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Abstract

The number of individuals diagnosed with type 2 diabetes mellitus, which is caused by insulin resistance and/or abnormal
insulin secretion, is increasing worldwide, creating a strong demand for the development of more effective anti-diabetic
drugs. However, animal-based screening for anti-diabetic compounds requires sacrifice of a large number of diabetic
animals, which presents issues in terms of animal welfare. Here, we established a method for evaluating the anti-diabetic
effects of compounds using an invertebrate animal, the silkworm, Bombyx mori. Sugar levels in silkworm hemolymph
increased immediately after feeding silkworms a high glucose-containing diet, resulting in impaired growth. Human insulin
and 5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator,
decreased the hemolymph sugar levels of the hyperglycemic silkworms and restored growth. Treatment of the isolated fat
body with human insulin in an in vitro culture system increased total sugar in the fat body and stimulated Akt
phosphorylation. These responses were inhibited by wortmannin, an inhibitor of phosphoinositide 3 kinase. Moreover,
AICAR stimulated AMPK phosphorylation in the silkworm fat body. Administration of aminoguanidine, a Maillard reaction
inhibitor, repressed the accumulation of Maillard reaction products (advanced glycation end-products; AGEs) in the
hyperglycemic silkworms and restored growth, suggesting that the growth defect of hyperglycemic silkworms is caused by
AGE accumulation in the hemolymph. Furthermore, we identified galactose as a hypoglycemic compound in jiou, an herbal
medicine for diabetes, by monitoring its hypoglycemic activity in hyperglycemic silkworms. These results suggest that the
hyperglycemic silkworm model is useful for identifying anti-diabetic drugs that show therapeutic effects in mammals.
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Introduction

The number of individuals diagnosed with type 2 diabetes

mellitus, which is caused by insulin resistance and/or abnormal

insulin secretion, is increasing worldwide [1], creating a strong

demand for the development of more effective anti-diabetic drugs.

Blood glucose levels are regulated by hormones such as insulin that

regulate glucose uptake and metabolism in tissues throughout the

body. Evaluation of the effects of anti-diabetic drugs thus requires

the use of an animal model. The use of mammalian animals to

screen for anti-diabetic drugs, however, is not only very expensive

from an animal husbandry perspective, but also presents ethical

problems in terms of animal welfare.

We previously reported that a silkworm infection model can be

utilized to evaluate antibacterial and antiviral agents, and that

there are a number of similarities in the pharmacokinetics of

antibiotics between silkworms and mammals [2,3,4,5,6]. It is far

less costly to rear silkworms than mammals, and a large number of

larvae can be maintained in a small space. Screening of

therapeutic agents can be easily performed with a large number

of individual silkworms without the same ethical concerns involved

in the use of mammals. Thus, we aimed to establish a method for

evaluating the anti-diabetic effects of compounds using silkworms

(Figure S1). Here we propose an invertebrate animal model of the

disease utilizing the silkworm to evaluate the therapeutic effects of

drugs.

Results

Immediate increase in sugar concentration in
hemolymph of silkworms fed a high-glucose diet

To establish a hyperglycemic silkworm model, we first evaluated

the conditions required to induce hyperglycemia in silkworms.

Silkworms fed a high-glucose diet (10% glucose-containing diet)

for 1 day had a greater than 4-fold increase in the hemolymph

sugar level compared with silkworms fed a normal diet (Figure 1A).

The hemolymph sugar level of fasted silkworms was less than half

that of silkworms fed a normal diet. The amount of sugar in the fat

body, which corresponds to liver and adipose tissue in mammals,

was also higher in silkworms fed a high-glucose diet than in

silkworms fed a normal diet (Figure 1B). Increased sugar in the

muscle and in the malpighian tubule, which corresponds to the
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mammalian kidney, was also observed in silkworms fed a high-

glucose diet, although the amount of sugar was lower than that in

the fat body (Figure 1B). The amount of sugar in the fat body of

fasted silkworms was less than one-tenth that in silkworms fed a

normal diet. Therefore, hemolymph and fat body sugar levels

could be manipulated in silkworms by either feeding them a high-

glucose diet or by fasting them.

We then examined the time course of the increase in total

sugar in the silkworm hemolymph during feeding with a high-

glucose diet. Hemolymph sugar levels in silkworms fed a high-

glucose diet increased 2-fold by 30 min, 4-fold by 60 min, and 6-

fold by 180 min after feeding, respectively (Figure 1C). Hemo-

lymph sugar levels in silkworms either fasted or fed a normal diet

did not increase for up to 180 min. Glucose levels in the

hemolymph were also measured using the glucose oxidase

method. Glucose levels in the hemolymph of silkworms fed a

high-glucose diet increased rapidly, whereas no glucose was

detected in the hemolymph of silkworms either fed a normal diet

or fasted (Figure 1D). We next tested whether hemolymph sugar

levels increased according to the glucose content in the diet.

