
Systems Pharmacology of Arrhythmias

Seth I. Berger, Avi Ma’ayan, and Ravi Iyengar*
Department of Pharmacology and Systems Therapeutics and Systems Biology Center New York,
Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1215, New York, NY 10029,
USA.

Abstract
Long-QT syndrome (LQTS) is a congenital or drug-induced change in electrical activity of the
heart that can lead to fatal arrhythmias. Mutations in 12 genes encoding ion channels and
associated proteins are linked with congenital LQTS. With a computational systems biology
approach, we found that gene products involved in LQTS formed a distinct functional
neighborhood within the human interactome. Other diseases form similarly selective
neighborhoods, and comparison of the LQTS neighborhood with other disease-centered
neighborhoods suggested a molecular basis for associations between seemingly unrelated diseases
that have increased risk of cardiac complications. By combining the LQTS neighborhood with
published genome-wide association study data, we identified previously unknown single-
nucleotide polymorphisms likely to affect the QT interval. We found that targets of U.S. Food and
Drug Administration (FDA)–approved drugs that cause LQTS as an adverse event were enriched
in the LQTS neighborhood. With the LQTS neighborhood as a classifier, we predicted drugs
likely to have risks for QT effects and we validated these predictions with the FDA’s Adverse
Events Reporting System, illustrating how network analysis can enhance the detection of adverse
drug effects associated with drugs in clinical use. Thus, the identification of disease-selective
neighborhoods within the human interactome can be useful for predicting new gene variants
involved in disease, explaining the complexity underlying adverse drug side effects, and predicting
adverse event susceptibility for new drugs.
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INTRODUCTION
Phenotypic heterogeneity is the result of variations originating from genetic and
environmental factors, as well as stochastic biomolecular events (1,2). Before the
sequencing of the human genome, it was evident that mutations in genes could be related to
diseases (3,4). Since the sequencing of the human genome and advances in high-throughput
techniques, it is now clear that mutated gene products associated with disease phenotypes
interact with other proteins to alter regulatory network behavior (5–7). Although
compensatory mechanisms often allow these networks to remain robust to changes in a
single component, mutations or gene variants, such as single-nucleotide polymorphisms
(SNPs) or copy number variants that sufficiently alter the function of cellular components
beyond a threshold, result in disease (8–10). Silent variations and mutations that do not lead
to phenotypic changes can become unmasked through interactions of the organism with the
environment (11). Networks that identify relationships among gene products that are
responsible for phenotypic behavior can provide insight into the interaction between genes
and the environment.

The construction of disease-centered networks of cellular interactions may also help explain
the origins of variable responses to therapeutic or adverse effects of drugs. Drugs can be
considered “environmental signals” because their targets often serve to link signaling
networks to cellular machines and are responsible for the phenotypic changes (12,13). If the
adverse response to a drug produces a phenotype similar to that of an inherited disease, it is
plausible that this drug acts on the same molecular pathways that are altered in the inherited
disease. This line of reasoning leads to the hypothesis that identification of networks related
to a clearly observable phenotype could be useful for understanding drug responses.

Long QT syndrome (LQTS) is a congenital or drug-induced change in electrical activity of
the heart that can lead to fatal arrhythmias. LQTS is defined by a specific change
(lengthening of the QT interval) in the electrocardiogram (ECG), and is thus a readily
observable phenotype. Therefore, we analyzed the relationship between mutations in genes
that lead to congenital LQTS and drugs that induce LQTS as an adverse event to test the
hypothesis that network analysis could be useful for understanding drug responses.

The ECG represents an integrated organismal measure of the electrical conduction system of
the heart, and the different parts of an ECG pattern are labeled with individual letters (Fig.
1A). In a healthy heart, depolarization of cardiac atria generates the P wave of the ECG.
This is followed by the Q, R, and S peaks representing the depolarization of the cardiac
ventricles. The T wave represents the repolarization of the ventricles. The interval between
the start of the Q peak and the end of the T wave is the QT interval. Changes in the QT
interval are risk indicators for arrhythmias (Fig. 1A), which can be fatal. For example,
torsades de pointes (TdP) is a potentially fatal arrhythmia associated with LQTS (14).

Malfunction of specific ion channels in cardiac myocytes is often the cause of cardiac
failure. At the cellular level, several major currents contribute to cardiac action potential
(Fig. 1B) (14), and genetic mutations that alter the functional properties of the ion channels
that produce these currents can alter the duration of the action potential and thus change the
QT interval (Fig. 1B). Mutations in eight genes that encode ion channels and four genes
encoding proteins known to interact with these channels have been associated with familial
forms of LQTS (Fig. 1C). However, identical mutations can affect different members of a
family to varying extents ranging from individuals with no observable disease to those that
experience sudden cardiac death. This variability is indicative of complex interactions
between mutated genes and other cellular components (15). This complex network could
account for some of the variability in penetrance of LQTS mutations, as well as differences

Berger et al. Page 2

Sci Signal. Author manuscript; available in PMC 2011 March 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in susceptibility to acquired LQTS, which can be induced by certain drugs or metabolic
disturbances (16).

Drugs used to treat noncardiovascular diseases can have cardiovascular risks as side effects
(17). Many seemingly unrelated drugs, often used for noncardiac indications, cause QT
interval prolongation and TdP as an adverse event (18). This rare, but dangerous, side effect
occurs frequently enough that, in clinical practice, drugs with the risk of inducing acquired
LQTS are avoided in patients with the congenital syndrome (18) and has also resulted in
removal of drugs from the market. For example, the gastrointestinal drug cisapride was
withdrawn from human usage because it could cause QT prolongation, leading to fatal
arrhythmias (19), and the allergy medication terfenadine was withdrawn because of its
propensity to cause LQTS (20). Although many drugs that cause LQTS interact with the
product of the KCNH2 gene, the HERG potassium channel that regulates myocyte action
potential, it would be useful to know whether other targets of drugs that cause QT
prolongation are related to genes involved in LQTS. Because the degree of blockade of the
HERG ion channel is not directly related to the risk of TdP and is not the only risk factor for
TdP (21), it is likely that other genes associated with LQTS are targets of drugs that cause
acquired LQTS.

