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Summary
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder which is most
often diagnosed in childhood with symptoms often persisting into adulthood. Elevated rates of
substance use disorders have been evidenced among those with ADHD, but recent research
focusing on the relationship between subtypes of ADHD and specific drugs is inconsistent. We
propose a latent transition model (LTM) to guide our understanding of how drug use progresses,
in particular marijuana use, while accounting for the measurement error that is often found in self-
reported substance use data. We extend the LTM to include a latent class predictor to represent
empirically derived ADHD subtypes that do not rely on meeting specific diagnostic criteria. We
begin by fitting two separate latent class analysis (LCA) models by using second-order estimating
equations: a longitudinal LCA model to define stages of marijuana use, and a cross-sectional LCA
model to define ADHD subtypes. The LTM model parameters describing the probability of
transitioning between the LCA-defined stages of marijuana use and the influence of the LCA-
defined ADHD subtypes on these transition rates are then estimated by using a set of first-order
estimating equations given the LCA parameter estimates. A robust estimate of the LTM parameter
variance that accounts for the variation due to the estimation of the two sets of LCA parameters is
proposed. Solving three sets of estimating equations enables us to determine the underlying latent
class structures independently of the model for the transition rates and simplifying assumptions
about the correlation structure at each stage reduces the computational complexity.
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1. Introduction
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder which is
most often diagnosed in childhood and characterized by symptoms of inattention,
hyperactivity and impulsiveness. It is estimated that 3–7% of school-aged youth in the USA
have ADHD (American Psychiatric Association, 2000) and 1–5% in Europe (Swanson et al.,
1998; Polanczyk et al., 2007). Many children with ADHD experience behavioural and
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psychosocial difficulties. In particular, high rates of substance use disorders have been
evidenced in studies of adolescents who were diagnosed with ADHD in childhood (Barkley
et al., 1990; Levin and Kleber, 1995). Whereas early studies focused on global assessments
of substance use, more recent work suggests that individuals with ADHD might be at risk
for using specific drugs; however, the results are not consistent. Molina and Pelham (2003)
found that, although ADHD adolescents were more likely than controls to report alcohol-
related problems, they were not more likely to use alcohol, cigarettes or marijuana. In
contrast, others have found increased rates of nicotine dependence, regular cannabis
smoking and daily smoking but not alcohol use or dependence among adolescents with
ADHD (Galera et al., 2005, 2008; Biederman et al., 2006). Just as there has been an
increased focus on specific drugs and ADHD, researchers are beginning to look at the
relationship between specific symptoms or subtypes of ADHD and substance use. Currently
three ADHD subtypes are recognized in American Psychiatric Association (2000);
predominantly inattentive, predominantly hyperactive–impulsive and a combined subtype.
Inattentiveness symptoms have been shown to be associated with marijuana and nicotine
dependence (Abrantes et al., 2005), tobacco use (Burke, et al., 2001) and frequency of
alcohol, marijuana and tobacco use (Molina and Pelham, 2003). Symptoms of hyperactivity
and impulsiveness have been shown to be associated with alcohol use (Burke et al., 2001),
illicit drug use (Molina and Pelham, 2003), earlier age of initiation of substance use (Molina
and Pelham, 2003; Elkins et al., 2007) and marijuana and nicotine dependence (Elkins et al.,
2007).

In this paper, we propose to use a latent transition model (LTM) to study stage sequential
transitions in use of marijuana through the high school years and to examine the influence of
ADHD subtypes on these transitions. The transition concept, which was introduced in the
1990s, depicts drug involvement as a sequence of transitions from earliest opportunities to
use a drug, to first use and consequences, followed by the drug dependence syndrome
(Stenbacka et al., 1993; Anthony and Helzer, 1995). Within this framework it has been
suggested that determinants of transitions across stages of drug involvement may be
different (Clayton, 1992; Anthony and Helzer, 1995). This may explain the inconsistent
findings regarding the relationship between drug use and ADHD. For example, ADHD may
influence drug use initiation differently from how it does for more serious drug involvement.
In addition to positing drug use as a stage sequential process with the potential for different
influences at each stage, LTMs offer two additional advantages. First, LTMs are an
empirically based procedure that allows the data to guide our understanding of how drug use
progresses by creating homogeneous groups of individuals with similar drug use profiles.
Secondly, LTMs account for the measurement error that is often found in self-reported
substance use data (Harrison and Hughes, 1997; Golub et al., 2000) by assuming that each
response is an imperfect measure of drug use.

The current study extends the LTM of Reboussin et al. (1999) by incorporating a latent class
predictor to represent ADHD subtypes. This is appealing because data that are based on
clinic-based samples have demonstrated higher rates of the combined subtype (Lahey et al.,
1994; Faraone et al., 1998) whereas population-based studies have had mixed results with
some suggesting that the inattentive subtype is the most prevalent (Gaub and Carlson, 1997;
Froehlich et al., 2007) and others the combined type (Angold et al., 2002; Ford et al., 2003).
In addition, we know that using different diagnostic criteria (e.g. those of American
Psychiatric Association (2000) and version 10 of the international classification of diseases)
results in different ADHD prevalence estimates (Swanson et al., 1997; Polanczyk et al.,
2007). Therefore, rather than rely on specific diagnostic criteria to define ADHD subtypes,
we use latent class analysis (LCA) to identify empirically subgroups of individuals in an
urban sample of high school students with similar profiles of inattentive, hyperactive and
impulsive behaviours. Parameter estimation involves an estimating equations analogue of
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the pseudolikelihood method for estimation of the parameters of interest, namely the
transition model parameters. We begin by fitting two separate LCA models by using second-
order estimating equations:

a. a longitudinal LCA model to define stages of marijuana use, which is hereafter
referred to as the latent stage model, and

b. a cross-sectional LCA model to define the ADHD subtypes.

