
Introduction
As the major site of xenobiotic metabolism, the liver plays a central 
role in preventing accumulation of a wide range of compounds 
by converting them into a form suitable for elimination. As the 
process of xenobiotic metabolism requires multiple biochemical 
transformations, and the fact that some intermediates mediate 
toxic responses, the liver is potentially susceptible to injury1 
during the act of performing its function. An improved 
quantitative understanding of the balance between functional 
xenobiotic metabolism and hepatic damage would be of great 
utility in forming guidelines for safe exposure levels in both the 
pharmaceutical and the toxicological contexts. In particular, the 
ability to predict the toxicity profi le of lead candidates2 is critical 
to streamlining pharmaceutical drug development, and a better 
understanding of the onset of liver toxicity is an avenue to realizing 
the “personalized medicine” concept, wherein drugs are selected 
and dosed in accordance with the genetics, active biomarkers, and 
environment of the individual patient.3 Furthermore, improved 
descriptions of the cellular-level pharmacokinetics of xenobiotics 
are needed for integration into whole-body physiologically based 
pharmacokinetic (PBPK) models to improve their accuracy and 
translation potential.

Advances in genomics and molecular and cell biology are 
providing a much improved view of the molecular players 
and pathways involved in xenobiotic metabolism, yet this 
information alone is limited in its translational potential. To fully 
exploit this wealth of information, one needs a framework for 
integrating various forms of data and utilizing them for predictive 
pharmacology.4 Th ese include data on drugs and toxicants, 
including biodistribution profi les in various species or individuals, 
and patient data, including medical and drug history, gene 
amplifi cations and deletions, liver enzyme levels, etc. It is of high 
clinical priority to use these data to make predictions regarding 
human dosing in phase I clinical trials based on preclinical data, 
to refi ne dosing regimens based on human biodistribution data, 
and, ultimately, to stratify and individualize dosing. Furthermore, 
a better understanding of xenobiotic interactions in the liver will 

aid in diagnosing chronic liver disease at an earlier stage, when 
more treatment options are available.

PBPK models provide a framework to integrate, interpret, 
and make predictions regarding the overall host response 
to xenobiotics.5 PBPK modeling is a special approach to 
pharmacokinetics analysis where the physiology and anatomy of 
the human body and the biochemistry of the chemical or chemicals 
of interest are incorporated into a conceptual model for computer 
simulation (Figure 1). In PBPK models, the body is treated as a 
set of compartments with the concentrations of species related 
among them by formal material balance, thus establishing internal 
consistency. Th e rates of metabolism or other processes within 
compartments can be modeled with whatever level of detail available, 
providing fl exibility and the means to incorporate multiple types of 
data. Th us, unlike classical pharmacokinetics, PBPK modeling is a 
powerful tool for many types of extrapolations, including species-
to-species, route-to-route, and dose-to-dose extrapolations. In the 
context of drug development and toxicity predictions, PBPK models 
off er a promising approach toward a mechanistic understanding of 
undesired drug eff ects and present a promising avenue for rational 
drug design and screening with signifi cant translational potential.6–8 
Th erefore, in these integrated host models, the accuracy of the 
representation of the biology as well as the anatomy of the liver is 
a critical issue for their translational success.