Hemolymph sugar levels increased following intake of up to a

33% glucose diet without saturation (Figure 1E). These findings

indicated that silkworms can be made hyperglycemic by feeding

them a high glucose-containing diet. Hemolymph sugar levels in

silkworms fed a high-glucose diet for 1 h began to decrease after

fasting for the subsequent 2 h (Figure 1F). Hemolymph sugar

Figure 1. A high-glucose diet in silkworms increased hemolymph sugar levels. (A, B) Silkworms were fed a normal diet or 10% (w/w)
glucose diet or fasted for 24 h, and then the hemolymph sugar level was determined (A). n = 5 per group. The sugar level in the fat body, malpighian
tubule, midgut, muscle, and silk gland was determined (B). n = 3 per group. Data represents means 6 SD. (C, D) Silkworms were fed a normal diet,
15% (w/w) glucose diet, or fasted for 0, 30, 60, or 180 min. Total sugar level (C) and glucose level (D) in the hemolymph were determined. n = 4–5 per
group. (E) Hemolymph sugar levels in silkworms fed a normal diet, or an 8%, 16%, or 33% (w/w) glucose diet for 60 min. n = 3 per group. (F)
Silkworms were fed a normal diet or 12% (w/w) glucose diet for 1 h (shown in gray) then fasted. Sugar level in hemolymph before feeding and at 0, 2,
5, or 8 h after fasting was determined. n = 5 per group. (G) Silkworms were fed a normal diet, 10% (w/w) glucose diet, 10% (w/w) mannitol diet, or
fasted for 60 min, and hemolymph sugar levels were measured. n = 5 per group.
doi:10.1371/journal.pone.0018292.g001

An Invertebrate Hyperglycemic Model

PLoS ONE | www.plosone.org 2 March 2011 | Volume 6 | Issue 3 | e18292



levels were increased in silkworms fed a normal diet for 24 h.

Fasting for the subsequent 12 h induced a drop in the

hemolymph sugar level to that of continuously fasted silkworms

(Figure S2). Silkworms fed a 10% mannitol diet did not show the

increase in hemolymph sugar levels observed in silkworms fed a

10% glucose diet (Figure 1G). Thus, we assume that glucose is

taken up in the silkworm midgut by a specific transporter-

mediated system, thereby increasing the hemolymph sugar level.

Together, these findings suggest that silkworms have a regulatory

system for maintaining hemolymph sugar levels. Hemolymph

sugar levels in silkworms fed a high glucose-containing diet

increased more than 2-fold, indicating that we established a

hyperglycemic model with silkworms. Diabetic patients generally

suffer from several disorders due to hyperglycemia. We

investigated whether hyperglycemia induced by feeding silk-

worms a high-glucose diet caused disorders. A high-glucose diet

for 3 days increased hemolymph sugar levels (Figure 2B). Growth,

in terms of body size and weight, was inhibited in both male and

female hyperglycemic silkworms (Figure 2A, C, D, and Figure

S3). Furthermore, administration of glucose into the silkworm

hemolymph also increased sugar levels in the hemolymph and

impaired growth (Figure 3).

Human insulin and AICAR decrease sugar levels in
silkworm hemolymph

We next examined whether the hypoglycemic effect of anti-diabetic

drugs can be evaluated using hyperglycemic silkworms. Insulin is a

major therapeutic agent for patients with type I diabetes. The

administration of recombinant human insulin decreased the hemo-

lymph sugar level in silkworms fed a high-glucose diet (Figure 4A, and

Figure S4A, B). In mammals, insulin enhances glucose uptake via Akt

phosphorylation in tissues such as adipose tissue [7]. We tested

whether human insulin enhanced glucose uptake into the fat body, the

silkworm organ that corresponds to mammalian adipose tissue, in an

in vitro culture system using isolated fat bodies. The amount of sugar in

cultured fat bodies increased in a time-dependent manner after

adding glucose to the medium (Figure 4B), indicating that isolated fat

bodies have the capacity to take up glucose from the culture medium.

Moreover, the addition of human insulin to the medium led to an

increase in the total sugar and phosphorylated Akt in the fat bodies

(Figure 4C–E). These effects by human insulin were inhibited by

wortmannin, an inhibitor of phosphoinositide 3 (PI3) kinase

(Figure 4C, E). Furthermore, the hypoglycemic effect of human

insulin was blocked by the administration of wortmannin (Figure 4F).

These results suggest that human insulin induces glucose uptake via

Figure 2. A high-glucose diet in silkworms inhibited growth. (A–D) Female silkworms were fed a normal diet (N.D.), a 5%, 10%, 15%, or 30%
(w/w) glucose diet (G.D.), or fasted for 3 days. Sugar level in hemolymph (B), body size (A, C), and body weight (D) were determined. n = 8–15 per
group. *p,0.0001 versus saline injected silkworms fed a normal diet (N.D.). Data are represented as means 6 SD. In all panels, the statistical
significance of the difference was evaluated using Student’s t test.
doi:10.1371/journal.pone.0018292.g002
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the activation of phosphoinositide 3 kinase in the silkworm fat body, as

in insulin-stimulated mammalian adipose tissue. Activation of the

AMPK signaling pathway decreases blood glucose levels in mammals

[8]. We examined whether AICAR, which activates AMPK, lowers

sugar levels in silkworm hemolymph. AICAR injection decreased the

hemolymph sugar level in hyperglycemic silkworms (Figure 5A).

