [8, 13]. As summarized in Figure 1, the
dynamic regulation for ceramide generation and meta-
bolism is critical for cellular responses to extracellular stim-
uli, such as death receptor-mediated (TNF-α and Fas),
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Figure 1: Metabolic pathways of ceramide. Under apoptotic stimuli, ceramide is generated primarily by de novo synthesis, through
serine palmitoyltransferase- and ceramide synthase-mediated synthesis, and the hydrolysis of sphingomyelin through sphingomyelinase.
Furthermore, metabolism of ceramide are regulated by ceramide kinase, sphingosine kinase, ceramide-1-phosphate phosphatase,
sphingosine-1-phosphate phosphatase, cerebrosidase, and glucosylceramide synthase.

chemotherapeutic agent-mediated (etoposide, cisplatin,
doxorubicin, paclitaxel, and inostamycin), and irradiation-
mediated (UV and γ-irradiation) [12–14]. For tumor-
igenesis, ceramide acts as a tumor-suppressor lipid, whereas
S1P acts as a tumor-promoting lipid [8].

A variety of sphingolipid metabolic disorders has been
reported because of a deregulated balance on sphingolipid
metabolism. Activation of S1P is essential for brain and
cardiac development as well as for pathogenic in autoimmu-
nity, cancer, and cardiovascular disease [4]. Ceramide, C1P,
and S1P are able to facilitate activation of proinflammatory
transcription factors in different cell types to induce over-
expression of proinflammatory cyclooxygenase-2 (COX2)
and prostaglandins [41]. Additionally, COX2 inhibitor cele-
coxib has been reported to induce apoptosis via activating
ceramide de novo synthesis [42]. Deregulated ceramide
facilitates the progressive neurodegenerative diseases such
as Alzheimer’s disease, Parkinson’s disease, amyotrophic
lateral sclerosis, and other neurological disorders that are
characterized by the gradual loss of specific populations of
neurons through the induction of neuronal cell apoptosis
[7, 43].

4. Proapoptotic Role of Ceramide

Several lines of evidence have established the proapoptotic
role of ceramide. Many apoptotic stimuli have been found to
increase the levels of intracellular ceramide [12–14]. The role
of ceramide had been speculated to be proapoptotic based
on the observation that ceramide generation precedes the

onset of apoptotic signaling [44], and exogenous treatment
with ceramide induces cell apoptosis [45]. Figure 2 reveals
the generation of ceramide in an apoptotic cell, typically
with DNA fragmentation, under hyperglycemia treatment
as detected by immunostaining using a monoclonal IgM
against cemaride (clone MID 15B4). However, the causal
relationships between ceramide generation and apoptosis
had been in controversy for a while [46–48]. The advances in
ceramide detecting methods and the discoveries of enzyme
inhibitors to block ceramide synthesis or increase ceramide
accumulation further identified that some ceramide-
generating stimuli induce apoptosis in ceramide-dependent
manner [12].

Ceramide is important mediator in both extrinsic and
intrinsic pathways of apoptosis [6, 7, 12]. Endogenous
ceramide generation and its roles in apoptotic signaling have
been demonstrated in CD95- and TNF-α-treated conditions
[49]. In these cells, acidic SMase mediates hydrolysis of
sphingomyelin to generate ceramide and inhibition of acidic
SMase effectively blocks cell death [50–52]. In addition
to acidic SMase, TNF-α activates neutral SMase through
FAN (factor associated with neutral SMase activation) to
induced apoptosis [53]. Intrinsic apoptotic stimuli such as
hypoxia, nutrient deprivation, radiation, heat, cellular stress,
and cytotoxic drugs also increase endogenous ceramide
levels through multiple mechanisms involving not only
SMase but also ceramide synthase [2]. In general, increased
ceramide causes activation of various protein kinases and
phosphatases, cascade activation of caspases, dysfunction of
multiple organelles, and leads to apoptosis [7].
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Figure 2: The generation of ceramide in apoptotic cells. Under high dose (25 mM) treatment of glucose (mimic hyperglycemia),
mouse T hybridoma 10I cells underwent apoptosis were detected by 4′,6-diamidino-2-phenylindole (DAPI) nuclear staing. Fluorescein
isothiocyanate-conjugated ceramide monoclonal IgM was used to detect ceramide generated in response to hyperglycemia.