Because of the increasing sophistication of PBPK models and, 
in particular, the incorporation of molecular-level information, 
the importance of in vitro experiments is being emphasized more 
heavily.6,7 Such systems allow direct measurement of metabolism in 
hepatocytes, separated from the eff ects of transport, distribution, 
and metabolism by other tissues. Th us, they provide important 
data for the parameterization and validation of PBPK models. 
Th is review summarizes some of the recent developments and 
identifi es critical challenges associated with in vitro and in silico 
representations of the liver and assesses the translational potential 
of these models in the quest of rationalizing the process of 
evaluating drug effi  cacy and toxicity.
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Development of “virtual” (or “in silico”) tissues and organs 
represents a critical step in the continuing advancement of the 
state of the science in physiologically based pharmacokinetic and 
pharmacodynamic (PBPK/PD) modeling. Particular attention 
in such developmental eff orts, undertaken by various research 
groups, has been given to the liver, due to its critical role in 
central metabolism and detoxifi cation and in the synthesis and 
metabolism of hormones and other compounds necessary for 
maintaining critical body functions and its ability to regenerate. 
As the key metabolic organ for degrading xenobiotics (entering 
the body through oral ingestion, inhalation, dermal absorption, or 
injection), the liver oft en shows the earliest signs of injury due to 
pharmaceuticals and environmental chemicals. Understanding and 
quantifying the mechanisms of such injury would allow rational 
assessments of safe dosage levels for humans and characterization 
of interindividual response variability and susceptibility with 
respect to these levels.8,9 Th e ability to simulate hepatic processes 
through comprehensive mechanistic in silico representations of the 
liver—incorporated, as necessary, in relevant whole-body model 
formulations—will substantially aff ect rational tissue engineering 
and personalized medicine and risk assessment and can lead to 
improved strategies for targeted intervention, for reduction of 
animal testing in drug development and environmental chemical 
toxicity assessment, and for more effi  cient clinical testing.

Liver Models
Th e granularity of any model is what controls the accuracy of 
its representation and, to a great extent, its predictions. When 
modeling physiological systems, an oft en invoked assumption is 

that of apparent homogeneity. In other words, all cells comprising 
a tissue are the same; they all experience the same conditions, 
and metabolic processes are indistinguishable across the tissue. 
In fairness, the main reason for this is that the complexity of the 
representation increases dramatically when spatial and functional 
heterogeneities are considered, as has been shown previously.10 
Liver is known to be metabolically zonated,11–17 and so is oft en 
characterized for simplicity in terms of two tissue regions (the 
periportal zone and the perivenous zone) that diff er in enzyme 
activity levels and content (Figure 2). Functions related to central 
metabolism and xenobiotic transformations are aff ected by the 
gradients of oxygen18 and hormones19,20 expressed across the liver 
tissue. Although static cultures of hepatocytes under periportal 
versus perivenous conditions can be used to identify a number 
of changes in gene expression and enzyme activity, the use of 
hepatocyte cell culture analogs to estimate pharmacodynamic 
parameters requires a bioreactor confi guration more akin to the 
in vivo environment. Another assumption is that of “lumped” 
kinetics. Th e metabolic rates are represented through overall 
Michaelis–Menten-type kinetics, with the rate parameters 
(Vmax, Km) usually fi tted from experimental data.

Th erefore, most widely applicable models make two critical 
assumptions, i.e. (i) spatial homogeneity and (ii) apparent 
metabolic rates. However, advances in our ability to visualize 
tissues and successfully model liver physiology,21 recent advances 
in physicochemical modeling that allow the descriptions of 
pathways involving “signals” rather than involving metabolites,22 
as well as recent advances in high-throughput genomic and 
metabolic engineering23 can potentially enable a more detailed 

Figure 1. Typical structure of a generalized PBPK model94 (fi gure adapted and used with kind permission of Springer Science and Business Media).
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representation of the liver as well as of the kinetics of the metabolic 
reactions involved in drug metabolism.

In vitro hepatocyte models
Without a doubt, inherent diffi  culties exist in translating biological 
information from animal studies, and significant effort has 
been invested in analyzing the causes of this disparity.24 Among 
others, animal-to-animal variability has been associated with the 
limitations of such models. As such, researchers have also focused 
on in vitro studies that, while defi ning a far less general model, 
allow for a much tighter control of extraneous conditions and 
limit their potential implications.