LQTS can be considered a channelopathy related to altered cell signaling. An underlying
defect in ion channel function decreases cardiac repolarization reserve, and then additional
signals, such as QT-prolonging medications or adrenergic activation due to stress, can
precipitate dangerous arrhythmias. The importance of cell signaling pathways is evident
because the main treatment for patients with congenital LQTS is β-adrenergic blocking
drugs (14).

We integrated protein-protein interactions with disease-associated genes to identify a
signaling network that regulates the ion channels involved in LQTS. We show that such a
network, based on known disease genes and protein-protein interactions, can be used in
combination with clinical data sets, such as the U.S. Food and Drug Administration’s
(FDA’s) Adverse Event Reporting System (AERS), to understand previously undetected
relationships between drugs and adverse events.

RESULTS
Mean first-passage time scoring allows identification of LQTS neighborhood in protein-
protein interaction space

We used network analysis (6,22) to address two questions arising from the list of LQTS
disease genes (Fig. 1C): What are the functional relationships among these gene products,
and what is the relationship between the mutated gene products and other cellular
components? Two approaches have been used to create protein-protein interaction networks
that are associated with a disease. One approach requires manual identification of the
components and interactions within the specific cell types that are responsible for the
observed phenotypic behavior and then construction of a relatively small network of
interactions among these components (23–25). Another approach starts with a large network
of all known interactions in an entire organism, which is then limited by using the genes
associated with the disease as “seed nodes” to identify regions within the global network
that are preferentially situated in the interaction space near the seed nodes (22,26,27). We
used the latter approach because it is not constrained by the existing limited knowledge of
the disease or of the interactions within the specific cell type. Thus, we hypothesized that
analysis of the entire human interactome would reveal not only the genomic underpinnings
of LQTS, but also how drugs may cause this syndrome.
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To identify a LQTS disease subnetwork, we started with the known LQTS gene products as
seed nodes (Fig. 1C), which included the 12 genes with known mutations in congenital
LQTS and one additional gene, ALG10, that reduces susceptibility to LQTS (14,28). (Note
that when referring to the genes as nodes in the network, the gene names are not italicized.)
We constructed a global human protein-protein interaction network by integrating
interactions from nine publicly available sources (fig. S1 and Materials and Methods). We
then identified the LQTS gene product seed nodes in the global interaction network and used
a random walk–based algorithm to identify other nodes proximal to these seed nodes.
Random walk clustering algorithms identify functional subnetworks without
overemphasizing connections through highly connected nodes and have been useful for
predicting candidate disease genes (26,29). For our random walk–based distance algorithm,
we generated a module distance score calculated from “mean first-passage times” (MFPTs),
which is the average number of steps a random walker takes to walk from a specified node
to another specified node (30), to rank the nodes within the complete random walk network
to identify those most likely to be relevant to LQTS. A score greater than 0 for a gene
product implies a shorter MFPT from seed nodes than from nodes picked at random,
indicating the gene falls within a network neighborhood of interest (see Materials and
Methods for details of the calculations). From the MFPT for each node to each LQTS seed
node, we calculated the module distance score for all 11,090 nodes in the global human
protein-protein interaction network. The 1629 nodes that had a positive score, and all 9675
interactions between these nodes, were considered the “LQTS neighborhood” (Fig. 2 and
table S1).

To determine the validity of our MFPT ranking system in identifying the LQTS
neighborhood, we performed “leave-one-out” cross-validation analysis (31). We left out one
of the known LQTS genes from the seed list and identified a neighborhood on the basis of
MFPT ranking. We then determined the rank of the excluded LQTS node within this
neighborhood. The rank of the excluded seed nodes were high, always achieving a positive
score (Fig. 2, left). In eight cases where the excluded seed node interacted directly with
another seed node, the node that was left out was ranked within the top 1% of the complete
integrated mammalian protein-protein interaction network. Of these, four ranked (KCNH2,
KCNQ1, KCNE1, and KCNE2) in the top 10 nodes and another three (ALG10, AKAP9, and
SNTA1) ranked in the top 50. This analysis demonstrates the utility of the MFPT-based
neighborhood to accurately predict LQTS disease genes. SCN4B, which was three steps
away (by shortest path) from any other seed node, had a positive score and would be
included in the LQTS neighborhood when it is left out. In contrast, only 4% of the other
nodes that were three steps away from the LQTS seed nodes achieved positive scores.
Including only nodes with positive module distance scores, the LQTS neighborhood
contained 1629 nodes, representing 14.7% of the entire protein-protein interaction network.

