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Abstract
Glial cells in the gut represent the morphological and 
functional equivalent of astrocytes and microglia in the 
central nervous system (CNS). In recent years, the role 
of enteric glial cells (EGCs) has extended from that of 
simple nutritive support for enteric neurons to that of 
being pivotal participants in the regulation of inflamma-
tory events in the gut. Similar to the CNS astrocytes, 
the EGCs physiologically express the S100B protein that 
exerts either trophic or toxic effects depending on its 
concentration in the extracellular milieu. In the CNS, 
S100B overexpression is responsible for the initiation 
of a gliotic reaction by the release of pro-inflammatory 
mediators, which may have a deleterious effect on 
neighboring cells. S100B-mediated pro-inflammatory ef-
fects are not limited to the brain: S100B overexpression 
is associated with the onset and maintenance of inflam-
mation in the human gut too. In this review we describe 

the major features of EGCs and S100B protein occurring 
in intestinal inflammation deriving from such.
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INTRODUCTION
Intestinal tissues are innervated by a complex and exten-
sive component known as the enteric nervous system 
(ENS)[1]. The ENS is characterized by the presence of  
neurons and enteric glial cells (EGCs) which are arranged 
into interconnected ganglia distributed between 2 major 
plexuses, and they control several gut functions[2,3]. Dur-
ing the course of  time, the traditional view of  EGCs has 
changed from being a mere mechanical support for sur-
rounding neurons to that of  a more articulate and com-
plex nature, since they are actively involved in the regula-
tion of  homeostasis, motility and inflammatory processes 
within the gut[4,5].

Similar to the astrocytes in the central nervous system 
(CNS), the EGCs release several signaling molecules[4,5]. 
Among these, great importance has been given to the bet-
ter comprehension of  the specific glial-derived S100B pro-
tein[6-8]. This protein is a small, diffusible neurotrophin that 
is situated in the cytoplasm and/or the nucleus of  both 
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nervous and non-nervous tissues[9,10]. In the brain, S100B 
has been considered a “Janus face” neurotrophin[11,12] be-
cause it exerts opposite actions depending on its concen-
tration in the extracellular milieu: it has a pro-proliferative 
and neurogenic effect on astroglia and on serotonergic 
neurons at nanomolar concentrations, as well as a neuro-
degenerative function[12] at micromolar concentrations, de-
termining mysregulated glial cell proliferation and amplify-
ing neuroinflammation. Similar to the brain, recent studies 
have suggested the involvement of  S100B in inflammatory 
processes occurring in the gut, highlighting the importance 
of  EGCs as key regulators of  gut homeostasis[13-15].

In this review, we will focus on the role of  EGCs and 
the S100B protein and we will take them into consider-
ation by looking at both experimental animal models and 
some human diseases for which evidence exists, and in 
particular their involvement in inflammatory conditions 
of  the human gut where the role of  S100B appears to be 
prominent.

ENTERIC NERVOUS SYSTEM
The gut is characterized by a sequence, starting from the 
serosa, as follows: subserosa, longitudinal muscle, myen-
teric plexus, circular muscle, submucosal plexus, muscula-
ris mucosae and mucosa[2]. The myenteric and submucosal 
plexuses are characterized by the presence of  ganglia 
which, in turn, contain enteric neurons and EGCs in a 
ratio of  1:7[16]. In the ENS, the enteric ganglia are involved 
in basic gut functions, such as the regulation of  peristalsis, 
secretion and blood flow and the modulation of  the im-
mune/inflammatory processes[17-19]. Several neurotrans-
mitters are involved in the control of  all these intestinal 
functions, such as vasoactive intestinal peptide and nitric 
oxide (NO)[20,21]. In particular, NO is produced by the bio-
synthetic enzyme neuronal NO synthase (NOS), which 
is expressed in myenteric neurons, and by the inducible 
form of  NOS (iNOS), which is expressed in EGCs[15].

EGCs: both protective and destructive cells in the gut
EGCs are small cells with a “star-like” appearance[16] con-
taining intracellular arrays of  10 nm filaments made up 
of  glial fibrillary acidic protein (GFAP)[16,22-24]. This cell 
population was first described by Dogiel[25] using methylene 
blue staining on full thickness preparations. At present, the 
S100B protein and GFAP are commonly used as specific 
markers in order to identify EGCs[22,26]. More recently, other 
markers have been proposed for the identification of  glial 
cells in the human gut, especially in whole-mount prepa-
rations: Sox8/9/10, a specific nuclear marker[16]. EGCs 
release a wide range of  factors accounting for the develop-
ment, survival and differentiation of  peripheral neurons[27]. 
Traditionally, EGCs have been considered as a mechanical 
support for enteric neurons, but, in recent years, this re-
strictive view has changed to one of  a more articulate and 
complex nature, since it has been described that EGCs are 
involved in the maintenance of  intestinal homeostasis[28-30]. 
Indeed, EGCs control intestinal epithelial barrier (IEB) 

