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Recently, the RV144 randomized, double-blind, efficacy trial in Thailand reported that a prime-boost human

immunodeficiency virus (HIV) vaccine regimen conferred �30% protection against HIV acquisition. However,

different analyses seemed to give conflicting results, and a heated debate ensued as scientists and the broader

public struggled with their interpretation. The lack of accounting for statistical principles helped flame the

debate, and we leverage these principles to provide a more scientific interpretation. We first address

interpretation of frequentist results, including interpretation of P values, synthesis of results from multiple

analyses (ie, intention-to-treat versus per-protocol/fully immunized), and accounting for external efficacy

trials. Second, we address how Bayesian statistics, which provide clearly interpretable statements about

probabilities that the vaccine efficacy takes certain values, provide more information for weighing the evidence

about efficacy than do frequentist statistics alone. Third, we evaluate RV144 for completeness of end point

ascertainment and integrity of blinding, necessary tasks for establishing robustly interpretable results.

On 24 September 2009 the primary result of the RV144

randomized, placebo-controlled, efficacy trial of

a prime-boost human immunodeficiency virus (HIV)

vaccine regimen in Thailand was reported: borderline

significant evidence that the vaccine reduced the rate

of HIV acquisition (P 5 .04); modest vaccine efficacy

(VE) estimated at 31% (95% confidence interval [CI],

1%–51%) [1]. Controversy ensued as scientists and the

broader public struggled with interpreting these results,

with fervor rekindled from the pretrial controversy

about whether the trial should have taken place [2, 3].

Debate also centered on the importance of other, less

encouraging assessments of VE in 2 other, overlapping

study populations (eg, [4, 5]). Our goal is to foster

more rigorous scientific interpretation of HIV vaccine

efficacy trial results by deeper consideration of statistical

principles.

Our discussion has 4 parts. The first addresses

interpretation of frequentist results from efficacy trials,

including (1) interpretation of P values and CIs,

(2) synthesis of results from multiple populations, and

(3) placement of results in context. The second illus-

trates the use of a complementary, Bayesian framework,

which was applied in exploratory analyses of past

efficacy trials [6]. For either statistical framework,
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high rates of primary end point ascertainment and participant

blinding are critical for obtaining valid inferences about VE, and

the third part evaluates these issues and presents a simple sen-

sitivity analysis. The fourth part addresses implications for im-

proving future efficacy trials.

Interpretation of Frequentist Results from HIV Vaccine Efficacy
Trials
A Brief History. Five efficacy trials have been conducted, 4 of

which were completed (Table 1). The first 2 evaluated bivalent

recombinant gp120 envelope protein-based vaccines in North

America [7] and Bangkok, Thailand [8]. These phase 3 trials

were designed to test whether VE was .30% and demonstrated

no efficacy; failure appears to have resulted from inadequate

antibody responses to exposing HIV variants [9]. Difficulties in

developing efficacious HIV vaccines led to a switch from phase 3

licensure trials to phase 2b test-of-concept trials, which screen

for VE .0% rather than VE .30% [10, 11]. Phase 2b trials are

intended to weed out ineffective vaccines while advancing

promising ones to further testing and require approximately

one-third as many infection events as do phase 3 trials. Two

Phase 2b trials have been conducted, both of a T cell–based

vaccine. Results from the ‘‘Step trial’’ in the Americas indicated

that the vaccine was ineffective and may have increased the rate

of HIV acquisition for some subgroups [12], whereas the

‘‘Phambili trial’’ in South Africa did not yield definitive results,

because the announcement of potential vaccine-harm in Step led

to very early unblinding [13].

The US Military HIV Research Program, in collaboration

with the Thai Ministry of Health and the National Institutes of

Health conducted the RV144 efficacy trial [1]. Although this

trial had far greater enrolment than the VaxGen Phase 3 trials

(16,400 subjects, compared with 5400 and 2500), it is a large

phase 2b trial, because it observed only 125 infections overall

(the most relevant size measure), compared with 368 and 225

infections in the phase 3 trials.