Ceramide is structurally composed of a fatty acyl moiety
bound to an amino alcoholic chain which varies in length
from 2∼ 28 carbons. Long-chain ceramide belongs to the
natural form of ceramide found in cells. Short chain
ceramides are usually synthesized for the purpose of research
[54]. Obeid et al. [45] firstly identified the proapoptotic role
of ceramide in vitro by using C2-ceramide (microM), a syn-
thetic cell-permeable ceramide analog N-acetylsphingosine.
Typically, C2-ceramide, but not dihydroceramide, induces
internucleosomal DNA fragmentation, a characteristic for
cell apoptosis [55]. In addition to C2-ceramide, C6-ceramide
also triggers cell undergoing apoptosis [56]. After that,
ceramide acts as a lipid second messenger as reported in
a number of researches of apoptotic signaling pathways
[57, 58]. In cancer cells, taking leukemia for instance,
exogenous treatment of C2- and C6-ceramide induced
apoptosis in chronic myeloid leukemia (CML) cell line
K562 [59, 60]. C6-ceramide promotes apoptosis in CML-
derived K562 cells by a mechanism involving caspase-8 and
JNK [59]. Nanoliposomal delivery of exogenous ceramide
(C6-ceramide) inhibit NK-LGL leukemia in a rat model
and the antiproliferative effect of ceramide is through
downregulation of antiapoptotic protein survivin [61].

Whether exogenous ceramide mimic intracellular phys-
ical actions of endogenous ceramide remains an open
question. However, it is of note that treatment of cells with
exogenous ceramide (at concentration below 20 microM
to 2∼10 × 106 cells ml−1) resembles many cellular response
induced by ceramide-generating stimuli [13]. Exogenous
ceramide has been reported to induce endogenous ceramide
through ceramide synthase [62]. Meanwhile, several inter-
esting findings provide insight that the biologic functions of
ceramide may vary by its length. Differential expression of
C16- (high) and C18-ceramide (low) in patients with head
and neck squamous cell carcinomas (HNSCCs) suggests the
C18-ceramide play proapoptotic role but not C16-ceramide
[63–65]. Knockdown of C16-ceramide synthase (ceramide
synthase 6; CerS6) induces ER stress and apoptosis in vitro
[66]. The growth of HNSCCs xenograft is promoted by
overexpression of CerS6 but suppressed by overexpression
of CerS1 (C18-ceramide synthase) [66]. The individual
function of ceramide species needs more investigations.

Early evidence that Bcl-2 prevents ceramide-induced
apoptosis [56, 67] demonstrates exogenous ceramide ini-
tiates mitochondrial apoptosis. In cell-free system, C2-
ceramide induces ROS generation and inhibits mitochon-
drial electron transfer in isolated mitochondria [68–70].
C2- or C16-ceramide causes increase of mitochondrial
outer membrane permeability which allows cytochrome c
release [71, 72]. Ceramide can be generated in mitochondria
through hydrolysis or de novo synthesis [73–75]. Both
mitochondrial-overexpressed sphingomyelinase and TNF-α
stimulation leads to mitochondrial ceramide accumulation,
Bax translocation, cytochrome c release, and apoptosis
[73, 76]. Exogenous C2- or C6-ceramide also triggers mito-
chondrial apoptosis in multiple cell lines [77–80]. In general,
either exogenous ceramides or ceramide-generating death
stimuli cause mitochondrial dysfunction, executor caspases
activation, and apoptosis.

Compared with the field of mitochondrial apoptosis,
much less studies address the role of ER in ceramide-
induced apoptotic signaling. In addition to protein synthesis,
ceramide is also de novo synthesized in the ER and transfer
to Golgi apparatus by ceramide transport protein CERT
[2, 3, 81]. The hypothesis that perturbation of ceramide level
in ER might cause ER stress is deducible but needs more
evidence. Knockdown of C16-ceramide synthase (CerS6) or
C24-ceramide synthase (CerS2) induces ER stress [66, 82].
In glioma cells, tetrahydrocannabinol (THC) induces apop-
tosis through de novo synthesized ceramide-mediated p8
upregulation, which further trigger ER stress (induction of
ATF4 and CHOP) [83]. Combination of histone deacetylase
inhibitor vorinostat and multikinase inhibitor sorafenib
induces de novo synthesized and acidic SMase hydrolyzed
ceramide to upregulate CD95 to trigger ER stress (activation
of PERK) [84]. CERT is identified to influence sensitivity
of different cancer cell types to chemotherapeutic agents
in a siRNA-based screening [85]. Downregulation of CERT
sensitizes cancer cells to chemotherapeutic drugs and induces
ER stress [85, 86]. Our previous report showed C2-ceramide
and etoposide induce ER stress-related proteins Bip, CHOP,
caspase-4, and PERK activation [87]. Requirement of ASK1
and JNK signaling is reported in both ceramide- and ER
stress-induced apoptosis [28, 29, 87, 88]. Taken together,
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Figure 3: Proapoptotic ceramide. Apoptotic stimuli cause ceramide generation. Proapoptotic ceramide triggers apoptotic signaling through
multiple mechanisms involving mitochondrial-, ER stress-, and lysosomal-regulated pathways.