Moreover, the amount of phosphorylated AMPK was increased by

the addition of AICAR to an in vitro culture system using isolated

silkworm fat bodies (Figure 5B, and Figure S5). These results suggest

that AICAR activates the AMPK pathway in the fat body and lowers

sugar levels in silkworm hemolymph. We next examined whether

human insulin or AICAR can restore the growth defect of

hyperglycemic silkworms. In silkworms fed a 10% glucose diet for 4

days, both body size and weight were reduced compared to silkworms

fed a normal diet. Under this condition, injection of human insulin or

AICAR into the hemolymph of the hyperglycemic silkworms

increased body size and weight compared to saline-injected controls

(Figure 6). This finding suggests that human insulin and AICAR

reverse the growth defect in hyperglycemic silkworms by lowering

total sugar levels in the hemolymph. Therefore, the anti-diabetic

effects of candidate drugs that activate the insulin signaling pathway

and/or the AMPK signaling pathway can be evaluated using a

silkworm hyperglycemic model.

Increase in the amount of AGEs in the hemolymph of
hyperglycemic silkworms

The Maillard reaction is a series of nonenzymatic reactions,

where carbonyl groups of reducing-sugars and amino groups of

proteins form Schiff bases, which subsequently undergo Amadori

rearrangements and oxidative modifications. The end result of

these complex reactions is the formation of advanced glycation

end-products (AGEs), which are considered to cause disorders in

the tissues and blood vessels of diabetic patients. Recent studies

suggest a correlation between the accumulation of AGEs and

diabetic nephropathy [9,10]. We examined whether AGEs are

present in the hemolymph of hyperglycemic silkworms with

impaired growth. A 120-kDa protein was detected in silkworm

hemolymph using an anti-AGEs antibody by Western blot analysis

(Figure 7A). The amount of the 120-kDa protein detected by anti-

AGEs antibody was higher in silkworms fed a high-glucose diet

(Figure 7A). Aminoguanidine, an inhibitor of the Maillard

reaction, has therapeutic effects against cardiac hypertrophy and

albuminuria in a diabetic rat model [11,12]. Injection of

aminoguanidine inhibited the increase of the 120-kDa AGEs in

hyperglycemic silkworms (Figure 7A). We further tested whether

aminoguanidine reverses/ameliorates the growth defect of hyper-

glycemic silkworms. Repeated injections of aminoguanidine in

Figure 3. Growth inhibition of silkworms after injection of glucose. (A–D) Silkworms were fed a normal diet and injected with glucose
solution (40%) or saline into the hemolymph every 12 h for 3 days. Hemolymph sugar level (B), body size (A, C), and body weight (D) were
determined. n = 10–20 per group. Data represents means 6 SD.
doi:10.1371/journal.pone.0018292.g003
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silkworms fed the high-glucose diet resulted in an increase of both

body size and weight (Figure 7B–D). These results suggest that

aminoguanidine ameliorates the growth defect of hyperglycemic

silkworm by inhibiting AGE production in the hemolymph.

Identification of galactose as an effective compound to
decrease blood sugar levels

We next tested whether hyperglycemic silkworms are useful for

identifying hypoglycemia-inducing compounds. Jiou, an herbal

medicine, is considered to be effective for diabetic patients. Jiou

has therapeutic effects in diabetic mouse and rat models [13]. A

hot water extract of jiou reportedly has hypoglycemic activity in

the streptozotocin induced-diabetic mouse model [13]. The active

compound for the hypoglycemic effect in jiou, however, was not

previously identified. We attempted to identify the hypoglycemia-

inducing compound in jiou by using our silkworm diabetic model.

Injection of the jiou extract decreased hemolymph sugar levels in

hyperglycemic silkworms (Figure 8A, B). We presumed that the

Figure 4. Decrease in the hemolymph sugar level of hyperglycemic silkworms and increase in Akt phosphorylation in the fat body
by human insulin. (A) Silkworms were fed a 10% (w/w) glucose diet for 60 min. After removal of the diet, 50 ml of human insulin (3.5 mg/ml) was
administered into the hemolymph of the hyperglycemic silkworms. Hemolymph sugar level was measured 6 h after injection. n = 6–7 per group. Data
are shown as means 6 SD. (B) Increase in total sugar in fat bodies cultured in insect medium containing 1% glucose. Isolated fat bodies from
silkworm were cultured in Grace’s insect medium containing 1% glucose for 0, 1, 3, or 6 h, and the amount of sugar in fat body was measured. n = 4–
5 per group. *p,0.05, **p,0.001 versus control medium samples. (C) Isolated fat body from silkworm was cultured in Grace’s insect medium
containing 1% glucose with or without wortmannin (0.01 mM) for 30 min and further cultured with or without human insulin (final conc. 0.7 mg/ml)
for 3 h. Total sugar in fat body was determined. n = 8–9 per group. (D) Isolated fat bodies from silkworm were cultured with human insulin (final conc.
0.6 mg/ml) in Grace’s insect medium for 0, 30, 60, or 120 min. Fat bodies were homogenized and extracts were prepared. Total Akt and
phosphorylated Akt were detected by immunoblot analysis. (E) Isolated fat body from silkworm was cultured in Grace’s insect medium with or
without wortmannin (0.01 mM) for 30 min and further cultured after adding human insulin (3 mg/ml) for 3 h. Immunoblots of total Akt and
phosphorylated Akt (Top) and calculation of relative Akt phosphorylation (Bottom). n = 3 per group. Bottom data are shown as means 6 SD. (F)
Cancellation of the hypoglycemic effect of human insulin by co-administration of wortmannin. Silkworms were fed a 10% (w/w) glucose diet for
60 min. After removal of the diet, 50 ml of human insulin (3.5 mg/ml) with or without wortmannin (0.5 mM) was administered into the hemolymph of
the hyperglycemic silkworms. Hemolymph sugar level was measured 6 h after injection. n = 9–10 per group. Data are shown as means 6 SD.
Statistical significance between groups was evaluated using Student’s t test.
doi:10.1371/journal.pone.0018292.g004
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jiou extract contains a polysaccharide for two reasons; (i) the