Given the critical role of the liver, it comes as no surprise 
that numerous in vitro models have been proposed and have all 
played a critical role in advancing the understanding of hepatic 
metabolism.25 The cell models, slices, and mainly primary 
hepatocyte cultures appear to be the most powerful in vitro 
systems, as liver-specifi c functions and the responsiveness to 
inducers are retained for a few days or several weeks depending 
on culture conditions. Maintenance of phase I and phase II 
xenobiotic-metabolizing enzyme activities allows various chemical 
investigations to be performed, including determination of 
kinetic parameters, metabolic profi ling, interspecies comparison, 
inhibition and induction eff ects, and drug–drug interactions. 
In vitro liver cell models also have various applications in toxicology: 
screening of cytotoxic and genotoxic compounds, evaluation of 
chemoprotective agents, and determination of characteristic liver 
lesions and associated biochemical mechanisms induced by toxic 
compounds.26 Extrapolation of the results to the in vivo situation 
remains a matter of debate;25 however, several studies have shown 
that hepatocye cultures are good models to qualitatively predict 
in vivo metabolic profi les. Such models signifi cantly helped in 
assessing the impact of P450s in xenobiotic metabolism as well 
as in establishing the critical contribution of receptors such as 
aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR) 
and constitutive androstane receptor (CAR) in controlling the 
expression of specifi c Cytochrome P450s (CYPs), such as CYP1A 
(Ahr) and CYP2 and CYP3A (PXR and CAR families).27 In addition 
to transcriptional regulation, transport-mediated uptake and effl  ux 
are also known to impact the transport of relevant regulators and 

hence drive regulation of gene expression. Given the importance of 
such transporters in the pharmacokinetics of xenobiotics, the study 
of such transport processes becomes of critical importance.25 Given 
the close relationship between the metabolizing enzymes and the 
transporters regulating their traffi  cking, it is no surprise that both 
share common nuclear factors.28

Physiological hepatocyte bioreactors
One limitation of traditional in vitro cultures for studying the 
biology of liver function is that they do not capture the physiology 
of liver and instead present an environment of homogeneity 
in the culture. Zonation, the variability in morphology and 
function of hepatocytes with position along the liver sinusoids, 
is a critical concept. Metabolic functions, such as oxidative energy 
metabolism, carbohydrate, lipid, and nitrogen metabolism, 
conjugation, and xenobiotic metabolism, are all known to be 
localized to specialized zones throughout the organ.16,29,30 Oft en, 
complete chemical conversions require successive transformations 
across zones, leading to a net reaction that would not be possible 
in either zone individually, as in ammonia detoxifi cation.12,13,30

Th e intimate relationship between gene expression, enzymatic 
activity, and metabolic function also manifests itself in the impact 
of zonation on the expression of hepatic genes.17,18 Th is spatial 
variability has been shown to play an important role in all of the 
functions of the liver.31 Using in vitro bioreactors that mimic the 
microenvironment of these zones, allowing for subspecialization 
within each zone, off ers a more powerful tool for the investigation 
of hepatic function in the context of xenobiotic metabolism.32 
Quantifi cation of the spatial distribution of gene expression, 
induction of relevant CYPs, activation of transcriptional regulators 
as a function of oxygen availability,33 and xenobiotic concentration 
will substantially improve our fundamental understanding of the 
cellular processes underlying xenobiotic metabolism.

Researchers have explored the possibility of developing 
biomimetic reactors that induce localization through appropriate 
oxygen transport. Most notably, Allen et al.32 coupled an intricate 
experimental design with the solution of the associated reaction–
diff usion equation in order to evaluate oxygen gradients across 
a bioreactor. Th e system was used to evaluate acetaminophen 
toxicity to enable toxicological evaluations. One can envision 
the system being explored to characterize the toxicity eff ects of a 
host of xenobiotic compounds. Despite simplifi cations, this was 
a powerful demonstration of the possibilities of an in vitro system 
that begins to reproduce spatial and temporal inhomogeneities. 
Extension of this concept via miniaturization to make a “liver 
chip” has been receiving ever-increasing recognition from the 
medical community34–38