We compared our approach of constructing a LQTS neighborhood by MFPT ranking to
networks constructed with the nearest-neighbor expansion method (figs. S2 and S3) (27).We
also compared the network properties of networks created by MFPT ranking to the global
interaction network. The 1629-node LQTS disease gene–centered neighborhood network
was interconnected with an average of 11.9 neighbors per node, which was less than the
average connectivity per node in the global network (14.3 neighbors per node). (In graph
theory, the number of direct connections between a node and other nodes in the network is
the node “degree,” so the average node degree in the LQTS subnetwork was 11.9, whereas
in the global network it was 14.3.) In networks with different numbers of nodes (“cutoffs”),
comparison of the average node degree of networks on the basis of MFPT ranking to the
average node degree of networks formed by applying nearest-neighbor expansion showed
that the networks formed by MFPT ranking had a lower average node degree than did those
based on nearest-neighbor expansion (fig. S2). Additionally, shortest path length analysis

Berger et al. Page 4

Sci Signal. Author manuscript; available in PMC 2011 March 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(how many nodes it takes to walk from one node to another) showed that networks based on
MFPT ranking included nodes that tended to be farther away from the seed list nodes
compared to nodes in networks based on nearest-neighbor expansion (fig. S3). This
demonstrates that the MFPT-based ranking was not biased toward highly connected nodes
(hubs) and nodes indirectly connected to the seed nodes through these hubs. Thus, the LQTS
neighborhood represented a local module within the global human interactome.

In addition to differences in network properties, the networks created by MFPT ranking
compared to those created by the nearest-neighbor expansion method revealed differences in
assigning disease relevance to individual genes between the two approaches. For instance,
many second neighbors outranked some first neighbors, and many third neighbors outranked
many second and first neighbors in the MFPT ranking network. For example, albumin,
which is a hub with 173 direct neighbors in the integrated mammalian protein-protein
interaction network, is a first neighbor of a seed node (SCN5A) but has a negative score and
is excluded from the MFPT-based LQTS neighborhood. This is reasonable because, even
though there is a direct interaction with a seed gene, it is likely not specifically related to
LQTS or cardiac risk associated with LQTS. Inspection of the top 55 nodes from the LQTS
neighborhood showed that there were several short paths between the seeds and that these
contribute to prioritization of first neighbors. For example, nodes such as PRKACA that
interacted directly with multiple seed nodes ranked higher than nodes that interact with
fewer seed nodes (Fig. 2, top). Among the seed nodes themselves, KCNH2, encoding
HERG, attains the highest score because it interacts directly with three other seed nodes.
This observation is in agreement with the known importance of KCNH2 as a LQTS disease
gene (14).

Since the start of the analysis in early 2007, two additional LQTS disease genes were
identified, AKAP9 (32) and SNTA1 (33), both of which we ultimately incorporated into the
seed list. Before we had incorporated AKAP9 into the seed list, an MFPT-based LQTS
neighborhood independently predicted AKAP9 to be among the top 10 LQTS candidate
genes. After incorporating AKAP9 into our seed list, SNTA1 was published as another gene
that caused congenital LQTS when mutated. The leave-one-out cross validation showed that
the MFPT-based LQTS neighborhood independently predicted SNTA1 to be among the top
50 LQTS disease gene candidates (Fig. 2). The LQTS neighborhood contained other
examples of known modulators of QT interval and arrhythmogenesis (Fig. 2, right). The
ranking of the genes encoding protein kinase A (PKA encoded by PRKCA) as first and
protein kinase C (PKC encoded by PRKACA) as second are consistent with the importance
of adrenergic signaling in LQTS (21). Several genes encoding adrenergic receptors ranked
within the neighborhood: ADRA1D (rank 108), ADRA1A (267), ADRB1 (308), ADBR2
(311), ADRA1B (369), ADRA2A (588), ADRA2C (730), and ADRB3 (1139). The relative
importance of β-adrenergic signaling and the major protein kinases downstream of these
receptors is consistent with the use of drugs that block β-adrenergic receptors to reduce
mortality in patients with congenital LQTS and with the observation that physical and
emotional stresses are often triggers of TdP (14). NOS1AP (encoding nitric oxide synthase 1
adaptor protein), which modulates the QT interval (34), ranked 125. KCNA5, which encodes
a potassium channel thought to be present only in the atria, is a risk modifier for cardiac
arrest associated with KCNE1 (35), and we found KCNA5 within the LQTS neighborhood
(Fig. 2, right). The results of the leave-one-out cross-validation and the presence of QT
interval and arrhythmogenesis modulators in the LQTS MFPT neighborhood suggested that
the MFPT ranking measure worked well for identifying additional LQTS-related genes.
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The LQTS neighborhood is distinct from other disease networks and suggests
relationships among diseases

To test whether the LQTS neighborhood was selective for LQTS, we generated three sets of
random seed lists (fig. S4). The first set was made of 1000 random seed lists and each
random seed list contained 13 nodes randomly picked from the global network. The second
set contains 1000 seed lists of 13 nodes randomly chosen from the network where the
connectivity degree of the nodes matched the connectivity degree of the LQTS seed nodes
(four nodes with 2 to 3 neighbors, five nodes with 8 to 15 neighbors, and four nodes with 15
to 31 neighbors). This was done to reduce bias because the LQTS disease genes have more
neighbors than average, most likely because they are extensively studied. To estimate the
bias of starting with seed lists encoding proteins that are localized to the membrane and
cytoplasm, the third set of random seed lists contained 2500 randomly generated seed lists of
genes with the same distribution of Gene Ontology (GO) Cellular Component terms as those
assigned to the LQTS seed nodes (36). The subnetworks created based on the GO-matched
seed lists showed higher frequencies for including other cytoplasmic and membrane-
associated proteins.

To compare the subnetworks created from the three categories of randomly created seed lists
with the LQTS neighborhood, we calculated a fractional overlap between the networks using
the Jaccard coefficient, which is the ratio of the intersection to the union of the genes in the
subnetworks. For the subnetworks created from the completely random seed lists and the
degree-matched seed lists, there was a 10% average overlap with the LQTS neighborhood
with 95% of the subnetworks having less than 18.8% overlap. For the seed lists matched
based on GO, there was on average a 15.6% overlap with 95% of the networks having less
than 26.3% overlap with the LQTS neighborhood (Fig. 3). This analysis demonstrated that
the LQTS neighborhood was a selective region within the human interactome.