estimated sugar weight in the jiou extract was approximately half

that of the dry weight, and (ii) the extract formed a precipitate after

the addition of ethanol (Figure 8A). Therefore, we assumed that

the polysaccharide in the jiou extract possessed a hypoglycemic

effect. Thin layer chromatography (TLC) analysis of trifluoroacetic

acid (TFA)-hydrolyzed materials from jiou revealed a single spot,

which migrated to the same position as galactose. This spot was

not observed when TFA-treatment was omitted (Figure 8C).

Under this TLC condition, glucose, mannose, fructose, xylose, and

arabinose migrated faster than galactose (Figure 8C, D). This

finding suggests that the jiou extract contains galactose polymers.

We next tested whether galactose shows hypoglycemic activity in

hyperglycemic silkworms. Injection of galactose decreased the

hemolymph sugar levels in hyperglycemic silkworms (Figure 8E).

On the other hand, glucose, talose, and mannose, which are

structural isomers of galactose, did not show this hypoglycemic

effect (Figure 8E, F). We next tested whether galactose exerts

hypoglycemic activity in a mammalian diabetic model. Intraper-

itoneal injection of galactose decreased the blood glucose levels in

streptozotocin induced-diabetic mice (Figure 8G). Therefore, the

hypoglycemic effect of galactose was demonstrated in hyperglyce-

mic silkworms and in diabetic mice. To explore the molecular

mechanism of the blood glucose reducing effect of galactose, we

analyzed the expression level of glucose transporter 2 (GLUT2) in

the liver of streptozotocin-induced diabetic mice. GLUT2 is

expressed in the liver and facilitates glucose uptake [14]. GLUT2

levels in the membrane fraction prepared from the liver of diabetic

mice were increased by galactose administration (Fig. 8H).

Discussion

The findings of the present study demonstrated that hypergly-

cemia can be induced in silkworms by feeding a diet containing

glucose. The total amount of sugar increased in the fat bodies of

the hyperglycemic silkworms. An increase in hemolymph sugar in

silkworms may lead to the uptake and accumulation of sugar in the

fat bodies, similar to what is observed in the liver and adipose

tissue in mammals. Trehalose, a dimer of two glucose molecules, is

a major sugar in insect hemolymph and glucose is generally not

detected in insect hemolymph. We detected glucose in the

hemolymph of silkworms fed a high-glucose diet.

To examine whether glucose uptake is mediated by a specific

transporter, we examined the dose response of glucose in the

medium on sugar accumulation in the fat body. Excess glucose in

the medium resulted in saturation of the sugar accumulation in the

fat body (Figure S6). This finding suggests that at least in the fat

body, sugar does not passively diffuse into the organ but is

transported by a specific uptake system. Moreover, silkworms have

a trehalose and glucose transporter, Tret1 (Trehalose transporter

1) [15]. In silkworms fed a normal diet, higher levels of Tret1 are

expressed in muscle and in the fat body compared to the midgut,

silk gland, or malpighian tubules [15]. The data we present here

show that under normal diet conditions, sugar accumulation per

unit weight of tissue is higher in muscle and in the fat body than in

the midgut, silk gland, or malpighian tubules (Fig. 1B). The high

sugar accumulation detected in organs expressing high levels of

Tret1 indicates the possibility that sugar uptake is regulated by

sugar transporters.

The administration of human insulin or AICAR decreased the

hemolymph sugar level in hyperglycemic silkworms. This study is

the first report demonstrating the possibility of evaluating the

therapeutic effect of anti-diabetic drugs in an invertebrate

hyperglycemic animal model. We also demonstrated that human

insulin enhances the uptake of sugar into the fat body of silkworms

by Akt phosphorylation via the activation of phosphoinositide 3

kinase. Therefore, the hypoglycemic effect of human insulin in

hyperglycemic silkworms is due to activation of the insulin

signaling pathway in silkworms, similar to mammals. Silkworms

have bombyxin, a peptide hormone with structural similarity to

human insulin [16]. Bombyxin increases phosphorylated Akt in

silkworms [17]. Moreover, injection of glucose promotes the

Figure 5. Decrease in the hemolymph sugar level of hyperglycemic silkworms and increase in AMPK phosphorylation in the fat
body by AICAR. (A) Silkworms were fed a 10% (w/w) glucose diet for 60 min. After cessation of the diet, 50 ml of AICAR (4 mg/ml) was administered
into the hemolymph of the hyperglycemic silkworms. Hemolymph sugar levels were measured 6 h after injection. n = 8–10 per group. Data are
shown as means 6 SD. (B) Western blot analysis of phosphorylated AMPK in fat body. Isolated fat body from silkworm was cultured with addition of
AICAR (final conc. 0.8 mg/ml) for 2 h. Immunoblots of total AMPK and phosphorylated AMPK (Top) and calculations of relative AMPK phosphorylation
(Bottom). n = 3 per group. Data at the bottom of the figure are shown as means 6 SD.
doi:10.1371/journal.pone.0018292.g005
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release of bombyxin into the hemolymph [18]. Silkworms might

control the hemolymph sugar level by activating the insulin-

signaling pathway with bombyxin. Activation of AMPK by

AICAR also decreased hemolymph sugar levels in silkworms.