Particularly fascinating is the “cell culture analog” (CCA) 
introduced by Shuler and coworkers39–42 in order to bridge the 
gap between multicompartment computer models and single-
compartment in vitro cell cultures. PBPKs off er an alternative 
that mimics the potential interactions between tissues and 
chemicals resulting from various dynamic (time-dependent) 
exposure scenarios and provide a potentially rational basis to 
extrapolate across species, particularly to humans. However, the 
large number of parameters, particularly for metabolic processes, 
poses a signifi cant problem because the quality and quantity of 
available data do not readily permit independent estimates of 
parameters. Consequently, most PBPK models either employ an 
empirical description of metabolic functions or a more mechanistic 
description but with a large number of adjustable parameters. A CCA 

Figure 2. Zonation effects.
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system combines the advantages of in vitro and PBPK approaches 
and circumvents many of the limitations associated with either 
in vitro or PBPK systems. For example, the CCA system dosing 
can be done on the same milligram per kilogram basis as used 
in whole animals and PBPKs. Tissues will potentially experience 
the same dynamic (time-dependent) exposure that would occur 
within whole animals. Th e goal in creating a CCA is to make the 
compartments exact analogs of those in a PBPK model so that any 
discrepancy between PBPK prediction and CCA response would 
result from incomplete or incorrect assumptions about biological 
mechanisms or, possibly, from poor estimates of parameters. In 
reality, the accuracy of the CCA will relate to the fi delity with 
which a tissue is captured by the cell culture. Advances in tissue 
engineering are resulting in improved cell cultures; however, 
CCA tissues should be validated for their individual accuracy in 
replicating tissue functions of interest before incorporation into 
a CCA. Nonetheless, an advantage of a CCA over a whole animal 
is the ability to alter the system arbitrarily (e.g., increase the size 
of a compartment or remove a compartment) to test mechanistic 
hypotheses directly.

In silico liver models
Even though in vitro liver models are a promising surrogate 
for the actual organ, they are still cumbersome to work with 
in the sense that lead hypothesis generation needs to be rapid 
and needs to enable the development, testing, and screening of 
multiple “what-if ” types of scenarios, rationalize experimental 
observations, generate a dynamic view of a response, and, in 
general, make quantitative predictions aiming at the development 
of testable hypotheses. As such, there has been signifi cant interest 
in developing in silico representations, that is, computer models, 
of the liver in order to evaluate the implications of the presence of 
xenobiotics in the human body. Major challenges lie in modeling 
both the physiology and the metabolism of liver and, in particular, 
in integrating these two levels. Th e recent paper of Ohno et al.43

presents an excellent example of how such a model can be 
constructed. Blood enters through branches of the portal vein 
and hepatic artery and then fl ows through small channels called 
sinusoids, which are lined, predominantly, with parenchymal 
liver cells (hepatocytes) (Figure 3). Th e hepatocytes remove toxic 
substances from the blood, which subsequently exits the lobule 
through the central vein. Because the concentration of nutrients 
and metabolites along the sinusoid as the blood moves from the 
upper reach (periportal zone) area to the lower reach (perivenous 
zone) area are graded (zonation), it is also expected that the 
metabolic responses along the sinusoid would diff er.

For a particular metabolic 
process of interest, one can construct 
appropriate networks of metabolic 
reactions using available databases of 
metabolic pathways44,45 and identify 
for each reaction relevant metabolic 
enzymes.46–48 Ohno et al. propose 
to simulate the zonation across 
the liver sinusoid by “stacking” a 
number of compartments, each 
of which experiences a stratified 
level of concentration of enzymes 
and thus of metabolic activities 
(Figure 4). Yan et al.49 explore the 
concept of agent-based models 

(ABMs) to treat all elements of the hepatic components as 
interacting entities. Complementary to these activities, researchers 
consider alternative descriptions of liver physiology in order to 
improve the computational aspects of the simulation.21 Successive 
iterations of model building and testing are employed.50

