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The functional metagenomic screening of the microbial communities associated with a temperate marine
sponge and a green alga identified three novel hydrolytic enzymes with antibacterial activities. The results
suggest that uncultured alpha- and gammaproteobacteria contain new classes of proteins that may be a source
of antibacterial agents.

As a result of the rising number of multidrug-resistant bac-
teria, recent years have witnessed an increased demand for
novel antibiotic compounds. Indeed, examples of multiple re-
sistances have been reported for strains of Streptococcus pneu-
moniae and Staphylococcus aureus across Asia, South America,
Australia, and Europe (10, 11, 25, 30, 45, 53).

In order to address multidrug resistance in bacteria, sessile
marine invertebrates have been explored for the presence of
antibiotics and have proven to be a rich source of such novel
compounds (13, 17, 21, 37, 41). For example, more than 200
new bioactive metabolites have been reported from sponges
per year in the last decade (51). Unfortunately, compounds
from marine sources are often available only in low quantities,
thus hampering further development into commercial products
(18, 21, 23, 24). Due to the fact that numerous natural products
isolated from marine invertebrates show structural similarities
to known metabolites of microbial origin (41, 44, 47), bioactive
screening has also focused on microorganisms associated with
such host surfaces. For example, the antibacterial peptide-
polyketide andrimid was found in the extract of a sponge as
well as in a Vibrio sp. isolated from this host (39). Several
bacterial strains from the surface of the alga Ulva australis are
also known to produce an array of compounds effective against
bacteria, fungi, diatoms, and other biofouling organisms (15,
16, 19, 42). These observations suggest that surface-associated
microbial communities carry a large potential for new antibi-
otics and bioactive compounds.

Isolation of bioactives from environmental bacteria, how-
ever, faces the limitation that many strains are recalcitrant to
culturing (1, 33, 48, 51), and this might be particularly true for
obligate or facultative symbionts. To access the uncultured

majority of the microbial world (43), functional metagenomic
approaches that allow for the expression of environmental
DNA from uncultured organisms in surrogate hosts have been
developed (6, 22, 32, 35, 36, 46). Functional screening of met-
agenomic libraries has led to the discovery of several novel
bioactives and metabolic pathways (5, 36, 52), but the search
for new antibiotics has focused mainly on soil-derived samples.

In this study, we explored functional metagenomic libraries
from the microbial communities associated with the living sur-
faces of two marine organisms, the temperate marine sponge
Cymbastela concentrica and the green alga Ulva australis, for
the presence of antibacterial activities. We screened these li-
braries for the inhibition of a range of target strains, identified
novel antibacterial genes, characterized their activities, and
determined their phylogenetic origins (for further details on
the materials and methods, see the supplemental material).

Functional screening of fosmid libraries identified three
clones (two from C. concentrica and one from U. australis) that
showed antibacterial activity against the marine Bacillus strain
Cc6 (where “Cc” indicates “C. concentrica”). All clones lacked
zones of inhibition in the absence of expression inducers (i.e.,
arabinose or IPTG [isopropyl-�-D-thiogalactopyranoside]), in-
dicating that genes from the fosmid insert were responsible for
the antibacterial activity. The clearance zones had radii of 0.5,
0.8, and 0.3 cm for fosmid clones CcAb1, CcAb2, and UaAb1
(where “Ua” indicates “U. australis”), respectively, while the
positive control, CBAA11 (8), had a radius of 0.2 cm (see Fig.
S1 in the supplemental material). The clone CcAb1 showed
further activity against Staphylococcus aureus and Alteromonas
sp. strain CCSH174 (inhibition zones of 0.5 and 0.6 cm, re-
spectively), and UaAb1 was active toward S. aureus and Kleb-
siella pneumoniae (both exhibited a 0.2-cm zone of inhibition).
CcAb2 did not exhibit antibacterial activity against additional
target strains. These results show that the microbial commu-
nity associated with the two marine eukaryotes contains genes
which encode antibacterial activities against bacteria from both
environmental and clinical settings.

Through random transposon mutagenesis, six, eight, and
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three mutants were identified to have lost their antibacterial
activities for CcAb1, CcAb2, and UaAb1, respectively. Details
of the open reading frames (ORFs) identified, namely, abg1,
abg2, and abg3, are shown in Table 1. All three genes had
clearly recognizable �10 and �35 boxes of bacterial promot-
ers, suggesting that they are under the control of their own
promoters. In addition, Abg1 and Abg2 contained predicted
signal peptides (of 31 amino acids [aa], MSASTCLRREYFH
CFRVLLIASVLLSGNILA, and 26 aa, MNILNKKLLSILLT
VATLFLVTVASA, respectively), which indicates that they
are secreted. Complementation of the abg1 and abg2 genes
into Escherichia coli containing either their respective transpo-
son mutant fosmids or the empty pCC1FOS vector (the host
fosmid of the libraries) restored their antibacterial properties,
showing that the genes were solely responsible for the activities
(data not shown). Subcloning of abg3 from UaAb1 was not
successful, despite several attempts, and hence subsequent
functional characterizations were performed on the original
fosmid and its transposon mutants.