Therefore, the anti-diabetic effects of candidate drugs that activate

the insulin signaling pathway and/or the AMPK signaling

pathway can be evaluated using a silkworm hyperglycemic model.

Impaired growth, a characteristic feature of hyperglycemic

silkworms, may be due to the accumulation of AGEs. Injection of

aminoguanidine, an inhibitor of the Maillard reaction, restored

the impaired growth of hyperglycemic silkworms. There are

established rodent models of diabetic complications, such as

nephropathy, peripheral neuropathy, and retinopathy. Several

months, however, are required to induce these complications. By

comparison, the growth defect of hyperglycemic silkworms was

observed within 3 days. Therefore, the hyperglycemic silkworm

model may be highly useful for quickly evaluating the therapeutic

effects of anti-diabetic drugs. Hemolymph sugar levels were not

significantly increased in silkworms fed a diet with added olive oil

or oleic acid (Figure S7A). Silkworms fed a high fat diet had low

body weight and a low food intake (Figure S7B, C). These findings

suggest that silkworms fed a high fat diet eat less, resulting in

growth inhibition. Thus, compared to a high fat diet, a high

glucose diet rapidly induces hyperglycemia in silkworms.

We previously reported similarities between silkworms and

mammals with regard to drug toxicity and pharmacokinetics. 1)

The therapeutic concentrations of antibiotics are similar in both a

silkworm infection model and a mammalian infection model [2,4].

2) Intestinal uptake of several compounds is similar between

silkworms and mammals [19]. 3) Like humans, silkworms have

drug excretion mechanisms such as oxidization mediated by P450

and conjugation [3]. 4) The LD50 of toxic compounds is similar

between silkworms and mammals [3], 5). Compounds with a

relatively long half-life in mammals are also stable in silkworms

[20]. Thus, we assume that silkworms could be useful for

evaluating the drug toxicity and pharmacokinetics of compounds

in vivo.

We screened for anti-diabetic agents using the hyperglycemic

silkworm model. We found that an extract of jiou, an herbal

medicine used to treat diabetes, has hypoglycemic effects when

administered to hyperglycemic silkworms. Moreover, we demon-

strated that galactose, a major component of the polysaccharides

in jiou, had hypoglycemic activity in the silkworm diabetic model.

Structural isomers of galactose, such as glucose, talose, and

Figure 6. Repeated injections of human insulin and AICAR ameliorated growth defect in silkworm fed with high-glucose diet. (A–C)
Silkworms were fed a normal diet (N.D.) or a 10% (w/w) glucose diet (G.D.) for 4 days. During the 4 days, silkworms were injected with 50 ml of human
insulin (3.5 mg/ml), AICAR (4 mg/ml), or saline into the hemolymph every 12 h. Body size (A, B) and body weight (C) were measured. n = 8–14 per
group. Bar represents mean. In all panels, the statistical significance of the difference was evaluated using Student’s t test.
doi:10.1371/journal.pone.0018292.g006
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mannose did not have this hypoglycemic effect. In these galactose

isomers, the position of the hydroxyl group(s) at C-4, C-2, or both

differ from galactose. Therefore, the position of these hydroxyl

groups in galactose is important for the hypoglycemic activity.

Galactose also had a hypoglycemic effect in streptozotocin

induced-diabetic mice. These findings suggest that the hypergly-

cemic silkworm model is useful for identifying anti-diabetic drugs

that show therapeutic effects in mammals. To our knowledge, this

is the first report that galactose has a hypoglycemic effect.

Galactose is thought to have a hyperglycemic effect because it is

isomerized to glucose in cells. The administration of excess

amounts of galactose resulted in an increase in blood sugar levels

in both mice and silkworms (data not shown). Accordingly, there is

an optimal dose for galactose to exert its hypoglycemic activity.

Some investigators reported that fructose and glucose have

differential effects on food intake [21,22]. On the other hand, the

effects of galactose on the maintenance of blood sugar levels may

differ from those of glucose. GLUT2 levels in the membrane fraction

prepared from the liver of streptozotocin-induced diabetic mice were

increased by galactose administration compared to that after

injection of PBS or glucose. This result suggests that the specific

action induced by galactose, upregulation of the GLUT2 level in the

membrane and corresponding upregulation of glucose uptake into

the liver, accounts, at least in part, for the blood glucose lowering

effect. Understanding the molecular mechanism of the hypoglycemic

activity of galactose may pave the way for the development of

galactose derivatives as candidate anti-diabetic drugs.