The LTM model parameters describing the probability of transitioning between the LCA-
defined stages of marijuana use and the influence of the LCA-defined ADHD subtypes on
these transition rates are then estimated by using a set of first-order estimating equations
given the LCA model parameter estimates. A robust estimate of the LTM parameter
variance that accounts for the variation due to the estimation of the two sets of LCA
parameters is proposed. By solving three separate estimating equations that only require
specification of first and second moments and that allow us to make simplifying
assumptions about the correlation structure at each stage, computational complexity is
significantly reduced.

2. Latent transition model with latent class predictor
2.1. The latent stage model of drug use

Let yit = (yi1t, …, yipt), t = 1, …, T, be a vector of binary responses regarding drug use
behaviours for individual i at time t where yijt = 1 if the response to behaviour j at time t is
‘yes’ and yijt = 0 otherwise. We refer to yit as the drug use behaviour profile at time t. We
assume that the co-occurrence of the behaviours comprising the drug use profile yit can be
explained by an underlying classification of individuals into subgroups (classes) with similar
drug use profiles representing stages of drug use. In a statistical sense this means that, within
a stage of drug use, behaviours are independent. This is the axiom of local independence that
forms the basis for LCA. Since latent class membership is not observed without error, this
assumption is not verifiable; however, its adequacy under various class assumptions will be
discussed later. For estimation purposes, we assume there are D latent stages indexed by 1,
…, D. The latent stage of drug use for individual i at time t is denoted by Dit.

Information about the latent stages of drug use are conveyed through two sets of parameters;
the probability of reporting behaviour j at time t within stage m of drug use,

and the proportion of individuals in stage of m of drug use at time t, or the latent class
prevalence,

We shall refer to θ1t = (pt, πt) as the latent stage parameters for time t where θ1 = (θ11, …,
θ1T). The conditional response probabilities pjmt aid in the interpretation of the stages of
drug use by characterizing the behaviour of individuals within a particular stage. Although
in principle it is possible to allow the conditional response probabilities to vary over time,
this implies that the definition of drug use stages is changing, which would substantially
complicate interpretation of the longitudinal model. Therefore, we constrain the conditional
response probabilities to be constant over time, i.e. pjmt = pjm ∀t = 1, …, T. This is
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analogous to constraining the factor loadings to be equal over time in a longitudinal factor
analysis model (which is sometimes referred to as factor invariance). To restrict the
conditional response probabilities to the admissible interval, a logistic representation was
used, pjm = exp(ζjm)/{1 + exp(ζjm)}. Consistent with the longitudinal framework, the
proportion of individuals in each drug use stage πmt is allowed to vary over time.

2.2. The latent class attention deficit hyperactivity disorder predictor model
Let zi = (zi1, …, zir) be a vector of responses regarding ADHD symptoms measured before
the drug use behaviours for individual i where ziu = 1 if ADHD symptom u is present and ziu
= 0 otherwise. We refer to zi as the ADHD symptom profile for individual i. We assume that
the co-occurrence of the ADHD symptoms can be explained by an underlying classification
of individuals into subgroups (classes) with similar symptom profiles representing ADHD
subtypes. For estimation purposes, we assume that there are A subtypes indexed by 1, …, A.
The latent ADHD subtype for individual i is denoted by Ai. Similarly to the latent stage
model, information about ADHD subtypes is conveyed through two sets of parameters; the
probability of reporting ADHD symptom u for individuals with ADHD subtype l,

and the proportion of individuals with ADHD subtype l,

We refer to θ2 = (p*, π*) as the ADHD measurement parameters. Similarly to the latent
stage model in Section 2.1, to restrict the conditional response probabilities to the admissible
interval, a logistic representation was used, .

2.3. The latent transition model
Scientific interest focuses on changes in stages of drug use over time and the influence of
ADHD subtypes on these transitions. This makes the modelling of transition probabilities τit
(k, m) = P(Dit = m|Di,t−1 = k) as a function of predictors natural. We begin by considering
the first-order transition model of Reboussin et al. (1999) where the transition probabilities
are modelled as a function of observed covariates xit, discrete or continuous and possibly
time dependent:

(1)

where t = 2, …, T, m = 2, …, D, k = 1, …, D, β1m = 0 and Ψ1m = 0. Model (1) is a
multinomial logistic regression model. The probability that an individual transitions from
stage Di,t−1 = k at time t − 1 to stage Dit = m at time t given covariates xit is represented by
the logistic function:

(2)
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The parameter αm in model (1) is the log-odds of transitioning from stage Di,t−1 = 1 (e.g. no
drug use) at time t − 1 to stage Dit = m at time t relative to remaining in stage 1 at time t
given xit = 0. The log-odds of transitioning from stage Di,t−1 = k at time t − 1 to stage Dit =
m at time t relative to remaining in stage k at time t when k ≠ 1 and m > k is given by αm −
αk + βkm − βkk when xit = 0. If we assume for illustration that there is a single binary variable
xit, then υm is the log-odds-ratio comparing the odds of transitioning from stage 1 to stage m
for xit = 1 versus xit = 0. Similarly, υlm − υlk + ψkm − ψkk is the log-odds-ratio comparing the
odds of transitioning from stage k to stage m for xit = 1 versus xit = 0 when k ≠ 1 and k > m.