Th e various modeling options encompass a wide range of 
levels of detail with regard to liver physiology. Th e simplest 
formulation involves a single well-mixed compartment, denoted as 
a continuous stirred tank reactor (CSTR), in which the chemical in 
the liver blood is assumed to be in equilibrium with the chemical 
in the tissue, and the concentration of the chemical is assumed 
to be uniform throughout the liver. Th e hepatic microcirculatory 
network provides a high degree of mixing,51 which, in conjunction 
with relatively low concentrations of environmental toxins and 

Figure 3. Structure of the liver’s lobules (taken from http://www.niaaa.nih.
gov/Resources/GraphicsGallery/Liver/lobulep295.htm and Ref. 95).

Figure 4. Multicompartment liver model incorporating the effects of zonation on metabolic reactions (fi gure 
adapted from Ref. 43).
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a slow rate of uptake and metabolism in the liver, justifi es the 
well-mixed assumption. Usually, kinetic parameters of such a 
model are estimated in vitro through liver microsomes or in vivo 
through biomarker data and parameter estimation techniques. 

Th e spatial variations (zonation) within a single compartment can 
also be modeled as a plug fl ow reactor, eff ectively approximated 
as a number of CSTRs in series, in parallel, or in combinations 
of both,52 whereas dispersion models can be used to represent an 

Model type Schematic depiction Assumptions/applicability References

One-compartment models

Well-stirred (CSTR)

Well-mixed (both macro- and micro-
mixing). Uniform metabolic and 
biochemical properties through-out 
the liver.

59,86

Plug fl ow reactor (PFR) Flow is uniform with no mixing, and 
metabolism is fast . 86,87

Dispersion fl ow
Highly nonuniform fl ow patterns; 
incomplete mixing. Uniform chemi-
cal and biochemical properties.

86,87

Distribution-based models

Residence time distribution 
(RTD)-based circulatory 
models

Nonmechanistic study of distribu-
tion of toxicants through residence 
time analysis.

55,56,88

Statistical distribution-based 
model

Representation of heterogeneity 
through a statistical distribution. 
Useful when heterogeneity is due to 
limited set of factors.

85

Stochastic/fractal models
Heterogeneity in the liver modeled 
through stochastic terms or fractal 
descriptions.

55,89,90

Multicompartment models

CSTRs in series

Multiple regions of the liver, with 
each region well mixed. Flow is 
uniform and from one region to the 
next.

52,59,86

Multizonal (multicompart-
mental) model

Multiple regions of the liver with 
different uptake and metabolic 
properties; metabolism occurring in 
deep tissue.

54,59

Back-mixing plus fi xed lag 
times and slow perfused 
sinusoids

Zonal model with signifi cant back 
mixing. 52

Compartmental model with 
cellular compartments

Zonal model with signifi cant back 
mixing, with variation across bulk 
tissue, deep tissue, and cellular 
space.

52,91

Discrete, agent-based models

Agent-based

Bottom-up synthetic, nonmecha-
nistic* description of multilevel 
processes within the liver; computa-
tionally and data-intensive. 