The use of animals in experimental research should follow the

guiding principles proposed by Russell and Burch in 1959,

referred to as the ‘‘three R’s’’ (Replacement, Reduction, and

Refinement) [23]. Thus, screening for anti-diabetic drugs using a

large number of mammalian animal models such as mice and rats

is difficult because of ethical issues, especially in terms of animal

welfare. Russell and Burch also introduced the concept of relative

replacement, which recommends using invertebrate models

instead of mammalian animals. Our newly-developed invertebrate

hyperglycemic model using silkworms matches this concept.

Materials and Methods

Silkworm rearing conditions, glucose diet preparation,
and injection methods

Fertilized eggs of silkworm, Bombyx mori (Hu?Yo x Tukuba?Ne;

Ehime Sanshu), were kept in disposable plastic containers at 27uC.

Figure 7. Increase in the amount of AGEs in the silkworm hemolymph after ingestion of a high glucose diet and decrease in AGEs
after injection of aminoguanidine. (A) Western blot analysis of AGEs in the hemolymph. Silkworms were fed a normal diet (N.D.) or a 10% (w/w)
glucose diet (G.D.) for 4 days. During the 4 days, silkworms were injected with 50 ml of aminoguanidine (10 mM) into the hemolymph every 12 h. The
AGEs in hemolymph were determined by Western blot analysis with anti-AGE antibody. Hemolymph proteins were stained by Coomasie Brilliant Blue
R-250. n = 3–4 per group. Top, immunoblots of AGEs. Middle, Coomasie Brilliant Blue staining. Bottom, calculations of relative band intensity. Bottom
data are shown as means 6 SD. (B–D) Body size (B, C) and body weight (D) were measured. n = 8–10 per group. Bar represents mean. In all panels, the
statistical significance of the difference was evaluated using Student’s t test.
doi:10.1371/journal.pone.0018292.g007
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Hatched larvae were reared to the fifth instar on an artificial diet,

SilkMate 2S, which contains antibiotics (Nosan Corporation), at

27uC. All experiments were performed using fifth-instar male

larvae (0.9–1.0 g) fasted overnight during the fourth ecdysis, unless

otherwise mentioned.

The glucose diet was prepared by mixing Silkmate 2S and D-

glucose at the amounts indicated as the percentage of glucose in

the total diet.

Injection experiments were performed as follows[24]. Sample

solution (50 ml) was injected into the hemolymph at the second

abdominal segment of the larva. Syringes (1 ml) and needles

(27G63/4) were purchased from Terumo.

Sugar quantification
Hemolymph (20 ml) was collected from the larva through a cut

on the first proleg ands mixed with 9 volumes of 0.6N perchloric

acid. Precipitated proteins were removed by centrifugation at

3000 rpm for 10 min at 4uC. The supernatant (hemolymph

extract) was diluted with the appropriate volume of distilled water

for sugar quantification.

Total sugar in the hemolymph was determined using the

phenol-sulfuric acid (PSA) method[25]. Hemolymph extract

(100 ml) was mixed vigorously with 100 ml of 5% phenol aqueous

solution, followed by vigorous mixing with 500 ml sulfuric acid,

incubation at room temperature for 20 min, and absorbance at

490 nm was measured. Serially diluted glucose solution was used

as a standard.

Glucose in the hemolymph was determined using the glucose

oxidase method. Hemolymph extract (20 ml) was mixed with

400 ml of reaction solution (0.12 M sodium-phosphate buffer

[pH 7.4] containing 4 U/ml glucose oxidase, 3 U/ml peroxidase,

and 9 mM o-dianisidine), followed by vigorous mixing with 100 ml

of 70% sulfuric acid solution, incubation at room temperature for

40 min, and absorbance at 530 nm was measured. Serially diluted

glucose solution was used as a standard.

The fat body, isolated from the dorsolateral region of the larva,

was rinsed in insect saline (130 mM NaCl, 5 mM KCl, and 1 mM

CaCl2), and weighed. The fat body (1,10 mg) was lysed in 50 ml

of 30% KOH with heating at 90uC for 10 min. Distilled water

(150 ml) and ethanol (300 ml; final 60%) were added and the

mixture was incubated at 90uC for 10 min. The samples were

incubated at 4uC overnight and centrifuged at 15,000 rpm for

3 min. The precipitate was dissolved in distilled water to give a

concentration of 50,100 mg fat body/ml by heating at 90uC for

10 min. The resulting fat body extract was used for sugar

quantification by the PSA method. The amount of sugar in

1 mg of fat body was calculated.

Chemicals
Recombinant human insulin was purchased from Wako and

dissolved in 0.9% NaCl containing 0.1% acetic acid. Wortmannin

was purchased from Calbiochem. AICAR was purchased from

Toronto Research Chemicals Inc. Jiou was purchased from Uchida

Wakanyaku. D-Glucose was purchased from Nacalai Tesque. D-

galactose, D-mannose, and D-talose were purchased from Wako.

In vitro fat body sugar uptake assay
The fat body (wet weight 2,10 mg) was isolated from the

dorsolateral region of the larva, rinsed in insect saline, and

cultured in 200 ml Grace’s insect medium supplemented with 1%

glucose and antibiotics (penicillin and streptomycin) at 27uC for

30 min. Test sample solution (50 ml) was added to the culture

medium, and the fat body was cultured and lysed and then the

amount of sugar was determined using the PSA method.