these findings suggest that ceramide induces ER stress;
however, more investigations are needed to dissect the
causal relationships and regulatory mechanisms between ER
stress and ceramide-induced apoptosis. In addition, free
fatty acid (FFA) has been reported to induce pathological
ER stress and lead to metabolic disorders such as insulin
resistance, obesity, steatosis, diabetes, and atherosclerosis
[89–91]. The role of ceramide in insulin resistance has
also been reported [92, 93]. Studies showed FFA activates
ceramide de novo synthesis in islet β cells to induce apoptosis
[94] and in astrocytes to increase Aβ protein expression and
tau protein hyperphosphorylation [95]. However, another
report demonstrated a ceramide-independent way of FFA to
induce ER stress in liver cells [96]. More evidence is needed to
better understand the regulation of ceramide in FFA-induced
ER stress and downstream biological effects.

The mechanism by which ceramide triggers lysosomal
apoptosis involves acid sphingomyelinase and cathepsin D
[97–99]. Ceramide generated by acid SMase can directly
interact with cathepsin D and mediate its activation [99–
101]. In response to TNF-α stimulation, lysosomal acid
SMase mediates ceramide generation to activate cathepsin
D and downstream apoptotic signaling such Bid trunca-
tion and mitochondrial dysfunction [97]. Similar pathway
has been recently reported in treatment of glioma cells
with chemotherapeutic drug gemcitabine [99]. Exogenous
treatment with C2-ceramide triggers this pathway in 10I
hybridoma and A549 lung adenocarcinoma cells, however;
different mechanism might exist because inhibiting acid
SMase did not reduce LMP and apoptosis (Huang et al.,
unpublished data). Moreover, one study reported FFA-
induced LMP and apoptosis in liver cells independently
of ceramide de novo synthesis [102]. Concerning the find-
ings of FFA-induced ER stress, the signaling pathways
of FFA-induced apoptosis might have ceramide-dependent
and -independent routes in triggering ER and lysosome
dysfunction.

In summary as shown in Figure 3, ceramide mediates
dysfunction of multiple intracellular organelles followed by
apoptosis. More investigations are needed to fully under-
stand the cell type- and stimulus-dependent mechanisms
of how ceramide causes organelles dysfunction and the
crosstalk among these organelles.

5. Regulation of Apoptotic Ceramide in
Cancer Therapy Resistance

Cancer cells resist therapy in multiple mechanisms including
escape from therapy-induced apoptosis [122–124]. Since the
proapoptotic role of ceramide in cellular regulation is well
established, either endogenous or exogenous ceramide con-
tributes to the suppression of cancer progression [8, 14, 58].
On the other hand, cancer cells also gain survival advantages
against therapy by impairing sphingolipids metabolism to
reduce proapoptotic ceramide generation and accumulation
[8, 9, 11, 125]. More than 30 enzymes are identified to
regulate intracellular ceramide. Among them, glucosylce-
ramide synthase, ceramidase, and sphingosine kinase are
recently found to be targets for cancer cells to avoid killing
of treatment. Here we summarized the findings about their
roles in regulation of cancer therapy resistance (also listed in
Table 1).