Because QT interval prolongation is a symptom of several seemingly unrelated diseases, we
sought to rank other disease genes within the LQTS neighborhood. Using the Online
Mendelian Inheritance in Man (OMIM) database, we identified 1398 nodes in the human
interactome as encoded by disease-associated genes (37). Out of these disease-associated
nodes, 290 were ranked within the LQTS neighborhood, demonstrating enrichment of
known disease-associated genes within the LQTS neighborhood (the neighborhood that
encompassed 14.7% of the entire human interactome contained 20.7% of the disease-
associated genes). In some cases, this can be readily explained by known relationships
among the diseases. For example, short-QT syndrome, a disorder characterized by an overly
short QT interval, is caused by mutations in four of the same ion channel genes involved in
causing LQTS (38,39), which illustrates how gain-of-function and loss-of-function
mutations in the same genes can have the opposite phenotypic effects.

To further explore the relationship between the LQTS neighborhood and other disease-
centered neighborhoods, we used OMIM to generate seed lists for 422 diseases (table S2).
To verify the accuracy of the MFPT ranking method, we performed leave-one-out analysis
on all the 422 OMIM disease gene lists and also on an additional set of 19 disease gene lists
used in a study by Chen et al. (26). We found that our MFPT ranking method classified
candidate genes, as well as the method used by Chen et al. (26). We obtained a receiver
operating characteristic (ROC) area under the curve (AUC) of 0.8, indicating that we
matched their results and we did not require arbitrary parameter tuning (fig. S5). For the lists
representing the full set of 422 OMIM diseases, which had on average fewer seed genes
compared to the LQTS and the disease lists studied by Chen et al., the MFPT ranking
classification performed well with an ROC AUC of 0.77 (fig. S5). For each of the 422
OMIM diseases, we calculated the fraction of the diseases genes that scored positively
during the leave-one-out analysis (fig. S6A). We found that diseases can be grouped on the
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basis of how well their seed genes predict each other. For 160 diseases, more than 90% of
the seed genes fall into the disease neighborhood when left off the seed list. However, for
117 diseases, less than 10% of the seed genes were recovered in this manner (table S2). In
some cases, poorer ability to predict other members that had been left out of the seed list for
specific diseases is probably due to paucity of known disease genes and interactions for
these diseases (fig. S6B). An example of a disease with a large seed list (11 nodes) without
interactions between them in the network is hemolytic anemia caused by physical damage to
red blood cells. Our analysis suggests there may be a boundary of seed list size that allows
recovery of all or none of the seed nodes during leave-one-out analysis. The fraction of seed
node recovery from leave-one-out analysis for small starting seed lists tends to be all or
none, because if one seed node is in proximity to the other seed node, the reciprocal
relationship is often true. The overall average for recovery of seeds for diseases with only
two seed nodes was 53% compared to the average recovery for the remaining diseases,
which was 62%. Overall, seed lists of size greater than two outperform seed lists of size two.
Beyond this cutoff, we did not find any correlation between seed list size and performance
in leave-one-out analysis.

With the Jaccard coefficient, we compared the 422 disease-centered neighborhoods with the
LQTS neighborhood (Fig. 3 and table S2). On average, there was only an 11.4% overlap
between the LQTS neighborhood and all other disease neighborhoods, which was less
overlap than when the LQTS neighborhood was compared to random networks, suggesting
that many diseases arise from functionally distinct perturbations of the human interactome
compared with the genes associated with LQTS. However, some diseases appeared to have a
neighborhood much closer to the LQTS disease neighborhood when compared to the
distribution of network overlap for randomly selected seed genes where only 5% of the GO-
matched random networks had greater than 26.3% overlap with the LQTS neighborhood.

We found that the OMIM-based disease neighborhoods with the most overlap with the
LQTS neighborhood were cardiac disorders. The short QT syndrome neighborhood
exhibited the highest overlap (64%). Brugada syndrome, which is another cardiac
arrhythmia syndrome that causes ventricular tachycardias (40), was the neighborhood with
the second highest overlap (48%). The atrial fibrillation (AF) neighborhood had a 43%
overlap. This close relationship between AF and LQTS is consistent with the
epidemiological observation that early-onset AF may be a long QT-related dysrhythmia
(41). In total, 31 of the 422 diseases overlapped more than 25% with the LQTS
neighborhood (Table 1). The top 20 diseases with overlapping gene sets are labeled in Fig. 3
and the complete list is in table S2. In addition to the three diseases mentioned, several other
diseases related to cardiac arrhythmia, such as congestive heart failure, sick sinus syndrome,
dilated cardiomyopathy, and ventricular tachycardia had greater than 25% overlap with the
LQTS neighborhood. Ventricular tachycardias include catecholaminergic polymorphic
ventricular tachycardia (CPVT), which predisposes patients to an arrhythmia similar to the
LQTS-associated TdP. Hypomagnesemia, which can precipitate TdP, had an overlap of 29%
with the LQTS neighborhood.