5,49,65

Table 1. An overview of different mathematical descriptions of the liver in simulating toxicokinetics and toxicodynamics.85
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intermediate degree of mixing.53 Although the well-stirred model 
is successful in describing the “apparent” (phenomenological) 
kinetics of many xenobiotics (drugs as well as environmental 
chemicals), it oft en “lumps together” various physiological and 
biochemical processes, thus resulting in the “fi ltering” of the 
mechanistic information regarding chemical–tissue interactions. 
Th is may not be critical in pharmacokinetic calculations (i.e., 
calculations of “what the body does to the chemical”), but it 
is oft en very important in the mechanistic interpretation of 
toxicodynamic processes (i.e., “what the chemical does to the 
body”). Th e more complex formulations of the liver compartments 
include zonal or segmental models, where diff erent zones of the 
liver are denoted as subcompartments to include heterogeneity of 
transporters and enzymes;54,55 circulatory models, which account 
for concentration diff erences within the vascular space;56 fractal 
models, which represent the heterogeneity of the fl ow within the 
organ in terms of fractal concepts;21,55,57 and, fi nally, ABMs,49 which 
involve a large number of parameters that are, however, diffi  cult 
to estimate from biomarkers or in vitro data. Th e advantage of 
ABMs compared with traditional modeling approaches, based 
on ordinary or partial diff erential equation formalisms, is that 
more intricate detail can be more easily incorporated; however, 
the dynamics of the response may be harder to rationalize. Th e 
model of Hunt et al.49 was used to evaluate hepatic disposition 
and metabolism of antipyrine, atenolol, labetalol, and diltiazem 
as typical examples of cationic drugs.

An additional complexity deals with hepatic clearance, which 
also depends on binding proteins, transporters, and metabolic 
enzymes, which may not be homogeneously distributed through 

the liver. Th is is another reason why it is necessary to revisit the 
well-mixed assumption. For example, it has been demonstrated 
that cytochrome P450 is induced heterogeneously in the liver 
and is present at higher concentration in the centrolobular and 
midzone regions than in the periportal region,58 and that the 
metabolism of enalapril (an angiotensin-converting enzyme 
[ACE] inhibitor used in the treatment of hypertension and 
some types of chronic heart failure) is greater in the perivenous 
region rather than in the periportal region.59 Finally, from a 
modeling point of view, two general types of approaches have 
been developed to model spatial heterogeneities. Th e fi rst employs 
multicompartment models that divide the liver into separate 
homogeneous zones, each with its own parameters to describe 
local events, such as protein expression.54 Th e second approach 
uses distributed parameter models that describe the observed 
heterogeneities with spatially dependent functions, governed 
by partial diff erential equations.60 Table 1 presents an overview 
of diff erent mathematical descriptions of the liver in simulating 
toxicokinetics and toxicodynamics of xenobiotics.

Translational Opportunities and Challenges
Th is review has attempted only to scratch the surface of the 
exciting opportunities and the outstanding diffi  culties that need 
to be overcome in order to develop appropriate in vitro and 
in silico liver models. Th e idea of engineering a construct or 
mathematically simulating a proxy that reliably mimics the 
function of an organ is quite extraordinary, and one can only 
imagine the implications that the success of such an endeavor may 
have. Although an enormous amount of information has been 

Model type Schematic depiction Assumptions/applicability References

“Higher-dimensional” models

Continuous, interconnected 
tubes

Variation in uptake and metabolic 
properties across the cross-section 
and along the direction of uniform 

fl ow.

87,92,93

Distributed zones

Variation in uptake and metabolic 
properties across the cross-section 
and along the direction of nonuni-

form fl ow.

87

Discrete, interconnected 
tubes

Same as distributed zones but with 
intermittent mixing. 87

Fluid mechanics modeling 
of liver lobules

Computational fl uid dynamics-based, 
detailed realistic modeling of indi-

vidual liver lobules; computationally 
and data-intensive.

72

*Mechanistic is defi ned here as derived from the fi rst principles of thermodynamics and kinetics (i.e. conservation laws and constitutive equations).

Table 1. Continued.
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accumulated over the years in cellular and molecular biology, 
the translational potential of the accumulation of this knowledge 
has been hampered by the fact that this information needs to 
be put in the context of a higher-level organization, either 
tissue or whole-body. Th erefore, the potential avenues to be 
explored are not related, necessarily, to the use of liver surrogates 
for further deciphering the biology of hepatic functions but 
rather to the evaluation of the possibility of integrating diverse 

pieces of information and either assessing hepatic response or 
treating the liver as a critical component of a host (whole-body) 
response.