5.1. Glucosylceramide Synthase (GCS). Relationships bet-
ween GCS and chemoresistance have been reported in
various kinds of cancer cells and addressed in breast
cancer most completely. In studies to compare the lipid
compounds of drug-sensitive and -resistant cancer cell
lines, glucosylceramides accumulation are found in drug-
sensitive cells [126–129]. Ectopic expression of GCS increases
chemoresistance of drug-sensitive cells. Reciprocally, genetic
silencing and pharmacological inhibition of GCS sensitizes
drug-resistant cells to multiple chemotherapeutic drugs,
such as adriamycin, Vinca alkaloids, doxorubicin, etoposide,
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Table 1: Targeting ceramide metabolic enzymes alters drug resistance in cancers.

Enzymes Cancer species (cell line) Drug Resistance Reference

GCS ↑

Breast cancer (MCF-7) Adriamycin ↑ [103, 104]

Colon cancer (SW620) Adriamycin ↑ [104]

Epidermoid carcinoma (KB-3-1)
Adriamycin ↑ [104]
Vinblastine

Leukemia (HL-60) Vincristine ↑ [104]

Melanoma (MeWo) Etoposide ↑ [104]

Leukemia (HL-60) Doxorubicin ↑ [105]

GCS ↓

Adriamycin-resistant MCF-7 Adriamycin ↓ [106]

Adriamycin-resistant MCF-7
Vinblastine ↓ [107]
Paclitaxel

Adriamycin-resistant MCF-7 and murine
breast cancer (EMT6)

Doxorubicin ↓ [108, 109]

Adriamycin-resistant SW620 Doxorubicin ↓ [108]

Doxorubicin-resistant ovarian carcinoma
(A2780)

Doxorubicin ↓ [108]

Doxorubicin-resistant cervical cancer (KB-A1) Doxorubicin ↓ [108]

Hepatoma (HepG2) Doxorubicin ↓ [110]

Multidrug-resistant leukemia (K562/A02) Adriamycin ↓ [111]

Acid Ceramidase ↑ Prostate cancer (DU145)

Doxorubicin

↑Cisplatin [112]
Etoposide

Gemcitabine

Acid Ceramidase ↓ Hepatoma (HepG2, Hep-3B, SK-Hep and
Hepa1c1c7)

Daunorubicin ↓ [113]

SphK1 ↑
Ovarian cancer (A2780) 4-HPR ↑ [114]

Leukemia (HL-60)
Doxorubicin ↑ [115]

Etoposide

Pancreatic cancer (Panc-1) Gemcitabine ↑ [116]

SphK1 ↓
4-HPR-resistant A2780 4-HPR ↓ [114]

Daunorubicin-resistant leukemia (K562) Daunorubicin ↓ [117]

Camptothecin-resistant prostate cancer (PC3) Camptothecin ↓ [118]

Oxaliplatin-resistant colon cancer (RKO) Oxaliplatin ↓ [119]

Acid SMase ↑ Glioma
Gemcitabine ↓ [120]
Doxorubicin

S1P lyase ↑ Lung cancer (A549)

Cisplatin

Carboplatin ↓ [121]

Doxorubicin

and paclitaxel [103, 104, 107, 130]. A recent in vivo study
reported a mixed-backbone oligonucleotide against GCS
sensitizes xenograft of multidrug-resistant breast cancer cell
to doxorubicin [108]. GCS links multidrug resistance by
multiple mechanisms, including reduced concentration of
C18-ceramide, increased glycosphingolipids accumulation,
and MDR gene upregulation through cSrc and β-catenin
[104, 107–109, 130]. Upregulated MDR gene in turn encodes

P-glycoprotein (P-gp), a drug efflux pump which induces
multidrug resistance (MDR) in cancers [131–133]. One
study reported that GCS-deficient and -ectopic expressed
murine melanoma cells show no difference in the sensi-
tivity to doxorubicin, vinblastine, paclitaxel, cytosine ara-
binoside, or short-chain ceramide analogs [134]. Another
study showed that combining GCS inhibitor enhances
doxorubicin-induced ceramide accumulation and apoptosis
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in hepatoma cells by a P-gp-independent manner [110].
These findings suggested that regulation of GCS in chemore-
sistance depends on cell type and might act through different
mechanism.

Besides in breast cancer cells, overexpression of GCS
is also found in multidrug-resistant leukemia, melanoma,
colon cancer, and head and neck epidermoid carcinoma
[104]. For example, in acute myeloid leukemia (AML), the
ceramide levels are lower and the activities of GCS and
sphingomyelin synthase are higher than in chemosensitive
patients. The role of GCS is further confirmed in cell model
when overexpression of GCS raised the resistance of HL-
60 to doxorubicin-induced apoptosis [105]. In CML, drug-
resistant K562 cells also express higher level of GCS. Phar-
macological inhibition using PDMP or genetic silencing of
GCS sensitizes drug-resistant K562 cells to adriamycin [111].