Several of the 31 diseases with neighborhoods with greater than 25% overlap with the LQTS
neighborhood do not have obvious cardiac implications. For example, hypokalemic periodic
paralysis primarily affects skeletal muscle, and three examples of diseases that are primarily
neurological are autism, schizophrenia, and attention deficit hyperactivity disorder (ADHD)
(Table 1). However, autism is a symptom associated with a particular LQTS, Timothy
syndrome, and periodic paralysis is associated with another LQTS, Andersen-Tawil
syndrome (42,43). The overlap of these syndromes’ neighborhoods with the LQTS
neighborhood may relate to the shared symptoms of specific forms of LQTS. The
schizophrenia neighborhood also had a high degree of overlap with the LQTS neighborhood

Berger et al. Page 7

Sci Signal. Author manuscript; available in PMC 2011 March 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(30%). Acute psychosis can lead to increased QT variability in these patients (44), which
has been attributed to high sympathetic activity affecting the heart. This observation can
potentially be explained by the importance of adrenergic signaling in determining the QT
interval and regulating neuronal activity. It would be useful to understand if some of the
same factors that predispose patients to schizophrenia also predispose patients to LQTS. The
overlap between the LQTS and schizophrenia neighborhoods suggests that there could be a
strong relationship between these diseases. This is especially important because many of the
pharmaceutical treatments for schizophrenia can also affect the QT interval and increase
cardiovascular risk (45). This issue is also important for the treatment of ADHD, which also
has a high network overlap with the LQTS neighborhood (37%). Recent debate has
questioned whether cardiac screening should be required before ADHD treatment (46). The
overlap between the LQTS and ADHD neighborhood suggest that cardiac risk in ADHD
patients might have a genetic underpinning, and understanding which patients are at risk
could potentially allow for safer prescribing practices in treating children with ADHD.

Several of the diseases with high degree of network overlap with LQTS can be classified as
channelopathies and, like LQTS, these diseases are frequently caused by dysfunctional ion
channels or altered regulation of ion channels (Table 1). This trend toward network overlap
with diseases related to other ion channels suggests that the human interactome contains a
core ion channel regulatory subnetwork responsible for global cellular ion homeostasis. The
idea that alterations in the ion channel regulatory subnetwork that may alter susceptibility to
both neuronal and cardiac disease is consistent with work that has linked certain variants of
LQTS and risk of certain types of epilepsy (47) and work that has suggested a connection
between the QT interval and depression (48). It is also possible that LQTS phenotypes and
susceptibility to TdP may be affected by variations in the behavior of neuronal tissues.
Cardiac innervation, especially by sympathetic neurons, plays an important role in
arrhythmogenesis, and several of the LQTS disease genes are expressed in both heart and
neuronal tissues (49–51). Our network-based approach to understanding disease suggests
how various pathophysiologies are interrelated. Such analysis may provide explanations for
the degree and variability of diseases occurring together in the population. We hypothesize
that genes associated with a disease (disease A) that fall within proximity to another disease
neighborhood (disease B) would affect the risk and susceptibility to symptoms related to
disease B.

LQTS neighborhood disease gene ranking allows identification of QT-related
polymorphisms

Genome-wide association studies (GWAS) have looked for SNPs that can affect the QT
interval. Whereas these studies mostly recovered variations in genes previously known to be
involved in LQTS, several previously unassociated loci were suggested in two studies
(52,53) (Table 2). Between these two GWAS, 11 distinct loci were reported as significantly
associated with the duration of the QT interval. Four of these loci are located on
chromosomes near five of the known LQTS-associated genes. Five of the remaining loci
appeared in both GWAS studies, of which four are located within 150 kilobases (kb) of
genes that were highly ranked in the LQTS neighborhood (Table 2). The predictive
capability of our LQTS neighborhood is limited by existing knowledge about a gene
product’s protein interactions. For example, GINS3, which was identified in both GWAS as
associated with the duration of the QT interval, was identified as a regulator of
repolarization reserve in a drug-sensitized zebrafish screen (54). GINS3 could not be
predicted by our network, because there were no known protein-protein interactions
involving GINS3 in any of the protein interaction databases used to construct our human
interactome.
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We asked if the LQTS neighborhood ranking method could identify additional SNPs from
the QT sudden cardiac death (QTSCD) GWAS data that may be relevant to LQTS. We
found that 21,651 of the 2,458,933 SNPs scored in the QTSCD GWAS were located in
coding regions or introns of either the 13 LQTS seed genes or the top 150 ranked LQTS
neighborhood genes. This subset represents less than 1% of all the SNPs in the study. We
looked for SNPs with association P values less than 5 × 10−6, which is 100 times greater
than the cutoff for genome-wide significance. This, of course, identified the same SNPs that
were identified as having genome-wide significance and identified two additional signals,
rs9910577 and rs13394655 (Table 2). The first, rs9910577, is located in introns of PRKCA,
the gene encoding PKCα, and the second, rs13394655, is located in the introns of SLC8A1,
the gene encoding the cardiac sodium-calcium exchanger, which are respectively the 1st and
94th ranked genes in the LQTS neighborhood (fig. S7). Thus, polymorphisms in these genes
may affect QT interval duration in humans.

LQTS neighborhood genes are selectively enriched for targets of drugs associated with
acquired long-QT syndrome

We wanted to determine if the LQTS neighborhood could be used to classify drugs
associated with acquired LQTS or TdP. We identified the proteins (gene products) that were
both nodes in the human interactome and drug targets in DrugBank (fig. S8 and table S3).
Most drugs were reported to have only one or two targets in DrugBank and most targets
were only targeted by one or two drugs (fig. S8). Then, we used ROC curve analysis to
investigate if genes encoding the targets of drugs that were associated with the side effects
of acquired LQTS and TdP ranked higher within the LQTS neighborhood than did genes
encoding proteins that were targeted by other drugs. We examined drug targets, individual
drugs, and classes of drugs. In this ROC analysis, the AUC provides a single value that
assesses the quality of a binary classifier by representing the probability that a given QT-
prolonging drug target, QT-prolonging drug, or QT-prolonging drug class will rank higher
than drug targets, drugs, or drug classes not associated with the QT prolongation,
respectively. A random classifier would have an AUC of 0.5 and a perfect classifier would
have an AUC of 1. The LQTS neighborhood used as a classifier gave an AUC of 0.67 for
classification of QT-prolonging drug targets (Fig. 4A). The statistical significance of this
0.67 AUC was determined by counting the fraction of control neighborhoods, generated
with the previously mentioned random seed lists (P = 0.002 based on the GO-matched
networks, which gave the next highest AUC values).