Interpretation of Frequentist Statistics. P values have

nonintuitive interpretations [14]. A common misinterpretation

of a P value of .04 is that there is a 4% chance that the vaccine

has no efficacy (VE 5 0%). This may reflect what people really

want to know; however, a P value does not support a statement

about the probability of certain VE values, but rather provides

the probability that the estimate of VE would be as far or farther

from 0 than the observed estimate of 31% if the truth is that VE

equals 0%. Understanding the true meaning of a P value requires

a thought experiment: imagine repeated trials of the same de-

sign, but with random samples of individuals drawn from the

same population under identical conditions. Although not fea-

sible in reality, the thought experiment illustrates that the vari-

ability captured by P values refers only to that arising from

sampling, not to other sources of variability. Thus, in the context

of the RV144 trial and assuming that VE is 0%, a 1-sided P value

of .02 implies that, in 100 repetitions of the trial, an average of

2 trials would show results with an estimated VE . 31%.

Similar misinterpretation may arise for the CI, where a 95%

CI of 1%–51% is thought to imply a 95% probability that the

true VE lies between 1% and 51%. However, a CI has a less

intuitive interpretation: in the thought experiment above, we

expect 95% of the repeated trials to yield a CI that includes the

true VE. Statistically incorrect interpretations of the P value and

CI contributed to a misunderstanding of the RV144 efficacy

results. Another statistical approach2 the Bayesian framework

described below2 provides more readily interpretable in-

ferences about VE, complementing the frequentist framework.

Analysis of Multiple Populations. The RV144 paper report-

ed analyses of VE for 3 study populations: the intention-to-treat

(ITT) population, which included all randomized subjects; the

modified ITT (MITT) population, which excluded subjects found

to be HIV positive at the time of randomization; and the per-

protocol (PP) population, a subset of the MITT population who

remained HIV negative at the week 26 study visit and were

Table 1. Summary of Trial Results for Evaluating Human Immunodeficiency Virus Vaccine Efficacy

Efficacy trial HIV risk group Population Nv (nv) Np (np) Estimated VE, % (95% CI) 2-Sided P value

RV144[1] General Population ITT 8202 (56) 8200 (76) 26 (24 to 48) .08

Thailand Mostly at MITT 8197 (51) 8198 (74) 31 (1251) .04

Heterosexual risk PP 6176 (36) 6366 (50) 26 (213 to 52) .16

61% Men

Vax004[7] MSM MITT 3598 (241) 1805 (127) 6 (217 to 24) .59

North America and Women; 94% Men PP 3330 (191) 1679 (98) 4 (223 to 24) .77

Vax003[8] Injection Drug MITT 1267 (106) 1260 (105) 0 (231 to 24) .99

Bangkok Users; 93% Men PP 1193 (86) 1167 (79) 28 (246 to 221) .64

Step[12] MSM; MITT 914 (49) 922 (33) 250 (2141 to 5) .07

Americas 100% Men PP 835 (41) 840 (23) 260 (2160 to 1) .05

NOTE. Vaccine Efficacy is [1 – RH]3 100%, where RH is the relative hazard rate of Human Immunodeficiency Virus (HIV) infection in the vaccine versus placebo

group. Nv (nv) is the number of subjects (number of these diagnosed with HIV infection) in the indicated population and assigned vaccine. Np (np) is similar for

subjects assigned placebo. For the Step trial, women were also enrolled, but because only one woman acquired HIV infection, the efficacy analyses were restricted

to men who have sex with men (MSM). CI, confidence interval; ITT, intention-to-treat; MITT, modified ITT; PP, per-protocol.
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adherent to the protocol in a prespecified way [1]. The press

release reported only results for the MITT population, which

showed P , .05, delaying to the paper the reporting of the ITT

and PP results, both of which showed P . .05 (Table 1). Among

the scientific and lay communities, opinions varied on the

interpretation of the differences in results, the overall meaning of

the results, and the appropriate material to present in the initial

report. However, for the 5 reasons listed below, we believe that the

MITT analysis reasonably represents the study and that the ob-

served differences among the analyses, although contributing to

our understanding, are nonetheless of only minor scientific im-

portance.

First, despite the custom in the scientific literature to enshrine

the P value cut-off of .05 as the arbiter of whether an effect is

likely to be real, small differences in P values have only minor

impact on the probability that the VE equals 0%. Taken

together, the 3 analyses provide modest evidence of a low-level

protective efficacy—an important observation for the vaccine

field and an interpretation that is not sensitive to which analyses

are reported.

