Skip to main content
. 2010 Dec 28;55(3):1075–1081. doi: 10.1128/AAC.01329-10

TABLE 2.

Diffusion coefficients and the corresponding hydrodynamic radii of fluorescently labeled probes in water and in biofilms of S. mutans

Probe Mwa (g/mole) Mean Dw ± SD (10−10 m2·s−1) rHb (nm) Dw (10−10 m2·s−1) in literature rH from literatured (nm) Mean Db ± SD (10−10 m2·s−1) Db/Dw
Dextran 3K 3,000 1.61 ± 0.22 1.36 1.2 ± 0.3 0.73
Dextran 10K 10,000 1.22 ± 0.04 1.78 1.86 0.8 ± 0.2 0.63
Dextran 40K 40,000 0.47 ± 0.018 4.59 0.45c 4.78 0.25 ± 0.08 0.53
Dextran 70K 70,000 0.37 ± 0.066 5.80 0.38c 6.49 0.20 ± 0.06 0.53
Dextran 2,000K 2000,000 0.062 ± 0.0081 35.7 0.13 ± 0.06 2.10
Rhodamine 6G 479.01 4.0 ± 0.2 4.0 ± 0.3e 2.2 ± 0.7 0.54
Tetramethylrhodamine, methyl ester 500.93 4.12 ± 0.18 0.53 2.3 ± 0.7 0.55
Rhodamine B 479.01 4.2 ± 0.2 4.2 ± 0.3e 1.8 ± 0.7 0.42
Oregon Green 488 carboxylic acid, succinimidyl ester 509.38 3.08 ± 0.10 0.70 0.7 ± 0.2 0.21
Oregon Green 488 carboxylic acid 412.30 3.36 ± 0.11 0.65 0.6 ± 0.2 0.17
a

Molar mass.

b

Hydrodyamic radii, rH, were estimated from the Stokes Einstein equation, rH = kT/3πηD, where k is the Boltzmann constant, T the temperature, and η the solution's viscosity.

c

Reference 13.

d

Reference 2.

e

Reference 12.