functions, as demonstrated in animal studies in which the 
ablation of  enteroglial network enhances intestinal vascular 
permeability together with an increase in IEB paracellular 
permeability[31-34]. Furthermore, in vitro data has shown that 
EGCs partially decrease IEB permeability via the release of  
S-nitrosoglutathione and the regulation of  zonulin-1 and 
occludin expression[35,36]. Although the function of  glial 
mediators still have to be identified, it is conceivable that 
they could be actively involved in the EGCs-mediated ef-
fects on barrier functions.

Besides the well documented ‘protective role’, EGCs 
are activated by means of  inflammatory insults and they 
may directly contribute to an inflammatory condition 
working as an antigen presenting cell-type promoting 
a variegate release of  cytokine synthesis[13-15,35-37] in the 
gut milieu. Therefore, EGCs may act as “receptors” for 
cytokines and they themselves produce interleukin-6 
(IL-6) and IL-1b[38,39]. Moreover, ECGs express iNOS and 
L-arginine, the machinery for the time-delayed and micro-
molar release of  NO, one of  the most important signaling 
molecules involved in host-immune defense against virus-
es and bacteria as well as a well-known pro-inflammatory 
mediator[15,40,41].

EGC-SELECTIVELY EXPRESSED 
PROTEINS
GFAP
Mature EGCs are rich in the intermediate filament pro-
tein, GFAP[42,43]. Its expression is modulated by glial cell 
differentiation, inflammation and injury[42], indicating that 
the level of  GFAP accords with the functional state of  
glial cells. 

In animals, two classes of  glial cells can be distin-
guished, namely the GFAP positive (+) and GFAP nega-
tive (-) groups, as demonstrated by von Boyen et al[8]. In 
the same study, it was suggested that pro-inflammatory 
cytokines control GFAP+ enteric glia, which, in turn, are 
involved in the modulation of  the integrity of  the bowel 
during inflammation[8]. 

In humans, GFAP expression is altered in the mu-
cosa of  patients with inflammatory bowel diseases (IBD), 
as well as ulcerative colitis (UC) and Crohn’s disease[33].

S100B protein
S100B belongs to the S100 protein family that includes 
more than 20 EF-hand Ca2+-Zn2+ binding proteins[9,10,44-47]. 
S100B is the homodimer of  β subunit[48]. In the brain, 
S100B in nanomolar concentrations promotes neuronal 
survival, neurite outgrowth[49] and it stimulates astrocytic 
proliferation[50], increasing the intracellular free Ca2+ levels 
in vitro[51]. On the other hand, micromolar amounts of  
S100B protein have been observed in several neuropa-
thologies such as Alzheimer’s disease and Down’s syn-
drome[52,53].

In the human gut, among S100 proteins, only the 
S100B protein is specifically and physiologically expressed 
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by EGCs[13-15], while other members, such as S100A8, 
S100A9 and S100A12 are found in phagocytes and in in-
testinal epithelial cells in patients affected by IBD[54,55].

Recent findings have demonstrated that aberrant ex-
pression and the release of  S100B correlate with the gut 
inflammatory status[13,14]. Interestingly, the search for a 
specific S100B signaling receptor has demonstrated that 
this protein may accumulate at the RAGE (receptor for 
advanced glycation end products) site only in micromolar 
concentrations[14,56-59]. Such interaction leads to mitogen-ac-
tivated protein kinase (MAPK) phosphorylation and con-
sequent nuclear factor-κB (NF-κB) activation[13] which, in 
turn, leads to the transcription of  different cytokines and 
iNOS protein. Thus, S100B can be considered as an easily 
diffusible pro-inflammatory cytokine which gains access to 
the extracellular space especially at immune-inflammatory 
reaction sites in the gut[13-15,60,61].

EGCs AND S100B IN GUT 
INFLAMMATION
In humans, recent and increasing data has demonstrated 
that EGCs and S100B protein are directly involved in gut 
inflammatory diseases[13,14,33]. Previous investigations de-
scribed abnormalities of  the enteroglial network in patients 
with Crohn’s disease and UC[33]. More recently, glial abnor-

malities have been confirmed by 2 separate studies carried 
out by our group[13,14]. In particular, we demonstrated that, 
in patients with celiac disease (CD)[13] and UC[14], EGCs 
participate in the modulation of  mucosal NO production 
via S100B overexpression and release. Indeed, in patients 
with CD, we demonstrated that S100B plays an active role 
in NO-dependent inflammation[13]. In particular, increased 
S100B protein expression and release were observed in 
the duodenal mucosa of  patients with untreated CD, com-
pared to healthy controls (Figure 1A)[13]. Very interestingly, 
S100B upregulation was accompanied by enhanced iNOS 
protein expression and consequent NO release, both rep-
resenting crucial features in CD[62].