Second, the ITT analysis was conducted only to follow the

protocol that, in hindsight, could reasonably have omitted this

analysis. In general, an ITT analysis is prioritized for random-

ized, double-blind trials because it ensures that all prognostic

factors are evenly distributed between the treatment groups on

average, thereby ensuring a valid (unbiased) assessment of the

effect of treatment assignment [15]. However, because in RV144

the baseline HIV infection status was ascertained through

blinded procedures, theMITT analysis is equally valid as the ITT

analysis. The published analyses of the other HIV vaccine

efficacy trials reported only planned MITT and PP analyses

(Table 1) [7, 8, 12].

Third, the PP analysis had less statistical power than theMITT

analysis as a result of the 31% reduction in the number of end

points, which would make the P value larger even if the VE levels

are the same. Fourth, the standard analysis of VE is on shakier

scientific footing for the PP population than for the MITT

population because the comparator groups in the PP analysis are

only subsets of randomized subjects, resulting in possible

confounding [16–18]. Specifically, the PP analysis included only

the subset of randomized subjects who tested HIV negative at

the week 26 visit and adhered to the protocol, resulting in a 24%

reduction of the analyzed population (Table 2). To improve

on the standard analysis of VE in the PP population, an

analytic method that adjusts for measured confounding

factors should be applied (eg, like those in [19–23], which are

different from standard regression models relating outcome to

randomized group and prognostic factors), which in addition to

correcting for bias, can improve statistical power by leveraging

prognostic factors. Moreover, because some confounding fac-

tors may be unmeasured, the sensitivity of results to such factors

should also be investigated (eg, [24, 25]).

Fifth, the MITT analysis was prespecified as primary in the

final analysis plan prior to study unblinding. This pre-

specification of the details of the primary analysis is standard

practice in clinical trials for ensuring objectivity, and it is not

unusual to initially report only primary analyses. Therefore, the

consideration of statistical principles resolves the initial confu-

sion about the apparently conflicting RV144 study results.

Interpreting Results Accounting for Other Efficacy Trials.

Individual efficacy trials are designed to avoid false-positive

results, typically controlling the risk that the results will indicate

benefit or harm of a truly useless vaccine (with VE equaling 0%)

at 5%. However, if 10 similar efficacy trials are performed, and if

all the vaccines are truly identical to placebo, then there is a 40%

chance that at least 1 trial will produce a P value ,.05. This

occurs because each trial has a 5% risk of a false-positive result,

and the chance of >1 false-positive result cumulates with the

number of trials. For the HIV vaccine field with 4 completed

efficacy trials, if in truth the 3 different tested vaccines all had no

effect, then (from the negative binomial distribution) there is

a 19% chance that >1 of the trials would yield a P value ,.05.

Therefore, taking the history of trials into account may lead to

placing less confidence in the results of a single positive study,

and having multiple positive efficacy trials provides more

compelling evidence than does a single such trial. The most

valuable result of the RV144 study is to encourage future trials.

Bayesian Analysis of Vaccine Efficacy
Unlike the frequentist approach, the Bayesian framework of

statistics provides estimates of the probabilities that the VE takes

certain values [26, 27]. This approach is intuitively interpretable

because it allows for statements such as, ‘‘the probability that

VE . 0% (ie, that the vaccine has some beneficial effect) is

80%.’’ In the frequentist framework, a proposition is either true

or false; in the Bayesian framework, we can speak of the prob-

ability that it is true. To produce the latter, the Bayesian ap-

proach uses all of the information in the observed data but also

requires specification of a prior distribution of VE, which

specifies how likely each possible value of VE is based on any

beliefs and information one has from outside the experiment at

hand. This prior distribution can, alternatively, be set to a de-

fault distribution, so that inference is driven only by the internal

data. Studies of sensitivity to the choice of prior are a typical

component of Bayesian analysis; thus, we also consider a range

of priors that are consistent with equipoise [28] and that could

reflect the views of the different stake-holders, including the

vaccine manufacturer, the sponsor, and study team, and expert

scientists with no apparent interest in the trial outcome.