GCS and glycosphingolipids are also speculated to
involve immune escape and metastasis in cancer [135, 136].
Overexpression of GCS and high secretion of glycosph-
ingolipids might prevent cancer cell from immune attack
by T cells and antibodies [135]. Preincubation with GCS
inhibitor PDMP reduced the metastatic ability of Lewis lung
carcinoma 3LL cells injected in mice [136]. However, more
investigations are needed.

5.2. Ceramidase. According to the maximal enzymatic activ-
ity in acidic, neutral, and alkaline environment, ceramidases
are divided into acid, neutral, and alkaline ceramidases. Due
to its ability to breakdown ceramide to regulate sphingosine
and S1P levels, ceramidases become important regulators
in cell survival [137]. Acid ceramidase is overexpressed in
prostate cancer [138]. Ectopic expression of acid ceramidase
in prostate cancer cell line DU145 shows elevated resistance
to doxorubicin-, cisplatin-, etoposide-, gemcitabine- or C6-
ceramide-induced apoptosis, while silence of acid ceramidase
lowers the resistance to those drugs [112]. Acid ceramidase
inhibitor B13 induces apoptosis in prostate cancer cell line
and xenograft [139, 140]. In colon carcinomas, ceramide
levels are lower than healthy tissue [141] and treatment
with exogenous ceramide or ceramidase inhibitor B13
induces apoptosis [141, 142]. Acid ceramidase overexpres-
sion prevents fibrosarcoma cell line L929 from TNF-α-
induced apoptosis and treatment of exogenous ceramide or
acid ceramidase inhibitor N-oleoylethanolamine overcomes
this TNF-α resistance [143]. Overexpression of neutral
ceramidase prevents primary hepatocytes from TNF-α-
induced apoptosis in vitro and inhibits D-galactosamine plus
TNF-α-induced liver injury in vivo [144]. Another report
showed high ectopic expression of alkaline ceramidase 2 in
cervical cancer cell line HeLa leads to growth arrest due
to sphingosine accumulation and low ectopic expression of
alkaline ceramidase promote cell proliferation due to S1P
production [145]. A recent study demonstrated silence of
alkaline ceramidase 3 inhibits not only cell proliferation
but also serum deprivation-induced apoptosis [146]. More
evidence is needed to fully understand the regulation of
neutral and alkaline ceramidases on the development of
therapy resistance in cancer cells.

5.3. Sphingosine Kinase (SphK). Activation of SphK results
in the generation of S1P to facilitate survival and ther-
apy resistance in cancer cells. Ample evidence reveals the
oncogenic role of SphK1; however, the isoform SphK2
seems to possess not only overlapping role with SphK1 in
promoting tumor development but also opposite role in
inducing apoptosis [147, 148]. Therefore, a recent study has
developed a new SphK2 specific inhibitor [149] which might
be used to further dissect the biological functions between
the two isoforms. Overexpression of SphK1 promotes the
development erythroleukemia [150]. In CML, which is
caused by potent oncogenic protein Bcr-Abl, the activity
of sphingosine kinase-1 (SphK1) is elevated by Bcr-Abl to
increase expression of antiapoptotic protein Mcl-1 [151]
and Bcr-Abl inhibitor imatinib-induced apoptosis through
inhibiting SphK1 [152]. In myelodysplastic syndromes and
acute leukemia, increased gene expression of SphK1 leads
to doxorubicin resistance which in reverse can be abrogated
by SphK1 siRNA [117, 153]. In solid tumors, SphK1 is
required in the oncogenic signaling of vesicular endothelial
growth factor (VEGF), epidermal growth factor (EGF), and
Ras [154–156]. Overexpression of SphK1 has been identified
in mRNA screening or immunohistochemistry staining in
multiple cancer cells derived from breast, colon, lung, ovary,
stomach, uterus, kidney, and rectum [157–159]. In human
ovarian cancer cells, resistance to chemotherapeutic drug
N-(4-hydroxyphenyl)retinamide (4-HPR) is mediated by
SphK1 [114]. Prostate cancer cell line PC3 resistant to
chemotherapeutic drug camptothecin is found to highly
express SphK1 [118]. Higher activity of SphK1 and SphK2
in oxaliplatin-resistant colon cancer cell line RKO and
knockdown of either SphK1 or SphK2 abrogates RKO cells
oxaliplatin resistance [119]. One report showed hypoxia
upregulates SphK2 protein expression as well as enzymatic
activity to resist chemotherapeutic drugs-induced cell death
in lung cancer cell line A549 [160].