We extend model (1) to examine how transition probabilities depend on latent ADHD
subtypes by including an interaction between an individual’s prior latent stage of drug use
Di,t−1 and latent ADHD subtype Ai as shown below:

(3)

where m = 2, …, D, k = 1, …, D, l = 1, …, A, δ1m = 0 and Γlkm = 0 if k = 1 or l = 1. We shall
refer to θ3 = (α, β, ϒ, Ψ, δ, Γ) as the latent transition parameters. The parameter δlm is the
log-odds-ratio comparing the odds of transitioning from stage 1 to stage m for a youth of
ADHD subtype l compared with a youth of ADHD subtype 1. The log-odds-ratio that
compares the odds of transitioning from stage k to stage m where k ≠ 1 and m > k for a youth
of ADHD subtype l compared with a youth of ADHD subtype 1 is given by δlm − δlk + γlkm
− γlkk. This model can be extended further to allow the effect of ADHD subtype on the
transition probabilities to depend on observed covariates xit, e.g. age and gender, by
including an interaction between ADHD subtype and xit and a three-way interaction
between prior stage of drug use, ADHD subtype and xit.

3. Estimation
3.1. Estimation of θ1

Similarly to Reboussin et al. (1999), we propose first to solve a set of estimating equations
U1t (θ1t) for estimating the latent stage parameters θ1t at time t that incorporate information
from both the first- and the second-order moments of the observed drug use profile yit. This
is unlike estimating equations for generalized linear models which only use information in
the first-order moments (Zeger and Liang, 1986). Information in the second-order moments
is necessary for identification of the latent stage model parameters in which the covariance
between responses is of scientific interest.

The estimating equations are formed by equating the observed responses yit and wit = {(yijt
− μijt)(yiht − μiht); j < h = 1, …, p} to their expected values μit = E[yit] and σit = E[wit]. The

first-order moments are given by . Under the assumption of
conditional independence, the second-order moments are now

The estimating equations are weighted by the matrix Cit of first-order derivatives of the first
two moments with respect to the set of parameters θ1t and a working p(p + 1)/2 × p(p + 1)/2
covariance matrix Rit of yit and wit. The covariance matrix is referred to as working because,
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as demonstrated by Liang et al. (1992), parameter estimates and standard errors remain
consistent even if the covariance is misspecified.

The proposed second-order estimating equations are then

(4)

The solution of the estimating equations (4) can occur simultaneously for all t, t = 1, …, T,
assuming independence between time periods. The cross-products of indicators at adjacent
time points, e.g. yijt yih,t−1, are not included since they contain the same information as the
first moments in the estimating equations for θ3. Cross-products of indicators that are more
than 1 unit apart in time are also not incorporated owing to the computational burden. It is
reasonable to assume that the indicators at time t provide most of the information about the
latent stage variable Dit. Failure to incorporate cross-products of indicators that are more
than 1 unit apart in time results in potential loss of efficiency in parameter estimation but no
risk of bias. To avoid higher order moment specifications, we assume that cov(yit wit) = 0
and cov(wit) is diagonal. These estimating equations are solved simultaneously for θ1t, t = 1,
…, T, by using a Newton–Raphson iterative procedure. A robust variance estimator of θ ̂1
that is consistent even when the working covariance matrix of yi and wi is misspecified is
given in Appendix A.

3.2. Estimation of θ2
The ADHD measurement parameters θ2 are estimated by solving a set of estimating
equations U2(θ2) similar to the estimating equations (4) that incorporate information from
both the first- and the second-order moments of the observed ADHD symptom profile zi.
Unlike equations (4), we consider the ADHD symptom profile at a single time point. The
estimating equations are formed by equating the observed responses zi and

 to their expected values  and . The

first-order moments are given by . Under the assumption of
conditional independence, the second-order moments are given by

The estimating equations are weighted by the matrix Ei of first-order derivatives of the first
two moments with respect to the set of parameters θ2 and a working r(r + 1)/2 × r(r + 1)/2
covariance matrix  of zi and . The proposed second-order estimating equations

(5)

are solved for θ2 by using a Newton–Raphson iterative procedure. Similarly to the
estimation of θ1, we avoid higher order moment specifications by assuming that 
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and  is diagonal. A robust variance estimator of θ ̂2 that is consistent even when the
working covariance matrix of zi and  is misspecified is given in Appendix B.

3.3. Estimation of θ3
We propose to solve the following set of first-order estimating equations (Liang and Zeger,
1986; Zeger and Liang, 1986) for the latent transition parameters θ3 similarly to Reboussin
et al. (1999),

(6)

where , ηi = (ηi2, …, ηiT), ηit = E[yit|yi,t−1, xit, zi; θ3, θ ̂1, θ ̂2], θ ̂1 is a √N-
consistent estimator of the latent stage parameters θ1 discussed in Section 3.1 and θ ̂2 is a √N-
consistent estimator of the ADHD measurement parameters θ2 discussed in Section 3.2. The
matrix Bi is a matrix of first-order derivatives of the first conditional moments with respect
to θ3.