Because drugs can have multiple targets, only some of the targets of the QT-prolonging
drugs are likely to be related to the pathogenesis of arrhythmias; other targets could relate to
the other effects of the drug. Therefore, enrichment of drug targets in the LQTS
neighborhood could underestimate the actual targets of QT-prolonging drugs that mediate
the QT-prolonging effects. Therefore, we ranked drugs on the basis of their highest-scoring
targets in the LQTS neighborhood and assessed if the QT-prolonging drugs ranked higher
than other drugs. We found that the AUC of this ROC curve was 0.71 (P = 0.006 compared
to the GO-matched networks) (Fig. 4B), suggesting that QT-prolonging drugs generally
target higher-ranked nodes in the LQTS neighborhood compared to drugs that are not known
to prolong the QT interval. Because most LQTS-associated drugs interact with the HERG
potassium channel (the product of KCNH2), we asked if this was the only target contributing
to the observed enrichment. Only 2 of the 81 QT-prolonging drugs with targets in the
neighborhood had KCNH2 as their only target in the neighborhood. When we removed the
drug-KCNH2 interactions from the analysis, the enrichment results were not significantly
affected (Fig. 4C).

To determine if the enrichment for targets of QT-prolonging drugs in the LQTS
neighborhood was due to multiple drugs targeting a single protein, we assigned each drug to
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a drug class by grouping drugs together if they share the same highest-scoring target in the
neighborhood. We made the assumption that this target represented the most likely
mechanism for the drug to modify the properties of the QT interval. Because most QT-
prolonging drugs target the product of KCNH2, KCNH2 was ignored as a target while drugs
were being grouped into 253 classes of which 67 contained QT-prolonging drugs. Even
when excluding the HERG channel as a drug target, the LQTS neighborhood performed
significantly better than chance, achieving an ROC AUC of 0.70 for classification of drug
classes (Fig. 4D) (P = 0.001 compared to the GO-matched networks).

LQTS neighborhood ranking allows prediction and explanation of unexplained adverse
drug events

We used the FDA AERS database as a test set to predict if the LQTS neighborhood could
predict whether drugs have potential for arrhythmia-related risks. The AERS database
contains reported adverse events for patients and all of their medications at the time of the
adverse event. Previous studies have calculated the relative risk for drugs to cause severe
adverse events (55). However, these studies did not combine protein interaction data with
the clinical data set to improve predictions and generate hypotheses about the mechanisms
of the side effects.

To simplify the identification of specific drugs and targets that ranked highly in the LQTS
neighborhood and are associated with QT event reports in AERS, we focused on adverse
event reports associated with monotherapies, which are adverse events associated with only
a single drug. Excluding the known QT-prolonging drugs, there were 654 drugs associated
with monotherapy case reports of which 363 had targets in the LQTS neighborhood. Out of
the 654 monotherapy drugs, 100 were associated with QT events. Seventy of these QT-
associated drugs had targets in the LQTS neighborhood. ROC analysis illustrates this
enrichment, demonstrating the utility of a classifier for drugs that may cause LQTS with an
AUC of 0.65 (P = 0.02 compared to GO-matched networks) (Fig. 5A). From this analysis,
we predict that several of the drugs that have targets in the LQTS neighborhood and also
have event reports of QT-related symptoms in AERS might warrant closer clinical
investigation for a potential risk of causing LQTS or TdP adverse events (Fig. 5B). Several
of the high-ranking drugs (ranked within the top 60 on the basis of the rank within the LQTS
neighborhood of their targets) did not have previously annotated toxicity of arrhythmias in
DrugBank (56,57) or Arizona Center for Education and Research on Therapeutics (CERT)
QT drugs lists (18,58) (Fig. 5B and table S3), although the FDA AERS reports indicated that
they are associated with LQTS events (Fig. 5B). We further explored why these drugs
ranked highly by tracing the connections from these drugs through their targets in the LQTS
neighborhood to the LQTS disease seed genes. The identification of such potential signaling
pathways provides initial insights. For example, two drugs, dasatinib and loperamide, used
to treat different pathophysiologies, cancer and severe diarrhea can have QT prolongation as
an adverse event and can be connected to the LQTS disease genes through the LQTS
neighborhood (Fig. 5C). The paths can be short; for example, loperamide can be connected
to KCNH2 through CALM1 (one step), and dasatinib can be connected to KCNQ1 through
PRKACA and SRC (two steps), or more convoluted. Such a tracking exercise provides
hypotheses about how these drugs might affect the QT interval and increase TdP risk, which
can be used to design experiments in animal models or combined with whole genome
information to identify “at-risk” patients.

Independent predictions from network analysis match experimental and clinical
observations

The list of 13 LQTS-associated disease genes and the human interactome were the only two
data sets used to generate the LQTS disease gene neighborhood. Despite the minimal
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disease-specific information, the resulting LQTS neighborhood contained information about
other LQTS genes and drug targets for drugs that cause acquired LQTS. The top two
predicted genes in the LQTS disease-gene neighborhood were those encoding PKA and
PKC. Matavel et al. demonstrated that PKA and PKC can partially rescue certain long QT
phenotypes (59). Additionally, we identified SNPs in PKCα using the QTSCD genome-wide
association study (fig. S7 and Table 2).