Because in HIV vaccine efficacy trials the null hypothesis (of

no efficacy) is scientifically plausible, the Bayesian analysis as-

signs a prior probability Pr(VE 5 0%) to this hypothesis. An

obvious choice is Pr(VE 5 0%) 5 .5, so that there is an even

chance of zero efficacy and of nonzero efficacy. The remaining
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probability of 1-Pr(VE5 0%) is distributed among the nonzero

values of VE in some way (examples given below). Note that it is

not always scientifically plausible to assign a prior probability to

a particular null hypothesis. For instance, if the trial is com-

paring a radically new vaccine with an existing vaccine with

known efficacy of 47%, it may be implausible that the new

vaccine would also have precisely 47% efficacy.

After specifying the prior distribution, Bayes theorem (see the

online supplement) is applied to convert the prior beliefs about

VE into posterior beliefs about VE, given the information in the

data (‘‘posterior’’ means ‘‘after’’ seeing the data). For RV144, the

posterior distribution has 2 components:

d Pr(VE 5 0% j RV144 data), the posterior probability that

the vaccine has no effect; and

d p(VE j RV144 data), the posterior density (likelihood)

of the different nonzero values of VE, indicating the likely

level of VE.

Bayesian Analysis of RV144
Study Team Prior. The lead statistician of RV144 (Donald

Stablein) suggested that, before conducting the trial, the

study team members had quite different opinions about

Pr(VE 5 0%) but had a rough consensus concerning the

magnitude of VE if the vaccine were to have an effect. In

particular, their prior beliefs were roughly that each nonzero

value of VE between 220% and 60% was equally likely. For

this prior on the nonzero values of VE and supposing

Pr(VE5 0%)5 .5, Bayes theorem yields Pr(VE5 0%jRV144
data) 5 .20 (ie, the chance that the vaccine is completely

ineffective is 20%). Recall that the P value was .04, which is

often erroneously interpreted as strong evidence against the

null hypothesis. The fact that there remains a 20% chance

that the vaccine is ineffective must be factored into any sci-

entific decisions based on the study results.

The posterior density P(VEjRV144 data) for the nonzero

values of VE suggest that, if efficacious, the vaccine efficacy is

most likely to be�30% (Figure 1). This posterior density can be

summarized with a 95% Bayesian CI (typically called a credible

interval)– here the interval from 3% to 52% – but this should

not be reported in isolation. The overall Bayesian summary is

that there is a 20% chance that VE equals 0% (no efficacy) but

that, if efficacious, VE lies between 3% and 52% with 95%

probability.

Because the opinions concerning Pr(VE 5 0%) were quite

varied, we present the Bayesian conclusions for a variety of

choices of this prior probability in Table 3. Thus the skeptic who

assigns prior chance of 90% that the vaccine is ineffective (eg,

[2]) will conclude after seeing the RV144 data that there remains

a 70% chance that the vaccine is ineffective. Table 3 also shows

that the posterior probability that the vaccine is harmful (ie, that

VE is ,0%) is negligible.

Accounting for Other Efficacy Trials. Primary analyses of

trials like RV144 make use of data only from the individual

study; however, as mentioned above, more can be learned by

placing results in a broader context of other trials of similar

agents with similar goals. In Bayesian analysis, one controls for

multiple testing by considering that each trial has unknown

prior probability Pr(VE 5 0%), and then one learns from the

trials about this unknown prior probability. Assume that RV144

Table 2. Culling of the Modified Intention-to-Treat Population to Form the Per-Protocol Population in the RV144 Trial

Reason for exclusion from the PP population MITT vaccine (n 5 8197) MITT placebo (n 5 8198)

Diagnosed with HIV infection by week 26 5 (0.06%) 10 (0.12%)

Dropped out by week 26 while HIV negative 237 (2.9%) 210 (2.6%)

Reached week 26 visit while HIV negative
but was nonadherent to vaccinations (protocol-specified)

1779 (21.7%)a 1612 (20.4%)b

Total culled out 2021 (24.7%) 1842 (22.5%)

NOTE. Group-imbalances in prognostic factors for human immunodeficiency virus (HIV) infection could arise due to differences (by treatment assignment) in

probabilities of any of the events (1) infection, (2) dropout, or (3) nonadherence by week 26. MITT, Modified Intention-to-Treat; (PP) Per-Protocol.
a One thousand twenty-nine subjects received ,4 doses of vaccine; 742 received all 4 doses, with receipt of >1 dose occurring outside of the window; and 8

were nonadherent for other reasons.
b Nine hundred forty-one subjects received ,4 doses of vaccine; 670 received all 4 doses, with receipt of >1 dose occurring outside of the window; and 1 was

nonadherent for other reasons.