Assuming that the covariates xit and ADHD symptom profile zi are only included because of
their expected association with the transition probabilities, the first conditional moment of
yijt given yi,t−1, xit and zi can be expressed as

where

and

We refer to the matrix Vi as a working covariance matrix. Let Vit = cov(yit|yi,t−1, xit, zi) be
the working covariance matrix for the indicators at the tth time point. To simplify
calculations, we assume that Vi = diag(Vi2, …, ViT) so that cov(yit, yit′|yi,t−1, yi,t′−1, xit, xit′,
zi) = 0 ∀t ≠ t′. If the random process {yit, t = 1, …, T} is a first-order Markov chain this
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assumption is met. The (j, h)-element of Vit is given by Vit (j, h) = E[yijt yiht|yi,t−1, xit, zi] −
ηijt ηiht where

The generalized estimating equations (GEEs) (6) are not explicitly solvable for θ ̂3 so an

iterative approach is necessary for parameter estimation. Starting with an initial estimate ,
equation (6) can be solved by using the following Newton–Raphson iterative scheme:

where  and f denotes the estimate at
the f th iteration.

Following the work of Zeger and Liang (1986) and Liang and Zeger (1986), the GEEs (6)
yield consistent and asymptotically multivariate normal estimates of θ3 as long as the first
conditional moment ηi is correctly specified. The covariance of  need not be correctly
specified. If θ ̂1 and θ ̂2 are √N-consistent estimators of θ1 and θ2 respectively, this approach
can be considered an estimating function analogue of the pseudolikelihood method for the
parameters of interest θ3 (Gong and Samaniego, 1981). If the covariance of  is correctly
specified and θ1 and θ2 are known, a model-based consistent estimator of the asymptotic
covariance of θ ̂3 is

(7)

where θ3 is replaced by θ ̂3. A robust estimator of the variance of θ ̂3 which accounts for the
variation due to the estimation of θ1 and θ2 and which remains consistent even when the
covariance of  is misspecified is given in Appendix C.

4. Use of marijuana and attention deficit hyperactivity disorder subtype
example

Our application concerns a sample of 495 high school students who participated in a
randomized school-based, preventive intervention trial which targeted early learning and
aggressive or disruptive behaviour in the first grade in nine schools in Baltimore, Maryland,
USA (Ialongo et al., 1999). In 1993, 799 urban first-graders were recruited from 27
classrooms in nine Baltimore city public elementary schools. Students and their families
were interviewed annually, although no assessments were conducted in the fourth and fifth
grades. Beginning in the sixth grade, parental consent was obtained to participate in middle
and high school assessments in which youths would be asked about their experiences with
drugs. Of the original 799 adolescents who were recruited in the first grade, 495 (85%)
completed face-to-face interviews in the eighth grade that included questions about
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inattentive, hyperactive and impulsive behaviours and questions about use of marijuana in
the ninth and 10th grades. These 495 youths comprised the sample of interest for studying
transitions in high school use of marijuana. Approximately 55% of the sample were male
and 87% were African American. Because data on use of marijuana were not collected until
the sixth grade, we could not compare the 495 youths participating in this study and the 304
youths from the original sample who were not included in this study on the response
variables. However, t-tests revealed no differences between these groups in terms of the
first-grade behavioural measures of self-reported anxious and depressive symptoms or
teacher ratings of concentration problems, hyperactivity and impulsiveness. The 304 youths
who were not participating in this study had slightly higher scores on the teacher-rated
aggressive–disruptive behaviour scale. The sample of 495 youths with data available in the
ninth and 10th grade decreased to 432 youths in the 11th grade and 415 youths in the 12th
grade. χ2-tests revealed no differences in terms of measures of marijuana use in the ninth
and 10th grades between the 415 youths with complete data and the 80 youths with missing
assessments. These youths also did not differ on first-grade behavioural measures.

We characterized use of marijuana in high school by considering responses to five questions
that were asked in the spring of the ninth, 10th, 11th and 12th grades.

a. Have you used marijuana since this time last year?

b. Did you use marijuana in the last month?

c. How many times have you used marijuana in the past month?

d. Have you ever used marijuana every day or almost every day for 2 or more weeks?

e. During the past 12 months, have you gotten into trouble at home, at school or with
the police because you used marijuana?

For analysis, we dichotomized the third question as three or more times in the past month
versus two or fewer to represent someone who has used marijuana more than just a couple
of times in the past month. The last question combined responses to three individual
questions that were asked during the assessments into a single indicator of social problems.
This was done because of the low individual prevalences and their lack of discriminatory
power.

We first applied the latent stage model of drug use that was described in Section 2.1 to
examine the structure underlying the five behaviours comprising the marijuana use profile.
We started with the most parsimonious one-stage model (‘all marijuana use the same’) with
progression to a less parsimonious model with three stages of marijuana use. Because
models with different numbers of stages (classes) are not nested, precluding the use of a
difference likelihood ratio test, we must rely on measures of fit such as Akaike’s information
criterion (AIC), which is a global fit index which combines goodness of fit and parsimony.
In comparing different sets of models with the same set of data, models with lower values
are preferred. Because the AIC requires a likelihood for model comparison and estimating
equations approaches are non-likelihood based, we used a modified version of the AIC (Pan,
2001; Reboussin et al., 2006, 2008). The AIC suggested a best fitting model based on two
stages of use of marijuana (AIC1=111811; AIC2 =110810; AIC3 =175981). However,
rather than rely solely on global indices of fit like the AIC, we also examined the validity of
the latent stage model assumption of local independence more directly. Specifically, we use
a modified version of Garrett and Zeger’s (2000) log-odds-ratio check that was suggested by
Uebersax (2000). This method involved calculating the log-odds-ratio in both the observed
and the expected two-way tables for all pairs of marijuana use behaviours. The observed
data log-odds-ratio is then expressed as a z-score relative to the expected data log-odds-ratio.
This z-value is then used as a guide to detect items that are locally dependent. Uebersax
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(2000) suggested that the p-values should not be interpreted literally but rather that the focus
should be on the relative magnitude of the z-values. A threshold of ±1.5 was conservatively
chosen as suggestive of local dependence. Under the two-stage model of use of marijuana, z-
values exceeding the threshold provided evidence for violation of the local independence
assumption. The addition of a third stage removed all local dependences.