Traditional applications of physiologically based 
toxicokinetic/toxicodynamics models simulate the absorption, 
distribution, metabolism elimination, and toxicity of chemicals, 
with compartments representing major organs of interest, 
including all sites of metabolism.61 By developing explicitly  
mechanistic models and with the advances in computational 
processing power, it will be possible to model important organs 
in signifi cantly more detail.62 In that respect, virtual organs, 
either in vitro or in silico, can greatly increase the quantitative 
insight into the response of organisms following toxic insults. 
Virtual organs can be used not only in assessing the impact of 
toxicant exposures on biological responses but also in assessing 
past exposures based on different exposure to biological 
response biomarkers. In addition, they can also be used to study 
toxicokinetic and toxicodynamic interactions among chemicals 
within major sites of metabolism. Because the liver is a complex 
organ and a major target for metabolism and chronic toxicity, it 
is an appropriate starting point for detailed modeling analysis. A 
virtual liver can enable much faster testing of environmental and 
xenobiotic species for toxicity. An in silico liver can be utilized in 
conjunction with measured pharmacokinetic data and hepatic 
disposition events in order to refi ne and optimize the parameters 
associated with drug clearance phenomena50 (Figure 5), which 
are critical for evaluating regulation and signaling of phase I 
and II metabolizing enzymes (Figure 6).

One can envision opportunities at two levels of complexity: 
the organ and the host. At the organ level, toxicity screening and 
population studies can signifi cantly benefi t from the ability to 
simulate, and estimate, toxic side eff ects of xenobiotic metabolism 
by characterizing the appropriate activation of metabolic pathways, 
which act as precursors to detrimental events, and/or by assessing 
the potential for the synthesis of toxic by-products. Either in 
vitro or in silico models coupled with the emerging compendia 

of liver responses63 can serve as 
a template for characterizing 
expected liver toxicities. 
In silico models with realistic 
descriptions of the physiology 
can evaluate the impact of local 
inhomogeneities on cellular and 
molecular events and describe 
the heterogeneity of xenobiotics 
metabolism (Figure 7).

However, one can argue that 
possibly more exciting are the 
prospects of integrating in silico 
liver models with whole-body 
physicochemical models. Th e 
idea of a human reconstruction 
in silico may still seem an 
unattainable goal. However, 
the fi rst attempts have already 
materialized, as exemplifi ed by 
the physiome.jp project whose 
ultimate goal is “…to provide 
building blocks useful to develop 
in silico human. Th e blocks will 
include mathematical models 

Figure 5. Framework illustrating interactions between in silico and in vitro 
liver model (fi gure adapted from Yan et al.50).

Figure 6. Pharmacogenomic/toxicogenomic regulation and signaling of phase I and phase II metabolizing enzymes 
participating in hepatic metabolic and detoxifi cation processes for xenobiotics (fi gure adapted from Rushmore 
and Kong81).
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and experimental data representing physiological functions.” 
Physiome.jp is a part of the Worldwide Integrative Biomedical 
Research Cooperation to promote physiome and systems biology 
(http: //www.physiome.jp/index.html). Th e initial attempts were 
recently discussed.64,65 Whole-body PBPK models have already 
been demonstrated in the context of assessing individual 
variability in drug eff ects to assist in the planning and design of 
clinical trials.66–68

Arguably, however, a leading challenge is in quantifying 
the metabolic effects, manifested through changes in fluxes 
across key reactions and pathways. For many compounds, the 
primary biotransformation pathways can be reconstructed and 
integrated into pathway models of metabolism, allowing a direct 

connection between xenobiotic and central 
metabolism, such as the relationships 
between sulfur/glucose metabolism and 
sulfation/glucuronidation conjugations, 
respectively. Toxic intermediates and 
adducts can be incorporated also and 
their interrelationships within the larger 
metabolic network can be modeled and 
quantified. The current practice is to 
evaluate variants of Michaelis–Menten 
kinetics,43 with apparent rates fitted from 
experimental data. However, constraint-
based modeling approaches are emerging, 
which allow for stoichiometric and 
thermodynamic consistency across a 
metabolic network.69,70 The geometry 
and physiology of the organ can be 
ascertained and modeled based on 
currently available imaging- and data-
processing techniques.71 Furthermore, 
the flow problems associated with blood 
circulation along the sinusoids of the 
hepatic lobule, albeit not solved, are 
well studied, and computational fluid 
dynamics questions are already well 
posed.72

