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Rv1106¢ (hsd; 3p3-hydroxysteroid dehydrogenase) is required by Mycobacterium tuberculosis for growth on
cholesterol as a sole carbon source, whereas Rv3409c is not. Mutation of Rv1106¢ does not reduce Mycobac-
terium tuberculosis growth in infected macrophages or guinea pigs. We conclude that cholesterol is not required

as a nutritional source during infection.

Mycobacterium tuberculosis is a nocardioform actinomycete
and is a facultative intracellular bacterium that usually infects
the host macrophage. M. tuberculosis has coevolved with hu-
mans and persists despite the actions of the immune system.
Survival of M. tuberculosis requires adaptation to the host mi-
croenvironment (14). In the intracellular environment, M. fu-
berculosis shifts from a carbohydrate-based to a fatty acid-
based metabolism (3, 15, 21), and in culture, M. tuberculosis
will grow on cholesterol as the sole carbon source (18). One
role for cholesterol in the intracellular environment could be
as a source of carbon, e.g., catabolism to acetate and propi-
onate (5, 24, 25). Additionally, cholesterol can serve as a build-
ing block for complex structures, e.g., lipids and hormones
through anabolism.

Through transcriptional profiling (16, 24), bioinformatic
analysis, and metabolic analysis of other actinomycetes (9), a
partial metabolic pathway for cholesterol metabolism in M.
tuberculosis has been sketched. The first step is the conversion
of cholesterol to cholest-4-en-3-one (17) (Fig. 1). In Strepto-
myces spp. and Rhodococcus equi, this step is catalyzed by
cholesterol oxidases, which share 60% amino acid identity and
have structures and mechanisms that are nearly identical (13,
20). The closest M. tuberculosis homolog, Rv3409c, shares only
24% amino acid identity with the well-characterized choles-
terol oxidases from Streptomyces and Rhodococcus. Although
Mycobacterium smegmatis cellular lysates overexpressing
Rv3409c were reported to contain cholesterol oxidase activity,
characterization of the purified enzyme was not reported (4).

Nocardia spp. (10, 12), proteobacteria (7), and most likely
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Rhodococcus jostii (19) utilize a 3B-hydroxysteroid dehydroge-
nase to catalyze the conversion of cholesterol to cholest-4-en-
3-one. In M. tuberculosis, Rv1106¢ (hsd) is the closest homolog
(75% identity with the Nocardia enzyme, UniProtKB ID
Q03704). Indeed, we demonstrated in earlier work that
Rv1106c encodes a functional 3B-hydroxysteroid dehydroge-
nase (HSD) that can utilize cholesterol, pregnenolone, and
dehydroepiandosterone as substrates (26). Here, we investi-
gate the essentiality of these genes for growth of M. tubercu-
losis in vitro and in vivo.

First, we tested whether in vitro growth with cholesterol as
the carbon source required either Rv3409c or Asd. (Detailed
experimental protocols may be found in the supplemental ma-
terial.) We found that /sd is required for growth on cholesterol
as a sole carbon source in broth culture, whereas the Rv3409c
mutant grew as well as the wild type (Fig. 2). To further
confirm the nonessentiality of Rv3409c for growth on choles-
terol, we tested an M. smegmatis Rv3409c transposon mutant
(mycl1l) (22) for growth on cholesterol as a sole carbon source
on agar plates. The myclI mutant formed colonies as readily as
the mc?155 wild-type strain (data not shown).

Complementation of the ssd mutant with the wild-type gene
and 1,000 bases upstream of the open reading frame (26)
completely restored growth on cholesterol (Fig. 2). All the
strains grew normally in standard 7H9 medium supplemented
with glycerol and 10% albumin-dextrose-NaCl complex
(ADN) (data not shown). We conclude that hsd, but not
Rv3409c, is required for growth on cholesterol as a sole carbon
source.

Previously, we demonstrated that Asd is required for choles-
terol oxidation activity in cell lysates (26). To investigate
whether Asd is required for 3B-hydroxysterol oxidation in intact
cells, the strains were grown in standard medium (7H9 liquid
medium [Becton Dickinson], supplemented with 0.05% Tween
80, ADN [1], and 0.2% glycerol). After the cells reached log
phase, 0.2 pnCi of [4-'*C]cholesterol was added. Five hours
after cholesterol addition, lipids were extracted (2) and ana-
lyzed by liquid chromatography with scintillation counting and
UV detection. Analysis of the wild-type cells revealed that
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FIG. 1. The reaction catalyzed by M. tuberculosis 33-hydroxysteroid
dehydrogenase (HSD).

>99% of the ["*C]cholesterol was consumed within 5 h (Fig.
3A). At the same time point, large amounts ['*C]cholesterol
(>40% of total counts) remained in the isd mutant (Fig. 3A).