Although we can always achieve local independence by increasing the number of latent
classes (Suppes and Zanotti, 1981), doing so may yield spurious classes that are not
immediately interpretable to experts in the field. For this reason, we examined the resultant
latent structures to evaluate their interpretability. As displayed in Fig. 1, the two-stage model
divided use of marijuana into ‘no use’ (stage 1) and ‘use’ (stage 2). However, the second
stage is predominantly characterized by past-month users with moderate levels of use
(approximately 80% report past-month use and 60% report using three or more times in the
past month). In contrast, the three-stage model (Fig. 2) creates a stage of use of marijuana
that is characterized by less frequent use. Under the two-stage model infrequent use is
difficult to classify with 15% of those in the ‘no-use’ stage reporting past year use and 20%
of those in the ‘current use’ stage not reporting past-month use. With the three-stage model,
infrequent use becomes an intermediary stage of use of marijuana between no use (stage 1)
and current, more frequent and problematic marijuana use (stage 3). The three-stage model
is consistent with Anthony and Helzer’s (1995) transition concept where an individual might
experiment with a drug once or twice and then over time proceed to a more frequent and
problematic pattern of drug use as opposed to going directly from no use to frequent use.
Since the two-stage model provided the best overall fit on the basis of the AIC but did not
fully explain the heterogeneity in the marijuana use profiles as evidenced by residual local
dependences and because the three-stage model provided a substantively meaningful
description of the progression of use of marijuana, we present results for both the two-stage
and the three-stage models when examining associations with ADHD subtypes. We note that
our stepwise approach has the advantage that the latent structures of marijuana use and
ADHD are determined separately. Hence, the acceptance of a two- or three-stage model of
marijuana use does not influence the choice of the appropriate number of ADHD classes.

Before examining associations with ADHD, we were interested in estimating the overall
probability of transitioning between stages of use of marijuana during the high school years.
Given the estimates of the latent stage parameters from the two- and three-stage models just
described, we fit the LTM (1) where the observed covariate vector xit = (xit1, xit2) contained
two binary indicator variables representing the 10th–11th- and 11th–12th-grade transitions
relative to the 9th–10th-grade transition respectively. Presented in Tables 1 and 2 are the
estimated probabilities of transitioning from one stage of use of marijuana at the current
grade to another stage of use of marijuana in the following grade for the two- and three-
stage models respectively. Both models suggest that there is a greater risk of transitioning
out of the no-use stage during the first 2 years of high school, i.e. 9th–10th grade and 10th–
11th grade compared with 11th–12th grade. The rate of advance based on the two-stage
model was 7.9% from ninth to 10th grade, 6.8% from 10th to 11th grade and 3.3% from
11th to 12th grade. On the basis of the estimated two-stage LTM, youths were significantly
more likely to transition from no use to use during the 9th–10th-grade transition compared
with the 11th–12th-grade transition (odds ratio OR = 4.14; 95% confidence interval CI =
(2.15, 7.96)). Similarly, under the three-stage model, the rate of advance was 16.7% from
ninth to 10th grade, 13.6% from 10th to 11th grade and 10.5% from 11th to 12th grade. The
likelihood of transitioning from no use to infrequent use (stage 2) was 54% greater from
ninth to 10th grade compared with from 11th to 12th grade (OR = 1.54; 95% CI = (0.98,
2.44)). This difference was marginally significant (p = 0.058). Although much less common,
the risk of transitioning from no use to frequent use (stage 3) was almost five times greater
from 10th to 11th grade compared with 11th to 12th grade (OR = 4.72; 95% CI = (1.08,
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20.64)). The 9th–10th-grade transition posed the greatest risk for movement from infrequent
(stage 2) to frequent (stage 3) use of marijuana but these differences were not statistically
significant.

Next, we were interested in the influence of LCA-derived ADHD subtypes on these
transitions in use of marijuana. We considered 11 items from three subscales of the ‘Teacher
observation for classroom adaptation’ interview measuring symptoms of inattention,
hyperactivity and impulsivity in the eighth grade. This is a structured interview with the
teacher administered by a trained assessor (Werthamer-Larsson et al., 1991). Items were
rated on a six-point frequency scale where 1 is almost never, 2 rarely, 3 sometimes, 4 often,
5 very often and 6 always. We dichotomized items so that an individual symptom was
considered present if the teacher reported that it was present often, very often or always and
absent if it was observed sometimes, rarely or almost never. We characterized ADHD
symptom profiles in the eighth grade by considering teachers’ responses to the following
items where items 1–5 are associated with inattention problems, items 6–8 with
hyperactivity and items 9–11 with impulsiveness:

1. trouble completing assignments;

2. difficulty concentrating;

3. easily distracted;

4. cannot stay on task;

5. has difficulty organizing tasks;

6. cannot sit still;

7. is always on the go or acts as if driven by a motor;

8. fidgeted and/or squirmed a lot;

9. cannot wait for turn;

10. interrupts or intrudes on others;

11. blurts out answers before the question is complete.