Immunoblot analysis
The fat body (wet weight 1,10 mg) was isolated from the

dorsolateral region of the larva, rinsed in insect saline, and

cultured in 200 ml Grace’s insect medium supplemented with 1%

glucose and antibiotics (penicillin and streptomycin) at 27uC for

30 min with or without wortmannin. Test sample solution (50 ml)

was added to culture medium and the fat body was cultured and

then transferred to NP-40 lysis buffer (10 mM Tris/HCl [pH 7.5],

150 mM NaCl, 0.5 mM EDTA, 1 mM dithiothreitol, 1% NP-40,

10 mM NaF, and 1 mM Na3VO4) and lysed by sonication. The

samples were centrifuged at 15,000 rpm for 3 min and proteins in

supernatants were precipitated by trichloroacetic acid followed by

centrifugation at 15,000 rpm for 15 min. The precipitates were

washed twice with ice-cold ethanol, dissolved in a buffer with

sodium dodecyl sulfate, heat-treated, and electrophoresed in a

12.5% polyacrylamide gel according to the method of

Laemmli[26]. Proteins in the gel were electroblotted onto a

polyvinylidene difluoride membrane (Millipore), probed with

antibody, and detected using Western Lightning (Perkin-Elmer

Life Sciences). The following antibodies were used for immunoblot

analysis: rabbit polyclonal antibodies to total Akt, phosphorylated

Akt, total AMPK, phosphorylated AMPK, Na, K-ATPase from

Cell Signaling Technology, GLUT2 from ALPHA DIAGNOS-

TIC; and mouse polyclonal antibody to AGEs from Cosmo Bio

Co., LTD.

Figure 8. Identification of galactose as a hypoglycemic compound using the hyperglycemic silkworm model. (A) Preparation protocol
for the jiou extract. (B) Silkworms were fed a 10% (w/w) glucose diet for 60 min. 50 ml of Jiou extract (1 mg/ml) or human insulin (3.5 mg/ml) was
injected into the hemolymph of the hyperglycemic silkworms. The silkworms were fasted for 6 h and the sugar level in the hemolymph was
determined. n = 6–7 per group. Data are shown as means 6 SD. (C, D) The jiou extract was treated with TFA, and analyzed by TLC. Sugars were
localized with 10% sulfuric acid solution. (E) Silkworms were fed a 10% (w/w) glucose diet for 60 min. 50 ml of D-Galactose (Gal), D-glucose (Glu), D-
talose (Tal), D-mannose (Man), (1 mg/ml) or human insulin (3.5 mg/ml) was injected into the hemolymph of hyperglycemic silkworms. Silkworms
were fasted for 6 h and sugar level in the hemolymph was determined. n = 6 per group. (F) Structure of sugar is shown by Fischer projection in the
panel. Numbers shown on the left indicate the carbon positions of the sugar. Red hydroxyl group indicates the positions that differ from D-galactose.
Activity represents the hypoglycemic effect. Data are shown as means 6 SD. NS; not significant. (G) Galactose (10 mg/ml, 0.5 ml i.p.) was injected to
streptozotocin induced-diabetic mice, and blood glucose level was determined after 4 h of fasting. Blood glucose levels in streptozotocin-induced
hyperglycemic mice were measured (blood glucose 250–400 mg/dl) and then the mice were treated with either PBS or galactose solution. Four hours
after administration and the removal of diet, the blood glucose levels were measured again. The data represent the blood glucose value after
treatment divided by the blood glucose value before treatment of individual animals. In all panels, the statistical significance of the difference was
evaluated using Student’s t test. (H) Blood glucose levels in streptozotocin-induced hyperglycemic mice were measured (blood glucose 250–400 mg/
dl) and then the mice were treated with either PBS, galactose (200 mg/kg mouse, i.p.), or glucose (200 mg/kg mouse, i.p.) solution. Two hours after
administration and removal of the diet, the mice were killed and the membrane fraction in mouse liver was isolated. GLUT2 and Na, K-ATPase were
detected by Western blot analysis with anti-GLUT2 antibody or anti-Na, K-ATPase antibody. Immunoblots of GLUT2 and Na, K-ATPase (Top) and
calculations of relative GLUT2 (Bottom). n = 3–4 per group. Data at the bottom of the figure are shown as means 6 SD. In all panels, the statistical
significance of the difference was evaluated using Student’s t test.
doi:10.1371/journal.pone.0018292.g008
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For immunoblot analysis of hemolymph AGEs, silkworms were

fed a normal diet or a 10% (w/w) glucose diet for 4 days.

Aminoguanidine was injected into the hemolymph of the

silkworms at 12-h intervals. The AGEs in hemolymph were

detected by immunoblot analysis using anti-AGEs antibody and

proteins were stained with Coomassie brilliant blue.

For immunoblot analysis of GLUT2 in mouse liver, the mouse

liver membrane fraction was prepared as follows. Approximately

10 mg of mouse liver was harvested and cut into small pieces using

scissors in Tris B (10 mM Tris/HCl (pH 7.4), 10 mM NaCl,

1.5 mM MgCl2) then centrifuged at 3300 rpm for 10 min. The

supernatant was collected as liver extract. The extract was further

centrifuged at 45,000 rpm for 1 h, and the resulting precipitate

was dissolved by adding 50 ml of 1 M Tris base and used as the

membrane fraction. GLUT2 and Na, K-ATPase in the membrane

fraction of mouse liver were detected by immunoblot analysis

using anti-GLUT2 and anti-Na, K-ATPase antibody.

