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Bacteria are the primary food source of choanoflagellates, the closest known relatives of animals. Studying
signaling interactions between the Gram-negative Bacteroidetes bacterium Algoriphagus sp. PR1 and its predator, the
choanoflagellate Salpingoeca rosetta, provides a promising avenue for testing hypotheses regarding the involvement
of bacteria in animal evolution. Here we announce the complete genome sequence of Algoriphagus sp. PR1 and initial

findings from its annotation.

The marine Bacteroidetes species Algoriphagus sp. PR1
was coisolated with the choanoflagellate Salpingoeca rosetta
from mud core samples near Hog Island, VA (13). Bacte-
roidetes species make up 6 to 30% of the total bacteria in the
oceans (4, 11). Furthermore, they play an important role in
the global carbon cycle because of their ability to degrade
polysaccharides and other macromolecules (6, 8, 9, 22). Of
the three clades that constitute the Bacteroidetes phylum
(Cytophaga, Flavobacteria, and Bacteroides), the Cytophaga
clade, of which Algoriphagus is a member, has been the least
studied.

The complete genome sequence of Algoriphagus sp. PR1 was
determined using shotgun sequencing, 454 (16), and Illumina
technologies (2). Initial assembly of a draft whole-genome
shotgun sequence into 12 contigs was generated at the J. Craig
Venter Institute (JCVI) based upon 50,413 Sanger sequencing
reads from genomic libraries harboring 4-kb and 40-kb frag-
ments. Resequencing of Algoriphagus sp. PR1 was performed
at the Broad Institute, and a 30X assembly containing a single
gap was generated using the 454 Newbler assembler for 454
data (21) and the Velvet assembler (25) for Illumina data. The
remaining gap is small and appears to be contained within a
single gene.

The Algoriphagus sp. PR1 genome was found to be a single
circular 4.89-Mbp chromosome that is 38.69% GC rich, con-
tains 3,954 predicted genes, and is similar in size to previously
sequenced genomes from other marine Bacteroidetes (1, 18—
20). Ab initio gene models were generated using GeneMark
(3), Glimmer3 (5), and Metagene (17). Predicted genes were
generated from BLAST hits to the UniRef90 database, and a
synteny-based approach was used to transfer open reading
frames (ORFs) from the draft PR1 genome. The final ORF set
was derived by comparison of in silico ORFs, ORFs from
BLAST hits and mapped ORFs with hits to Pfam (10), and the
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top BLAST hits against UniRef90. ORFs with overlap relative
to noncoding RNA features were removed when appropriate.
Discrepancies in the final ORFs were resolved manually. Non-
coding features were identified with RNAmmer (14),
tRNAScan (15), and RFAM (12). There are 39 tRNAs and 9
rRNA operons. The genome contains genes required for a
complete tricarboxylic acid cycle and complete glycolysis and
pentose phosphate pathways. Algoriphagus sp. PR1 forms pink-
pigmented colonies, and the genome encodes numerous caroten-
oid biosynthetic enzymes.

Given the capacity of Bacteroidetes bacteria to degrade mac-
romolecules, we catalogued the diversity of carbohydrate-ac-
tive enzymes in Algoriphagus sp. PR1. We found Algoriphagus
sp. PR1 to have 62 glycoside hydrolases, 71 glycosyltrans-
ferases, 2 polysaccharide lyases, and 10 carbohydrate esterases,
constituting a high capacity for polysaccharide degradation.
While the expansion of these groups of enzymes is a charac-
teristic of the Bacteroidetes phylum (1, 7, 23, 24), Algoriphagus
sp. PR1 possesses a repertoire more similar to that of gut
commensal Bacteroidetes than marine Bacteroidetes, which may
in part be related to its interactions with choanoflagellates. The
sequencing and annotation of the Algoriphagus sp. PR1 ge-
nome provide a foundation for comparative studies of mi-
crobe-eukaryote interactions.

Nucleotide sequence accession numbers. The JCVI genome
sequence of Algoriphagus sp. PR1 is available in GenBank
under accession number AAXUO01000000, and the accession
number for the Broad genome sequence is AAXU02000000.
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