Greater challenges and opportunities 
lie in the connections among signaling, 
regulation of gene expression,73–77 protein 
synthesis, and metabolic fluxes.78,79 A 
major milestone will be reached, without 
a doubt, when gene regulation models will 
be coupled with rate expression in order to 
assess the true impact of the emergence of 
local conditions and their implication in the 
spatial and temporal function variability 
throughout the liver. Although eff orts in 
that respect are ongoing, at this point, the 
current state of the art is mostly driven by 
either sensitivity analyses or correlation-
type modeling.80 Such capabilities would be 
of considerable utility in advancing in silico 
models to estimate the longer-term eff ects 
of xenobiotic exposure. Th ese include, for 
example, infl ammatory sequelae resulting 
from the prolonged activation of stress 
signaling pathways downstream of aromatic 
receptor binding and generation of reactive 
 oxygen species81 as well as mutation rates 
and carcinogenesis.82

Concluding Remarks
Th e idea of using the virtual liver to assess toxicity eff ects and 
screen compounds is slowly making its appearance. Entelos (http://
entelos.com) was recently awarded the fi rst patent for applying 
predictive technologies and “virtual humans” to fi nd better 
drugs and more tailored health-related products. Th is enabling 
technology, entitled “Cholestasis Signature,” helps researchers 
to screen novel compounds more rapidly and effi  ciently during 
preclinical studies for cholestasis, a specific type of drug-
induced liver damage.83 Th e search for better models to predict 

Figure 7. Schematic representation of various factors contributing to heterogeneity in toxicokinetics 
and toxicodynamics of xenobiotics in the liver85.
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drug-induced human liver damage has led the US Food and 
Drug Administration (FDA) to adopt similar approaches 
toward the design of a “virtual liver” to guide biomarker and 
assay development as part of their critical path activities to better 
understand the causes of drug-induced liver injury; similar eff orts 
are underway at the Environmental Protection Agency (EPA) 
(http://www.epa.gov/ncct/virtual_liver). Finally, a major 
international activity is currently emerging in the European 
Union under the general framework of Hepatosys (http://www.
systembiologie.de/doc/070416MilestonesHepatoSysII_Text.pdf). 
HepatoSys focuses on the dynamical processes of detoxifi cation, 
endocytosis, iron regulation, and regeneration in primary 
hepatocytes. Th e fi nal long-term goal of HepatoSys is to translate 
the insights into the systems behavior of hepatocytes obtained 
from mechanism-based mathematical models in clinical and 
pharmaceutical practice. Understanding patient-specifi c drug 
metabolism paves the way for predictive and personalized 
medicine. Understanding the regulation of liver regeneration 
will have a major impact on the prediction of clinical outcomes of 
liver injury and developing strategies for the targeted regeneration 
of hepatocytes, thus reducing the need for animal testing in 
drug development. Comprehensive mathematical models will 
be applied to in silico drug screening, resulting in a signifi cant 
reduction in the time to market and costs in drug development, 
especially in identifying toxic side eff ects, which present the main 
reason for dropout in late clinical phases.

Advances in basic biological understanding, biological data-
bases, and computer simulation tools, all integrated in the form 
of an overall computational framework, appear to be gaining 
acceptance as a rational approach for evaluating hypotheses 
related to hepatic toxicity and, eventually, for exploring the clinical 
translational potential of in vitro or in silico liver models.
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