Figure 1. Pr(VE 5 0%jRV144 data) and the density P(VEjRV144 data)
for nonzero values of vaccine efficacy (VE) when the assumed prior is
Pr(VE5 0%)5 .5 and Pr(220%, VE, 60%)5 .5 with equal likelihood
of all nonzero VE values between 220% and 60%.
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is viewed as the fourth in a series of related relevant HIV vaccine

trials – the first 2 being the efficacy trials of VaxGen’s envelope

subunit protein with results as reported in Table 1, and the third

‘trial’ formed by pooling HIV incidence data from the 5 placebo-

controlled randomized phase 1/2 trials of prime–boost HIV

vaccine regimens containing canarypox (28 infected persons of

1497 enrolled) [29]. Then the unknown Pr(VE 5 0%) is esti-

mated to be .61. From Table 3, it would follow that the chance

that the RV144 vaccine has some efficacy is 71%.

Using results of other trials to inform the prior for a new trial

is complicated by any differences among the trial designs or

tested products. RV144 departed from the VaxGen trials in the

vaccine regimen, exposure route, balance of male and female

participants, and the magnitude of HIV exposure (Table 1). The

extent to which these differences affect the Bayesian likelihood of

vaccine efficacy introduces uncertainty into the computation of

Pr(VE 5 0%) for RV144. Nevertheless, this Bayesian analysis

provides additional insight by giving one way to account

explicitly for the past trial results.

Sensitivity to the Prior. The most arbitrary feature of the

study team choice of prior above was constraining VE be-

tween220% and 60%. To study the sensitivity of conclusions to

this choice, we consider instead the prior that constrains VE

between -VE*/3 and VE* (the largest plausible efficacy before

seeing the data) and assumes all nonzero values of VE in this

interval are equally likely.We also choose Pr(VE5 0%) to be the

adjusted estimate arising from considering the 3 previous rele-

vant vaccine trials; its expression depends on VE* and is omitted

here. For VE* varied from 0% to 100%, the resulting posterior

distribution is graphed in Figure 2, showing that there is at least

a 22% chance that VE 5 0% regardless of the choice of VE*.

In conclusion, the Bayesian analysis provides additional

information for weighing the evidence about VE than the fre-

quentist analysis alone. Although the frequentist P-value of .04

does not inform about the chance that the vaccine had some

efficacy, the Bayesian posterior probabilities do, indicating at

most a 78% chance that the vaccine is efficacious (.78 equals

one minus the smallest posterior probability of no efficacy in

Figure 2). In addition, although frequentist statistics only assess

data internal to the trial, Bayesian statistics facilitate integration

of the internal data with external data, knowledge, and beliefs.

Evaluation of Study Integrity
Some HIV infection events may be unobserved due to missing

data on scheduled HIV tests caused by dropout, missed visits, or

processing errors. The assessment of VE may be biased by such

missed infections even if the missingness rate is the same in the

randomized groups, but most severely if the rate differs. A dif-

ferential rate during the immunization series could stem from

vaccine-reactogenicity, and during all periods of follow-up, it

could stem from participant unblinding. Moreover, in general,

participant unblinding may introduce bias by leading to group-

imbalances in HIV exposure. Therefore, assessing rates of HIV

tests and of participant blinding are important components of

evaluating study validity. We assess these factors for the MITT

population of RV144 and use the results in a simple sensitivity

analysis of VE.