We evaluated the relative rankings of kinases targeted by 15 inhibitors for the treatment of
various cancers (table S4), because clinical information was readily available for these
drugs. We included 9 inhibitors listed in DrugBank and 6 other kinase inhibitors (60). The
results suggested that drugs targeting phosphatidylinositol 3-kinases generally ranked lower
and were not expected to have QT-related side effects (table S4). With the FDA AERS
database, we identified drugs (dasatinib, sorafenib, imatinib, and gefitinib) that were not
known to cause QT prolongation, yet were associated with reports of QT prolongation.
Analysis of the ranking of their targets in the LQTS neighborhood suggested that Src,
PDGFR (platelet-derived growth factor receptor), or EGFR (epidermal growth factor
receptor) inhibition may affect risk of LQTS (Table 3). This prediction is supported by the
work of Zhang et al., who reported that both EGFR and Src inhibition decrease HERG
function (61).

We also noted that several heterotrimeric guanosine triphosphate–binding protein (G
protein)–coupled receptors ranked highly in the LQTS neighborhood and suggested that the
activity of these receptors, in addition to HERG blockade, may account for the severity of
QT side effects for various drugs. Keiser et al. (62) reported that motilium, an antiemetic
dopamine receptor antagonist and known HERG blocker, also interacts with adrenergic
receptors α-1D, α-1A, and α-1B, which may contribute to the cardiovascular side effects of
this drug. Out of all 11,090 nodes ranked in the integrated protein-protein interaction
network, these receptors were ranked 108, 267, and 369, respectively, in the LQTS
neighborhood. Therefore, our LQTS neighborhood independently predicted several
experimentally reported and clinically relevant observations.

DISCUSSION
The analysis of the LQTS neighborhood provides a new perspective of the pathogenesis and
susceptibly of LQTS, as well as broader insights into drug-induced pathophysiologies. This
analysis provides clues to why LQTS can be a side effect of so many different classes of
drugs. Furthermore, examination of the LQTS neighborhood may explain why the degree of
HERG blockade is not directly related to the severity of the syndrome, while confirming the
importance of the HERG ion channel in acquired LQTS. Most gene products involved in
congenital LQTS are not direct drug targets. However, these proteins are located within a
region of the human interactome that is targeted by many drugs, which implies that many
drugs have targets that interact directly or indirectly with the LQTS-associated proteins.
Therefore, many of these drugs could potentially affect the function of these gene products
indirectly, leading to acquired LQTS. The function of the HERG ion channel is inhibited by
many QT-prolonging drugs and the importance of HERG was confirmed because it was the
highest-ranked “seed node.” However, drugs related to LQTS have multiple targets within
the LQTS neighborhood, and the modulation of multiple QT-interval regulatory proteins
may explain the variable degree of risk associated with different LQTS-associated
medications and the independence of this risk on the degree of HERG blockade.

Integrating disease genes and drug actions through protein-protein interactions can serve as
the basis for multiscale mechanistic understanding of pathophysiology and drug action by
bridging the gap between the molecular understanding of genes involved in disease and the
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cellular behavior elicited by changes in the activities of these genes or their encoded
products. This type of analysis can reveal potential compensatory mechanisms that may
explain why genotypic variation does not always manifest at the phenotypic level. There is
an underlying interaction network that connects the genes and their products that are
responsible for the phenotype. When the phenotype is related to a disease or to an adverse
event, the network can reveal new targets for treatment of the disease or explanations for
pathogenesis of the adverse event (fig. S9).

Systems biology approaches enable the integration of large data sets to identify emergent
properties and behaviors. We used an integrated protein-protein interaction network to
identify genes encoding products that can potentially regulate cardiac myocyte action
potentials. We chose a global network, representing a composite of multiple cell types. A
study focused solely on genes known to be expressed in myocytes would have missed
important relationships that we identified, such as the overlap between neuronal disease
networks with the LQTS neighborhood and how this can explain patients’ symptoms that are
not directly related to cardiac defects, as well as some of the cardiac risks associated with
noncardiac diseases. Cell type–specific networks will also be useful, especially in the design
of new drugs or drug variants intended to evoke more selective effects. Integration of
biochemical network information with clinical data sets enhanced signal detection from drug
adverse event surveillance data sets such as AERS. We anticipate that approaches such as
the one we demonstrated here will be useful in the analysis of electronic medical records and
the next generation of prospective monitoring tools, such as the FDA’s Sentinel Network
(63).

Because the links in the human interactome used in our study lack directionality (source or
target) and sign (activation or inhibition), this analysis can suggest proximity to the LQTS
seed genes but cannot predict if a gene or a drug would have a pro-arrythmic or anti-
arrhythmic effect. Such information is likely to be useful for improving the predictions.
Despite this limitation, we predicted that polymorphisms and mutations in highly ranked
genes play a role in regulation of repolarization reserve and modulate drug-induced TdP and
LQTS risk.

We found that QT-prolonging drugs were enriched for targets in the LQTS neighborhood.
Other drugs, which are not labeled as QT-prolonging drugs but are known to cause QT-
related side effects, also target high-ranked proteins in the LQTS neighborhood. For
example, inhalation anesthetics are not on the Arizona CERT list because they are not used
in an outpatient setting. However, they targeted various highly ranked nodes in the
neighborhood and are well known to cause TdP in some patients (64).

The development of directed, sign-specified disease gene–drug target networks should
improve disease gene and adverse event prediction. A drug may target multiple proteins
within the neighborhood where such targets have opposing effects. For example, verapamil,
which blocks both the HERG channel and a calcium channel, has a lower risk than expected
from targeting the HERG channel alone (65). It is clear that these other targets can affect the
arrhythmogenic risks of drugs and that HERG blockade alone, although involved in most
cases of drug-induced LQTS, does not account for all the risks of LQTS. Therefore,
screening drug for an interaction with just HERG can either overrepresent or underrepresent
the true risk of drug-induced LQTS.