We applied the latent class ADHD predictor model in Section 2.2 to examine the structure
underlying the ADHD symptom profile that was just described. We started with the most
parsimonious one-class model with progression to a four-class model of ADHD. The AIC
suggested a best-fitting model based on the three classes of ADHD (AIC1 = 63962; AIC2 =
60154; AIC3 = 58902; AIC4 = 59124). A check of the local independence assumption via
the log-odds-ratio residuals for the three-class model indicated that there were no residual
dependences. As stated previously, because statistical analysis may yield models that are not
substantively meaningful despite their optimality based on goodness-of-fit statistics, we also
examined the resultant three-class latent structure of ADHD to evaluate its interpretability.
Under the three-class model that is displayed in Fig. 3, 65% of youths do not have ADHD
on the basis of teacher reports. Approximately a quarter of youths were reported by teachers
to exhibit only symptoms of inattention. The third class of youths, representing 12% of the
sample, were reported to exhibit symptoms of inattention, hyperactivity and impulsiveness.
We refer to this as the combined subtype. Although there was no evidence for a
hyperactive–impulsive subtype in our sample of youth, the inattentive and combined
subtypes were consistent with the diagnostic subtypes that are defined in American
Psychiatric Association (2000).

On the basis of the three-class model of ADHD, we then examined the influence of the
ADHD subtypes on the probability of transitioning between stages of use of marijuana. We

Reboussin and Ialongo Page 11

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2011 March 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



did this by fitting model (3) but included an interaction between grade and the ADHD
subtype and a three-way interaction between prior latent stage, grade and ADHD subtype.
This allowed us to estimate grade-specific influences of ADHD subtypes on transitions. On
the basis of the two-stage model of marijuana use, youths with the inattentive and combined
ADHD subtypes were more likely than youths without ADHD to transition from no use of
marijuana (stage 1) to use of marijuana (stage 2) during high school. These differences were
statistically significant for the inattentive subtype during the 9th–10th- (OR = 2.50; 95% CI
= (1.17, 5.36)) and 10th–11th- (OR = 1.89; 95% CI = (1.07, 3.33)) grade transitions and for
the combined subtype during the 10th–11th- (OR = 2.26; 95% CI = (1.11, 4.57)) and 11th–
12th- (OR = 4.72; 95% CI = (1.35, 16.52)) grade transitions. As indicated by the three-stage
model, this increased risk of transitioning for the ADHD subtypes relative to youths without
ADHD was stage specific. Youths with the combined ADHD subtype were four times more
likely to transition from no use of marijuana to infrequent use during the 10th–11th-grade
transition relative to youths without ADHD (OR = 4.01; 95% CI = (1.57, 10.26)) as seen in
Fig. 4(a). Youths with the inattentive subtype were five times more likely to transition from
no use of marijuana to frequent use (Fig. 4(b)) from 9th to 10th grade compared with youths
without ADHD (OR = 4.90; 95% CI = (1.17, 20.50)). Youths with the inattentive subtype
were also marginally more likely to transition from infrequent to frequent use of marijuana
(Fig. 4(c)) during this same time period compared with youths without ADHD (OR = 8.24;
95% CI = (0.86, 79.06)).

5. Discussion
We presented both an alternative model and a method for examining the relationship
between ADHD and drug use. First, the LTM model of Reboussin et al. (1999) was
extended to incorporate a latent class predictor. Using a multinomial logistic regression
model, the odds to be in the current latent stage of drug use were modelled as a function of
the prior stage, the latent class predictor and their interaction. This allowed us to examine
the effect of empirically derived ADHD subtypes on stage sequential transitions in use of
marijuana over time. The flexibility of this modelling approach also afforded us the ability
to include observed covariates like grade in the model so that transition probabilities could
be different over the course of high school. In addition to the innovative modelling of the
transition probabilities, model development of the underlying latent structures and
estimation occurred in a stepwise fashion. In the first step, the latent stage model of
marijuana use that was described in Section 2.1 was used to create homogeneous groups of
individuals with similar marijuana use profiles. This approach allowed us to examine
empirically the progression of use of marijuana while accounting for the measurement error
that occurs in self-reported substance use data. Although the two-stage model provided the
best overall fit on the basis of global indices of fit, the three-stage model provided a better
explanation of the heterogeneity in the profiles by delineating marijuana use further into
infrequent and frequent use. On the basis of both the two- and the three-stage models of
marijuana use, we then examined the rates of transitioning between stages over time as a
function of grade by using the multinomial logistic regression model (1). Not only could we
estimate the transition probabilities by using this model, but we could also perform inference
on the log-odds-ratios by comparing the odds of transitioning between stages of use of
marijuana relative to remaining in the same stage for different high school transitions (e.g.
ninth to 10th versus 10th to 11th). Interestingly, we found that the movement from ninth to
10th grade and 10th to 11th grade posed the greatest risk of transitioning out of no use of
marijuana compared with 11th to 12th grade.