Nonradioactive samples were prepared in an analogous
fashion (final concentration of cholesterol, 1 mg ml™') for
mass spectrometric analysis, which confirmed that the HSD
reaction product, cholest-4-en-3-one, was formed in the wild-
type cells (Fig. 3B; see also Fig. S1 and S2 in the supplemental
material). However, no cholest-4-en-3-one could be detected
in the hsd mutant by absorbance at 240 nm or single ion
monitoring mass spectrometry (Fig. 3B; see also Fig. S1 and
S2). Complementation of the Asd mutant strain restored pro-
duction of cholest-4-en-3-one (Fig. 3; see also Fig. S1 and S2).
As an additional control, Rv3409c was heterologously ex-
pressed to determine whether it was a cholesterol oxidase.
Expression behind the acetamidase or heat shock Asp60 pro-
moters in M. smegmatis mc*155 provided soluble protein upon
induction (see Fig. S3 and S4 in the supplemental material).
Despite assessment of the purified protein as both an oxidase
(electron acceptor, O,) and a dehydrogenase (electron accep-
tor, phenazine methosulfate or 2,6-dichloroindophenol), no
oxidation of cholesterol could be detected. On the basis of
these complementary experiments, we concluded that HSD is
required for conversion of cholesterol to cholest-4-en-3-one
and that a second cholesterol oxidase activity is not present in
M. tuberculosis.

Next, the role of Asd in M. tuberculosis growth in macro-
phages was assessed. Wild-type and mutant cultures were used
to infect THP-1 cells that had been made to differentiate into
macrophage-like cells with 40 nM 12-O-tetradecanoylphorbol-
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FIG. 2. hsd, but not Rv3409c, is required for growth on cholesterol
as the sole carbon source. The strains were grown in 7H9 medium
containing 1 mg ml~! cholesterol (in tyloxapol) at 37°C. Data repre-
sent results of each experiment run in duplicate.
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FIG. 3. hsd is required for the conversion of cholesterol to cholest-
4-en-3-one by M. tuberculosis. Ultrahigh-performance liquid chroma-
tography—mass spectrometry-UV analysis results are shown for the
wild type, hsd mutant, and complemented ssd mutant. (A) M. tuber-
culosis was incubated for 5 h with [4-'*C]cholesterol and analyzed by
scintillation counting and UV absorbance. The cpm reflect the relative
mass balance between samples. (B) M. tuberculosis was incubated for
5 h with cholesterol. The UV chromatographic profile from 3.6 to 3.9
min (shaded portion in panel A) is shown. The absorbance intensities
do not reflect the relative mass balance between samples, which were
concentrated to different extents for analysis. For the full profile and
mass spectral analysis, see Fig. S1 and S2 in the supplemental material.

13-acetate (PMA) (23). No difference in the intracellular
growth rate was detected (see Fig. S5 in the supplemental
material). Therefore, disruption of hsd does not limit M. fu-
berculosis replication in the macrophage.

M. tuberculosis-infected guinea pigs develop granulomas
similar to those seen in human disease. Therefore, the guinea
pig model was employed to assess the in vivo role of hsd. The
in vivo growth rate, lung weight, lung morphology, and lung
histology were determined over a 6-week time course. No
reduction in growth was observed in the mutant strain (Fig. 4).
The number of granulomas in the lungs of animals infected by
the hsd mutant and the complemented strain appeared to be
higher than in the wild type (Fig. 4B and C). This difference
may be the result of differing immune responses. Regardless,
the hsd gene is not required for growth or survival of M.
tuberculosis in the guinea pig. Moreover, if the buildup of
cholesterol in the 4sd mutant occurs during infection, as it does
in vitro, the high level of cholesterol is not toxic to the bacte-
rium. This result is in contrast to the toxicity of accumulated
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FIG. 4. Mutation of Asd does not affect granuloma formation in the
guinea pig model of infection. Fourteen guinea pigs were infected with
~10% CFU/lung of each M. tuberculosis strain. At the indicated time
points, four to six guinea pigs per strain were sacrificed, and lungs were
weighed, a portion was excised for histology, and the remainder was
homogenized for CFU titration. (A) M. tuberculosis growth rates in the
lungs of aerosol-infected guinea pigs. Error bars are the standard
deviations. (B) Gross pathology of lungs 42 days after infection.
(C) Histopathology of the lungs shown in panel B.

metabolites that is observed upon disruption of genes encoding
ring-metabolizing enzymes later in the M. tuberculosis choles-
terol pathway (6, 17, 25).

In conclusion, we have established that the 3B-hydroxy-
steroid dehydrogenase encoded by Rv1106¢c (hsd) is required
for growth on cholesterol as a sole carbon source, whereas the
putative cholesterol oxidase, Rv3409c, is not. Lipidomics ex-
periments have revealed that methyl-branched lipid carbon
sources from the host are the primary source of nutrition in
vivo for M. tuberculosis (11, 27). Our observation that ssd is not
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required for growth in the activated macrophage or in the
guinea pig model of M. tuberculosis infection suggests that
cholesterol is not a sole nutrition source in vivo. Moreover,
fadAS, tentatively annotated as encoding a side chain-cleav-
ing enzyme, is required for cholesterol metabolism and
growth on cholesterol as a sole carbon source in vitro. Al-
though FadAS is not required for growth of M. tuberculosis
in mice, it is required for maintenance in the host (16).
These combined observations suggest that M. tuberculosis
does not rely on cholesterol as a sole energy source in the
host. Our results are consistent with the availability of mul-
tiple lipid energy sources in the host and with the recent
work of Rhee and coworkers demonstrating that M. fuber-
culosis cocatabolizes multiple carbon sources (8).
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ADDENDUM IN PROOF

Garcia and coworkers recently reported that M. smegmatis
Rv3409c is not required for cholesterol mineralization (I. Uhia, B.
Galan, V. Morales, and J. K. Garcia, Environ. Microbiol.,
doi:10.1111/j.1462-2920.2010.02398x, 2011).
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