Annotations of abg1, abg2, and abg3 showed that they en-
code novel enzymes, with Abg1 having no significant homology
to experimentally characterized proteins, while Abg2 and Abg3
have moderate sequence homology to an esterase from Burk-
holderia gladioli (Swiss-Prot accession no. Q9KX40) and a pu-
tative hydrolase from Acanthamoeba polyphaga, respectively
(Table 1). Abg1, -2, and -3 contain the conserved Pfam do-
mains of GDSL-like lipase, beta-lactamases, and abhydro-
lase_3, respectively (Table 1). Comparison of the three pro-
teins to the noncurated Swiss-Prot database showed homology
to proteins putatively annotated as lipolytic enzymes or beta-
lactamases (see Table S2 in the supplemental material). To-
gether, these results indicate that the three proteins may have
hydrolytic activities.

To further define the postulated hydrolytic activities, we
tested the degradation of the lipid analogue tributyrin. Abg1
and Abg2 were capable of degrading tributyrin, with clearance
zones of 0.7 and 0.4 cm, respectively. Fosmid clone UaAb1 also
degraded tributyrin, with a clearance zone of 0.5 cm. The
transposon mutant of UaAb1 with the disrupted abg3 gene
failed to degrade the substrate, indicating that Abg3 mediates
hydrolytic activity (see Fig. S2 in the supplemental material).

Abg2 has similarity to beta-lactamase domains (Table 1) and
proteins (see Table S2 in the supplemental material), but when
we exposed an E. coli/pBAD:Chlor-abg2 clone to five different
beta-lactam antibiotics, no resistance was observed. This shows
that Abg2 is unlikely to have true beta-lactamase activity.

The three proteins had less than 20% pairwise sequence
identity to each other, yet surprisingly, they all produced hy-
drolytic/lipolytic activities and conferred antibacterial proper-
ties to E. coli. We therefore propose that these proteins rep-
resent three new classes of antibacterial proteins.

The fosmids containing the antibacterial genes were com-
pletely sequenced to gain insight into their genomic context
and phylogenetic origin. The antibacterial genes abg1, abg2,
and abg3 were positioned in ORFs 17, 11, and 20 for CcAb1,
CcAb2, and UaAb1, respectively (further details appear in
Table S3 and Fig. S3 in the supplemental material). Phyloge-
netic prediction with the Phylopythia algorithm (38) indicated
that clone CcAb1 belongs to the class Deltaproteobacteria,
while taxonomic prediction with MEGAN (26) assigns more
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than 50% of its ORFs to the Gammaproteobacteria (Table 2).
This clone had a high correlation index of tetranucleotide
composition (0.7) to a fosmid clone previously described to be
derived from a novel gammaproteobacterium in the bacterial
community of the sponge C. concentrica (54) (GenBank acces-
sion number GQ160460). It is therefore likely that the source
of the CcAb1 fosmid is a novel gammaproteobacterium. Clone
CcAb2 also had a high index of correlation (0.68) to this
gammaproteobacterial sequence, while the Phylopythia algo-
rithm and MEGAN analysis gave inconclusive results. We
therefore postulate that fosmids CcAb1 and CcAb2 have been
derived from the same organism. Both Phylopythia and
MEGAN analysis showed that clone UaAb1 is most likely
derived from a bacterium in the class Alphaproteobacteria, with
the majority of ORFs taxonomically assigned to the Sphin-
gomonadales order (Table 2).

We have here identified three novel hydrolytic enzymes
from sponge- and alga-associated microbial communities that
are responsible for antibacterial activities. These enzymes were
identified to possibly originate from alpha- and gammapro-
teobacteria, which highlights the utility of screening functional
metagenomic libraries for discovery of novel antibacterial ac-
tivities. Most of the antibacterial agents that have been iden-
tified by metagenomic screening are small molecules, for ex-
ample, palmitoylputrescine (7), violacein (6), turbomycin A
and B (20), and indirubin and indigo (34). The results pre-
sented in this study suggest the possibility of hydrolases as
alternative sources of antibacterial activity from host-associ-
ated microorganisms.

Microbial hydrolytic enzymes (e.g., lipases and esterases)
play a major role in biotechnological applications as deter-
gents, in food processing, and in stereospecific organic synthe-
sis, catalyzing both the hydrolysis and synthesis of long-chain
acyl glycerols (2). Previous functional screening of microbial
metagenomic libraries associated with the sponges Aplysina
aerophoba and Hyrtios erecta also found novel lipolytic enzymes
(28, 40); however, no antibiotic activity was reported. Lipases
act on lipids to release fatty acids of different chain lengths,
which are known to have a broad spectrum of antibacterial
activity (12, 27). The mode of action is thought to be related to
the detergent properties of these acids, which allow them to
create pores or, at high concentrations, to cause cell lysis
through cell wall degradation (12). Free fatty acids released
through the actions of lipases have been shown to protect
human skin against infection from opportunistic pathogens

such as S. aureus (14) and to protect the gastrointestinal tract
against pathogens such as Helicobacter pylori, Enterococcus fae-
calis, and Klebsiella pneumoniae (49, 50). Lipases have also
been associated with antibacterial activity in sand flies (4),
suggesting a broad biological role for lipases in the protection
against bacterial infection. Further biochemical characteriza-
tion is necessary to define the substrate and product range of
the hydrolytic enzymes identified here. This will provide insight
into the modes of action of these novel enzyme classes.

Free fatty acids with antimicrobial properties have also been
identified from algae and sponges (3, 9, 29, 31), and it is
possible that the role of the hydrolases detected from the
sponge- and alga-associated microbial communities is the con-
version of lipids excreted by the eukaryotic host to free fatty
acids with antibacterial properties. This in turn may prevent
the colonization or growth of certain bacteria and hence may
have an impact on the community composition of the host’s
microbiota.
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