Next, using the cross-sectional LCA model in Section 2.2, we could derive the ADHD
subtypes independently from the derivation of the marijuana use stages. Rather than rely on
diagnostic criteria for ADHD derived from clinic-based samples, we could explore profiles
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of inattentive, hyperactive and impulsive behaviours in our community-based sample of
youth that might be associated with use of marijuana regardless of whether diagnostic
criteria were met. Using this approach, we found evidence for two subtypes of ADHD that
corresponded well to the diagnostic subgroups: both an inattentive and a combined subtype.
There was not evidence in our sample for a strictly hyperactive–impulsive subtype. Given
the estimates of the latent stage parameters described in Section 2.1 and the ADHD
measurement parameters in Section 2.2, we could estimate the influence of the latent ADHD
subtypes on the rates of transitioning by using the LTM model (3). Although the two-stage
model of use of marijuana found that the two ADHD subtypes had a greater likelihood of
transitioning to use of marijuana compared with youth without ADHD, it could not delineate
between the type of transition, i.e. no use to infrequent use (initiation) and no use or
infrequent use to frequent use (escalation or progression). The richer three-class model
provided evidence that different subtypes had influences at different stages of use of
marijuana. Using this approach, we found that the combined ADHD subtype had a
significantly greater risk of transitioning from no use of marijuana to infrequent (initiation)
use during the 10th–11th-grade transition relative to youths without ADHD. Although our
combined subtype includes symptoms of inattention in addition to symptoms of
hyperactivity and impulsiveness, this finding is generally consistent with Elkins et al. (2007)
who found that the hyperactive–impulsive subtype was associated with initiation of use of
marijuana. Youths with the inattentive subtype were significantly more likely to transition
directly from no use of marijuana to frequent use and marginally more likely to transition
from infrequent to frequent use during the 9th–10th-grade transition relative to those without
ADHD (escalation or progression). These findings were similar to Abrantes et al. (2005),
who found that the inattentive subtype was associated with an increased risk of dependence
on marijuana.

This particular example of high school use of marijuana collected from a sample of students
participating in a randomized school-based intervention trial demonstrated the usefulness of
the LTM approach for modelling stage sequential transitions in behaviour while accounting
for the measurement error that often occurs in self-reported substance use data. The
flexibility of the multinomial logistic regression model for the latent transition parameters
allowed us to incorporate both observed and latent class predictors easily. By including both
grade and latent-class-derived ADHD subtypes, we could fit a combined and more sensitive
model of progression of drug use that did not rely on clinical criteria and was consistent with
the transition concept of Anthony and Helzer (1995) allowing for different influences at
each stage of drug use. We should note, however, that the small sample size and relatively
low prevalence of use of marijuana in our example resulted in some insignificant findings
despite the magnitude of the odds ratios relating the transition probabilities. The results of
simulation studies for the LTM of Reboussin et al. (1999) indicate that the estimating
equations approach has good finite sample properties even with samples as small as 400.
This suggests that the low prevalence of the underlying stages of use of marijuana in our
example in combination with the small sample size may have resulted in an underpowered
study.

Limitations of the study should be noted. As in most longitudinal studies, some of the
original study population was lost to follow-up, i.e. participated in the first-grade
assessments but not the middle and high school assessments. GEE-type estimation
approaches were developed for the analysis of multivariate categorical data when non-
response is classified as missing completely at random. When the missingness depends only
on the observed covariates (which is termed covariate-dependent missingness), GEEs
provide consistent regression parameter estimates (Lipsitz et al., 2000; Preisser et al., 2002).
However, when missingness depends on the observed outcomes as well as covariates (which
is termed missingness at random), GEEs may provide biased results. Although those who
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were lost to follow-up for the middle and high school assessments scored slightly higher on
teacher-rated aggressive–disruptive behaviour, they did not differ on first-grade behavioural
measures of anxiety, depression, concentration problems, hyperactivity or impulsiveness. In
addition, attrition in our sample of 495 in the 11th and 12th grades was not related to use of
marijuana in the ninth and 10th grades or the first-grade behavioural measures.

We also recognize that identifiability is a well-known problem in latent class modelling. For
simple cases, the conditions for latent class parameters to be identified are known. In the
absence of any restrictions, three classes become identifiable when there are four
dichotomous variables (Lazarsfeld and Henry, 1968; McHugh, 1956). Conditions for model
identifiability become more complex with covariate effects on underlying and measured
variables (see Huang and Bandeen-Roche (2004)). However, an advantage of our three-stage
estimating equations approach is that the latent class structures are determined without
covariates in the first two stages. The latent transition regression model is then fitted given
the latent class model parameters. For the latent stage model of use of marijuana, we have
five binary indicators and fit two- and three-stage models. Although we have longitudinal
data, we constrain the conditional response probabilities to be the same over time. Hence,
within each time point, the latent class model is theoretically identifiable. The cross-
sectional latent class predictor model for ADHD with three classes and 13 indicators is also
theoretically identifiable. Despite the theoretical identifiability of our models, the model
may not be empirically identifiable given our data. A drawback of the semiparametric GEE
approach is that we cannot check the empirical identifiability of our fitted model by
examining the matrix of second-order partial derivatives of the log-likelihood. We did check
the condition of the matrix of the second-order derivatives of the quasi-score function and it
was non-singular for the three-class models. However, methods for diagnosing model
identifiability for latent class models estimated by using GEEs are needed and should be the
focus of future research.