5.4. Acid SMase, S1P Lyase, and CERT. Acid SMase-difficient
MS1418 lymphoblasts from patients with Niemann-Pick
disease show resistance to UVA and irradiation [161, 162].
An in vivo study also demonstrates mouse deficient in acid
SMase showed resistance to irradiation-induced apoptosis
[162]. Reciprocally, overexpression of acid SMase sensitizes
glioma cells to gemcitabine and doxorubicin [120]. In
cancer cells, many apoptotic stresses such as UV, irradiation,
doxorubicin, cisplatin, TRAIL, and CD95 activates acid
SMase to induce apoptosis [163, 164]. Activated acid SMase
translocates to plasma membrane and increases ceramide to
form ceramide-rich platforms (CRPs) which are required in
signal transduction and apoptosis [165, 166]. One report
suggested that the low fluidity of plasma membrane may be
associated with cisplatin resistance [167]. However, whether
cancer cells downregulate acid SMase to reduce CRPs
formation and plasma membrane fluidity to achieve drug
resistance remains unclear.

Opposite to the proapoptotic role of ceramide, S1P
inhibits apoptosis by preventing release of mitochondrial
cytotoxic effectors cytochrome c and Smac/DIABLO in
several acute human leukemia cell lines [168]. Increasing
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S1P by downregulation of S1P lyase was found to alter
S1P/ceramide rheostat to favor cell survival in colon cancer
and ectopic expression of S1P lyase induces apoptosis via
p53 and p38 MAPK [169]. Experimentally, using human
embryonic kidney cells HEK293, ectopic expression of S1P
lyase decreases cell viability and enhances ceramide gener-
ation and stress-induced apoptosis, meanwhile, addition of
S1P reverses stress-induced apoptosis [170]. Overexpression
of S1P lyase in HEK293 and A549 cells showed higher
sensitivity to several chemotherapeutic drugs including
cisplatin, carboplatin, and doxorubicin [121]. In addition,
increased expression of ceramide transport protein CERT
is found in residual tumor following paclitaxel treatment
of ovarian cancer [85]. Loss of function of CERT leads to
ceramide accumulation in ER and sensitizes cancer cells to
chemotherapy and radiotherapy [85, 171].

6. Targeting Ceramide Metabolic Pathways to
Overcome Cancer Therapy Resistance

Based on the knowledge that cancer cells develop resistance
to therapy by arming themselves with the abilities to
avoid generation/accumulation of intracellular proapoptotic
ceramide, targeting ceramide metabolic pathways might be
potential strategy to improve the response to cancer therapy.
This strategy might itself be an alternative therapeutic option
or in combination with present cancer therapies to enhance
therapeutic efficacy and sensitivity.

Many chemotherapeutic drugs, such as daunorubicin,
etoposide, camptothecin, fludarabine, and gemcitabine, have
been known to induce ceramide de novo synthesis to mediate
cytotoxic effects. Accordingly, it is conceivable that alteration
of ceramide metabolism can significantly affect sensitivity
of chemotherapy. GCS inhibition can restore sensitivity of
drug-resistant cancer cells to multiple chemotherapeutic
drugs [104, 106, 107]. The major cause of chemoresistance is
therapeutic stress-induced P-gp overexpression which results
in MDR. A set of MDR modulators, which bind and interfere
with drug efflux, are used in combination of chemothera-
peutic drugs to enhance efficacy [172]. MDR modulators
sensitize drug-resistant cancer cells to chemotherapy through
elevating ceramide levels by activating ceramide synthase or
inhibiting GCS [173–176]. Combination of MDR modula-
tors and GCS inhibitor synergistically induce cytotoxicity
in various human solid tumor cell lines, including neu-
roblastoma and melanoma, prostate, lung, colon, breast,
and pancreatic cancers [177]. SphK1 inhibitor by itself
overcomes MDR-associated chemoresistance in AML and
CML cell lines and patient samples and gemcitabine-resistant
pancreatic cancer cells [115, 116, 178]. Downregulation of
SphK1 or SphK2 enhances sensitivity to doxorubicin in
breast cancer cell MCF-7 [179, 180]. One of the sphin-
golipid breakdown products, sphingosine, by itself induces
apoptosis in adriamycin-resistant epidermoid carcinoma
cells [181]. Inhibiting acid ceramidase with siRNA or N-
oleoylethanolamine sensitizes hepatoma cells to daunoru-
bicin [113]. Overexpression of alkaline ceramidase 2 but
not alkaline ceramidase 1 or 3 enhances the cytotoxicity of