Quantification of the amount of phosphorylated Akt or

phosphorylated AMPK or GLUT2 was performed by densitometric

scanning with Image Gauge software. The relative amount of

phosphorylated Akt or phosphorylated AMPK or GLUT2 on total

Akt or total AMPK or Na, K-ATPase was determined. The amount

of AGEs was normalized to the lysate protein concentration.

TLC analysis
Jiou extract (0.4 mg) was mixed with TFA solution (final 2 M)

and incubated at 96uC for 2 h. The sample was dried by

evaporation and dissolved in 50 ml water. The sample (5 ml) was

spotted on a silica gel plate (Silica gel 60F254, Merck) and

developed with a propanol solution (1-propanol:water = 85:15).

The plate was sprayed with 10% sulfuric acid solution (sulfuric

acid:ethanol = 10:90) and heated to detect the spots.

Streptozotocin-induced diabetic mouse
Mature male C57BL6/J mice (8 weeks of age) were purchased

from SLC. Diabetes was induced by a single intraperitoneal

injection of streptozotocin (150 mg/kg)[27]. Blood samples were

collected from the tail vein 4–7 days after injection of

streptozotocin and the blood glucose concentration was deter-

mined using a glucometer (Accu-Chek Aviva, Roche). Mice with a

blood glucose level of 250 to 450 mg/dl were used to evaluate the

hypoglycemic effects of test samples.

Ethics Statement
All mouse protocols followed the Regulations for Animal Care

and Use of the University of Tokyo and were approved by the

Animal Use Committee at the Graduate School of Pharmaceutical

Science at the University of Tokyo (approval number: P21-12).

Statistical Analysis
Data are shown as means 6 SD. Statistical significance between

groups was evaluated using a two-tailed Student’s t test. A p-value

of less than 0.05 was considered statistically significant.

Supporting Information

Figure S1 Schematic illustration of the strategy for
screening anti-diabetic agents using silkworms.
(TIF)

Figure S2 Increased hemolymph sugar levels in silk-
worms fed a normal diet followed by a decrease in
hemolymph sugar levels induced by subsequent fasting.
Silkworms were fed a normal diet for 24 h (shown in gray), then

fasted. The hemolymph sugar level of silkworms before feeding, 12

or 24 h after feeding, or fasted for 12 or 24 h was determined.

n = 5 per group. Data represents means 6 SD.

(TIF)

Figure S3 Growth inhibition by feeding a high glucose
diet in male silkworms. (A–D) Male silkworms were fed a

normal diet (N.D.), a 5%, 10%, 15%, 30% (w/w) glucose diet

(G.D.), or fasted for 3 days. Body size (A, B), body weight (C), and

sugar level in hemolymph (D) were determined. n = 7–10 per

group. Data represents mean6SD. *p,0.0001 versus saline

injected silkworms fed a normal diet (N.D.).

(TIF)

Figure S4 Decrease in total sugar in hemolymph after
injection of human insulin. (A) Silkworms were fed a 10% (w/

w) glucose diet (G.D.) for 60 min (indicated by gray background)

then fasted. 50 ml of human insulin (2 mg/ml) was injected into

the hemolymph of the hyperglycemic silkworms, and hemolymph

sugar levels were measured 0, 1, 3, and 6 h after injection. n = 5–7

per group. Data represents mean 6 standard deviation. *p,0.05

versus saline injected silkworms fed a glucose diet (G.D.). (B)

Silkworms were fed a 10% (w/w) glucose diet for 60 min. After

cessation of the diet, serially diluted human insulin (0.005–0.5 mg/

g larva) was injected into the hemolymph of the hyperglycemic

silkworms. Hemolymph sugar levels were measured 6 h after

injection. n = 8–10 per group.

(TIF)

Figure S5 Stimulation of AMPK phosphorylation in the
fat body by AICAR. Isolated fat bodies from silkworm were

cultured with AICAR (final conc. 0.8 mg/ml) in Grace’s insect

medium for 0, 60, or 120 min. Fat bodies were homogenized and

extracts were prepared. Total AMPK and phosphorylated AMPK

were detected by immunoblot analysis.

(TIF)

Figure S6 Effect of glucose concentration in the culture
medium on total sugar in the fat body. Isolated fat body

from silkworms was cultured in Grace’s insect medium containing

0%, 0.5%, 1.0%, or 2.5% glucose for 3 h, and the amount of sugar

in the fat body was measured.

(TIF)

Figure S7 Effect of a high fat diet in silkworms. (A–C)

Silkworms were fed a normal diet (N.D.); a 7.5%, 15%, or 30%

(w/w) olive oil-containing diet; or a 7.5% or 15% (w/w) oleic acid

containing diet for 1 day. Sugar levels in the hemolymph (A), body

weight (B), and food intake (C) were determined. n = 5 per group.

Data represents mean6SD. The statistical significance of the

difference was evaluated using Student’s t test. p: P value versus

silkworms fed a normal diet (N.D.).

(TIF)
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