Perhaps the most important strength of our approach is that it enabled us to determine the
underlying stages of use of marijuana and ADHD subtypes independently of the
multinomial logistic regression model for the transition rates. Separate estimation of the
model parameters by using three sets of estimating equations reduced the complexity that
was introduced by the longitudinal nature of the data and the extension to the incorporation
of a latent class predictor. Compared with a full likelihood approach, estimation of model
parameters and standard errors was made less problematic by virtue of simplifying
assumptions to the working covariance matrix at each stage of estimation. Although a
possible loss of efficiency associated with making these simplifying assumptions (and
possibly an explanation for some of the insignificant findings) warrants further exploration,
a robust estimate of the LTM parameter variance that accounted for the variation due to the
estimation of the latent stage and latent class parameter estimates was easily obtained. This
made inference on the latent transition odds ratios possible under the stagewise estimating
equation approach whereas estimation of standard errors in likelihood-based approaches is
problematic, so standard errors are often not reported.

Finally, latent transition analysis is an attractive approach for modelling the evolution of
stage sequential developmental processes. Not only does it allow the data to guide our
understanding of how these processes unfold but also it accounts for the measurement error
that is often found in self-report data. Although much of the application of latent transition
modelling has occurred in the context of substance use, methods for modelling transitions
between health states are important more broadly as are methods allowing for multiple
indicators of health. It is increasingly difficult to quantify health with a single measure
leading to widespread use in public health studies of questionnaires and surveys involving a
series of self-report questions. Although each question on its own is an imperfect measure,
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together the questions may describe variation in a health profile. The extension of these
multiple indicator methods to the predictor variable in the form of a latent class variable is
also important for identifying subgroups of individuals with homogeneous risk profiles.
These combined models have the potential to inform our understanding of the aetiology of
stage sequential developmental processes and to aid in the development of targeted
intervention and prevention programmes that are stage and subgroup specific.
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Appendix A
Consider a first-order Taylor series approximation of U1(θ1) about θ1 = θ ̂1 which results in

where

and U1(θ1) is defined in Section 3.1. Then

where

a. M = diag(K1, …, KT),

b.
 where Ci and Ri are block diagonal matrices with

elements Cit and Rit, t = 1, …, T, and

c. Fi is a vector with elements

A consistent estimator of the asymptotic covariance of θ ̂1 that is robust to misspecification
of the covariance of yi and wi is obtained by replacing θ1 by θ ̂1, and the covariance of yi and
wi by its empirical estimate .

Appendix B
Consider a first-order Taylor series approximation of U2(θ2) about θ2 = θ ̂2 which results in

where U2(θ2) is defined in Section 3.2. Then,
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where

a.
,

b.
 and

c.

A consistent estimator of the asymptotic covariance of θ ̂2 that is robust to misspecification
of the covariance of zi and  is obtained by replacing θ2 by θ ̂2, and the covariance of zi and

 by its empirical estimate .

Appendix C
The variance of the estimate of θ3 is constructed by using two first-order Taylor series
approximations of U3(θ3, θ ̂1, θ ̂2)/√N about

a. θ ̂1= θ1 and θ ̂2= θ2, and

b. θ3 = θ ̂3
given by

(8)

(9)

where L1 = √N(θ ̂1 − θ1) and L2 = √N(θ ̂2 − θ2). On the basis of the approximation in model
(1) and applying the weak law of large numbers, we have that U3(θ3, θ ̂1, θ ̂2)/√N is
asymptotically normally distributed with mean 0 and variance equal to

where
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and U3i(θ3, θ1, θ2) is the contribution of individual i to the estimating equation for θ3. The
covariances of L1, L2 and L3 with each other are based on their first-order Taylor series
approximations so that

where U1i is the contribution of individual i to the estimating equation for θ1 and U2i is the
contribution of individual i to the estimating equation for θ2. Because the estimating
equations for θ1 and θ2 are orthogonal, cov(L1, L2) = 0. Rearranging equation (2), √N(θ ̂3 −
θ3) is asymptotically normally distributed with mean 0 and variance equal to

where A = −E[∂U3(θ3, θ1, θ2)/∂θ3]/N. If we replace the expected by the observed
information and θ3, θ1 and θ2 by their √N-consistent estimates we obtain a consistent
estimate of  after adjusting for the estimation of θ1 and θ2.
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Fig. 1.
Estimated stages of use of marijuana among 9th–12th-grade students on the basis of a latent
two-stage model of use: □, no use, grade-specific latent stage prevalences (92%, 86%, 82%,
86%); ⋄, use, grade-specific latent stage prevalences (8%, 14%, 18%, 14%)
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Fig. 2.
Estimated stages of use of marijuana among 9th–12th-grade students on the basis of a latent
three-stage model of use: □, no use, grade-specific latent stage prevalences (88%, 77%,
75%, 75%); ⋄, infrequent use, grade-specific latent stage prevalences (7%, 16%, 15%, 17%);
▵, frequent use, grade-specific latent stage prevalences (4%, 7%, 10%, 7%)
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Fig. 3.
Estimated subtypes of ADHD among eighth-grade students on the basis of a latent three-
class model of ADHD: □, no ADHD (65%); ⋄, inattentive subtype (23%); ▵, combined
subtype
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Fig. 4.
Estimated probability of transitioning from (a) no use of marijuana to infrequent use, (b) no
use of marijuana to frequent use and (c) infrequent use of marijuana to frequent use: ———,
no ADHD; — —, inattentive subtype; ·······, combined subtype
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