4-HPR in HeLa cells [182]. A recent report demonstrated
combining exogenous C6-ceramide sensitizes multiple can-
cer cell lines to doxorubicin or etoposide [183].

For overcoming resistance to cancer radiotherapy, we
summarize following examples. Defective ceramide meta-
bolism causes resistance to radiation in AML and Burkitt’s
lymphoma cells [184, 185]. The defect-inducing proteins
are needed to be identified for therapeutic target to improve
radiosensitivity. Intracellular ceramide is also precursor of
downstream prosurvival glycosphingolipids (precursor of
gangliosides). Radioresistant sublines derived from human
melanoma cell line M4Be are found rich in gangliosides.
Combining fumonisin B1 (inhibitor of ceramide synthase)
restore the sensitivity of radioresistant M4Be to radiation
[186]. In glioma cells, combining either acid ceramidase
inhibitor N-oleoylethanolamine or GCS inhibitor PDMP
accelerates radiation-induced apoptosis [187, 188].

For overcoming resistance to cancer target therapy and
gene therapy, we take CML and HNSCCs for examples. The
Bcr-Abl tyrosine kinase inhibitor imatinib is the standard
target therapy of CML [189]. Imatinib induces apoptosis in
K562 cells via the generation of C18-ceramide, but this is not
observed in imatinib-resistant cells [190]. Overexpression
of CerS1 or silence of sphk1 enhances imatinib-induced
apoptosis in imatinib-resistant cells [190]. Moreover, in our
unpublished data, Bcr-Abl mutation-based imatinib resis-
tance was abrogated by combining ceramide accumulating
agents such as GCS inhibitor or ceramidase inhibitor, though
in a not well-defined mechanism. Besides combinational
treatment, C6-ceramide and SphK1 inhibitor independently
induce apoptosis in imatinib-resistant CML cell lines KBM5
and LAMA84s, respectively [59, 152]. Sorafenib (BAY 43-
9006) is a nonspecific inhibitor of RAF/MEK/ERK pathway
and receptor tyrosine kinase [191]. Combining sorafenib
with either SphK2 or SphK1/2 inhibitor provides enhanced
growth inhibition of human pancreatic adenocarcinoma and
kidney carcinoma cells in vitro and in vivo [192]. As prostate
cancer, HNSCCs are also showed overexpression of acid
ceramidase, therefore, acid ceramidase inhibitor is used to
increase the cytotoxicity of adenovirus-delivered FasL in
HNSCCs [193].

In addition to overcome cancer therapy resistance,
targeting ceramide pathway might be a strategy to advance
current conventional therapies into novel regimen on dif-
ferent cancer types. For example, sorafenib is approved for
clinical use only in renal cell carcinoma [194]. Combining
sorafenib with nanoliposomal ceramide enhances sensitivity
to sorafenib in another cancer cell types including melanoma
and breast cancer [195].

7. Conclusion

Cancer therapy resistance is a major problem leading to
treatment failure. Mounting evidence indicated the apoptotic
sphingolipid—ceramide—as important suppressor in cancer
development. Alterations of ceramide metabolism become
strategy for cancer cells to develop resistance against ther-
apy. Conversely, manipulation of ceramide metabolism also
provides potential alternative and combinational therapeutic
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options. Though, it is challenging to optimize solutions for
overcoming resistance due to the complexity of sphingolipids
metabolic network. By accumulating knowledge about how
cancer cells escape from apoptotic stimuli and the discovery
of potent and safe inhibitors, targeting ceramide metabolic
pathways still provides opportunities for more feasible and
more efficacious cancer therapy.
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