The relationship between S100B and NO production 
was confirmed by the demonstration that the administra-
tion of  exogenous S100B protein to non-inflamed duo-
denal biopsy specimens from healthy controls, resulted in 
both iNOS protein expression and NO release, indicating 
that micromolar concentrations of  this protein are able to 
participate in the inflammatory response of  even “healthy 
duodenum”[13]. Besides NO production, exogenous S100B 
mediates a significant increase in lipid peroxidation as-
sociated with a marked increase in phosphorylated-p38 
MAPK protein expression and with the activation of  
NF-κB, in accordance with the previously mentioned  
studies[13].

Taken together, these observations represented the 
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Figure 1  Changes in S100B protein expression during intestinal inflammation. A: Celiac disease[13]. Immunohistochemistry shows stronger S100B immunopositivity 
in the duodenal mucosa of patients affected by celiac disease, compared with healthy controls (original magnification, × 100). The graphs represent S100B protein expres-
sion (left) and release (right) in healthy controls and patients with celiac disease (bP < 0.01); B: Ulcerative colitis[14]. Immunohistochemistry shows stronger S100B immu-
nopositivity in the rectal submucosa of patients with ulcerative colitis, compared with healthy controls (original magnification, × 100). The graphs represent S100B protein 
expression (left) and release (right) in healthy controls and patients with ulcerative colitis (dP < 0.01).
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first data in humans suggesting that via S100B upregula-
tion, EGCs directly participate in NO-dependent in-
flammation occurring in CD, and they paved the way 
by supposing that EGCs are part of  complex immuno-
regulatory effectors since they establish a strategic first 
defense line against foreign antigens. By means of  EGC 
proliferation, changes in enteroglial architecture have been 
reported also in patients with IBD[33,63]. Several studies 
have shown that EGC markers are differentially altered in 
Crohn’s disease and UC with a decrease in EGC density in 
Crohn’s disease and a gliosis-like phenomenon in UC[33,63].

In support of  these observations, it has recently been 
confirmed that EGCs directly participate in the chronic 
mucosal inflammation of  patients with UC[14]. In fact, 
S100B immunoreactivity significantly increased in the rectal 
mucosa of  these patients when compared to the mucosal 
S100B expression in healthy controls (Figure 1B)[14]. This 
upregulation was associated with the specific stimulation of  
iNOS and consequent abnormal mucosal NO production, 
both representing characteristic features of  UC[64,65].

In addition, via iNOS expression, exogenous S100B in-
duces a significant and concentration-dependent increase 
in NO production in the human rectal mucosa of  healthy 
controls via RAGE interaction[14], confirming the ability of  
EGCs to modulate NO production and the specificity of  
S100B protein-mediated responses in the human gut.

Further confirming that EGCs are part of  the com-
plex system of  immunoregulatory effectors in the gut, it 
has been shown that the addition of  pro-inflammatory 
stimuli to rectal mucosal tissue led to EGC activation, 
again via RAGE involvement[14] as demonstrated by both 
S100B upregulation and enhanced NO production. These 
findings indicate that EGCs are able to recognize inflam-
matory stimuli and that once activated, they produce and 
release S100B up to micromolar concentrations, thereby 
contributing to NO production in the human gut.

CONCLUSION 
ECGs as a target for new drugs aimed at inflammatory 
gut disorder management
In summary, emerging evidence now indicates that EGCs 
actively participate in the modulation of  inflammatory re-
sponses in the human gut. Targeting their hyperactivation 
in the gut in inflammatory disorders may represent a novel 
approach to diminish tissue damage and to counteract the 
lack of  long-term effectiveness of  classical immunosup-
pressant agents. 

Additional studies investigating the relationship be-
tween EGCs and immune cells are warranted in order to 
carry out an in-depth examination of  the role of  glial cells 
and glia-derived factors in the modulation of  immune/
inflammatory responses in the human gut. Preliminary 
data indicates that EGCs-derived S100B is able to affect 
peripheral blood and intestinal mucosal immune cell re-
sponses via RAGE[66].

The application of  this approach may help the future 
evaluation of  the relationships between EGCs and im-

mune cells in order to better understand the pathophysi-
ology of  intestinal inflammation and to establish new 
therapeutic approaches towards the treatment of  gut 
inflammatory disorders.
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