End Point Ascertainment. After completion of the immu-

nization series, 7212 (88.0%) of 8197 vaccine recipients and

7227 (88.2%) of 8198 placebo recipients were ascertained for

HIV infection, either by having a week 26 HIV test result or by

having a previous HIV positive infection diagnosis. At the last

scheduled visit, the rates of end point ascertainment were 7398

(90.3%) of 8197 vaccine recipients and 7399 (90.3%) of 8198

placebo recipients. Thus, there was a high rate of HIV ascer-

tainment that was not differential between the arms. Further-

more, of the 28,511 possible follow-up years for the vaccine

Table 3. Various Prior and Resulting Posterior Probabilities that the Vaccine Has No Effect (Vaccine Efficacy [VE], 0%), Is Efficacious
(VE, >0%), or Is Harmful (VE, <0%)

Pr(VE 5 0%) [Prior] 0.1 0.2 0.3 0.4 0.5 0.6 0.61 0.7 0.8 0.9

Pr(VE 5 0%jdata) 0.03 0.06 0.10 0.14 0.20 0.28 0.29 0.37 0.50 0.70

Pr(VE . 0%jdata) 0.96 0.93 0.89 0.85 0.79 0.72 0.71 0.63 0.50 0.30

Pr(VE , 0%jdata) 0.01 0.01 0.01 0.01 0.01 ,.01 <0.01 ,.01 ,.01 ,.01

NOTE. The posterior probability combines the information from the prior and the data from RV144. The prior probability Pr(VE 5 0%) 5 .61 from the bolded

column was estimated based on the 3 previous human immunodeficiency virus vaccine trials.

Figure 2. Pr(VE 5 0%jRV144 data) as one varies the prior upper limit,
VE* (the largest efficacy one might expect before seeing the data), on
vaccine efficacy (VE) when the assumed prior has Pr(VE 5 0%) adjusted
for the three previous HIV vaccine trials and has equal likelihood of all
nonzero VE values between –(VE*/3)% and VE*%.
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group and 28,434 possible follow-up years for the placebo

group, 92.7% were observed for each group. Assuming the arm-

pooled 0.24% annual HIV incidence observed in the trial, we

expect that 10 infections were missed. An imbalance with 8 in

one arm and 2 in the other would lead to VE estimates of 22% or

35%, illustrating the degree of sensitivity of the estimates to the

unobserved infections.

Unblinding Ascertainment. Biannual behavioral ques-

tionnaires asked about thoughts as to receipt of candidate vac-

cine/placebo/don’t know. At the last visit, 13,495 participants

answered ‘don’t know’ and 1301 (7.9%) provided a treatment

choice, with 495 (78.8%) of 628 vaccine recipients guessing

correctly and 179 (26.6%) of 673 placebo recipients guessing

correctly. Therefore, the number of MITT subjects who correctly

perceived their treatment assignment is estimated to be (0.7883

(628/1301)1 0.2663 (673/1301)20.50)3 16,3955 296, a rate

of 1.8%. Of the 296 unblinded subjects, we expect that at most 3

became infected, potentially slightly altering the VE estimate to

29%–32%. The estimated correct treatment perception rates

were similarly low at other visits, supporting a high rate of

blinding. High quality of the blind is particularly important in

trials where the end point is caused by behavioral-associated

exposures.

CONCLUSIONS

Interpretation of the RV144 results benefits from consideration

of statistical principles: the meaning of P values and CIs; the

distinctions among analyses of VE in the 3 study populations

(especially the validity of the MITT analysis versus the bias-

prone PP analysis); the impact of data from other efficacy trials;

and the uses of Bayesian assessment of probabilities that

VE takes certain values. The Bayesian analyses are presented to

help understand the RV144 data, but we are not proposing that

the particular choices of prior distributions would be used in

future trials.

These considerations lead to our conclusion that the RV144

data provide moderate evidence of low-level positive VE – with

>22% chance remaining for no efficacy under a range of prior

assumptions2 an inference that reflects greater uncertainty than

has much of the discussion about this trial. This uncertainty

about the signal, and the fact that multiple positive trials provide

more compelling evidence for positive VE than does a single

positive trial, support conduct of more efficacy trials of prime –

boost candidate vaccines. These trials would benefit from

conduct of Bayesian analyses of VE to complement the fre-

quentist analyses, and from conduct of sensitivity analyses

to demonstrate how the inferences about VE could be biased due

to incomplete ascertainment of HIV infection end points and/or

to participant unblinding. Moreover, sensitivity analyses

should be included in the assessment of PP VE, and the trial

design should seek to minimize the differences in the MITT and

PP populations—for example through a pre-randomization

run-in period during which subjects demonstrate their ability

to adhere.

Supplementary Data

Supplementary data are available at http://jid.oxfordjournals.

org/online.
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