As the cost of genomic sequencing drops and genome characterization becomes a common
diagnostic tool, physicians will have more information for making better diagnoses.
However, we currently lack the interpretive framework to use such information to its full
potential. Systems pharmacology approaches, such as the one presented here, will enable
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interpretation of large genomic data sets to generate hypotheses that could guide clinical
studies in the future to determine risk of adverse drug effects in individual patients for
clinical management. Candidate genes suggested in this analysis can be screened for
mutations in patients with no known cause of LQTS to more rapidly identify causative
mutations. Further work can delineate targets in the LQTS neighborhood into positive and
negative regulators of the QT-interval and TdP susceptibility, as well as categorize SNPs
and other mutations that influence patient risk. Similar approaches can be applied to other
drug-induced side effects related to diseases that result from the interactions between
pharmaceutical and a complex biological network. There are often several pharmaceutical
options available for a particular pathophysiology and it will become increasingly possible
to select the most effective treatment with the lowest adverse event risk based on the
patient’s personal genetic background. Such application of personalized medicine will allow
greater safety and efficacy of both existing and new pharmaceuticals.

MATERIALS AND METHODS
Background network construction

We constructed a large-scale human protein-protein interaction network by integrating
publicly available interactions from nine sources (66–75) (fig. S1A). All data sets were
downloaded on 8 December 2008 unless otherwise noted. Information from the National
Center for Biotechnology Information (NCBI) and Uniprot was used to construct a lookup
table from various accession numbers to Entrez Gene Symbols for all mammalian species.
Data from NCBI homologene, Jackson Labs Mouse informatics, and NCBI gene history
were used to construct a lookup table that matched each mammalian gene to its human
ortholog. Curated data from Jackson labs took precedence over predicted orthology from
homologene. These lookup tables were used to process the protein interaction data from
BioGRID (67), DIP (74), HPRD (73), Intact (70), MINT (68), MIPS (72), PDZBase (66),
Phospho.Elm (69), and Reactome (75). Each protein from a mammalian species was
matched to its gene and subsequently to its human ortholog (71,76). With a breadth-first
search, all interactions that were not reachable from KCNH2 were discarded from the
network to leave a large fully connected cluster (one island). This global human protein-
protein interaction network represented a composite of all cell types and tissues, which as of
8 December 2008 was a large fully connected island of 11,090 nodes (gene products with
human gene ID) and 79,530 edges (interactions) based on 23,423 distinct literature
references (PubMed IDs).

Neighborhood ranking
Using custom c code, we calculated a matrix of MFPT between all pairs of nodes in a
network with the algorithm of Kemeny and Snell (30). We defined a module distance score,
Sj, for each node in the protein-protein interaction (PPI) network as the difference in average
of the MFPTs to the node when starting on a non–seed node compared to starting on a seed
node, normalized to the average MFPT to reach the node from a random start.

(1)
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Here C is the set of nodes that fall in the seed lists and C′ is the set of nodes reachable from
random walks from the seed list. Therefore, a score greater than zero implies that node j falls
closer on average to the seed nodes than it does on average to the rest of the network.

Network generation was performed on the LQTS seed list and each of the control seed lists
by scoring all nodes in the network and using a cutoff score of zero to define the
neighborhood. Drugs were ranked by assigning each drug the score of its highest-scoring
target. Classes were then constructed by combining all drugs that shared the same highest-
scoring target into a single class, excluding the HERG ion channel. If a class contained at
least one QT drug, this class was considered a QT drug class.

Control seed lists
Distributions of control networks were generated from random seed lists. Each set of
random networks was based on one of three null hypotheses. All random seed lists had 13
seed nodes (like the LQTS seed list). The first set of 1000 random seed lists was generated
by randomly selecting seed nodes uniformly out of the background network. The second set
of 1000 random seed lists was generated by selecting a random seed node matched by
degree to each of the LQTS seed nodes. The degree, number of first neighbors, for each
node in the network was log binned by taking the floor integer of the base 2 logarithm of the
degree of each node. For each LQTS seed node, a random node was selected from the same
degree bin to match it in the randomized seed list. The third set of 2500 GO-matched seed
lists were created on the basis of the GO terms for membrane (GO: 0016020) and cytoplasm
(GO: 0005737). This provided a seed list with the same localization characteristics of the
LQTS seed list without overconstraining the random seeds to the original LQTS seed nodes.
Each node in the network was grouped as having neither term, both terms, just cytoplasmic,
or just membrane. For each LQTS seed node, a random node of the same type was chosen to
match it in the randomized seed list.

Network overlap
For all the control neighborhoods and disease neighborhoods, the number of genes in
common with the LQTS neighborhood was counted. This was divided by the number of
unique genes that occurred in either neighborhood to calculate the Jaccard coefficient. A
histogram was generated by counting the number of networks that had overlap with the
LQTS neighborhood by binning the data into 40 equally spaced bins. The counts of
networks in each bin were divided by the total number of networks in the distribution and
the bin width (0.025) to generate a probability density. The area under segments of this
curve represents the probability that a randomly chosen network overlaps with the LQTS
neighborhood within the magnitude spanned by the segment.

QTSCD GWAS analysis
The SNPs and association strengths from the QTSCD GWAS were obtained from A.
Chakravarti (Johns Hopkins University School of Medicine, Baltimore, MD). The genomic
locations of all SNPs and RefSeq genes were taken from the February 2009 release of the
human genome, downloaded from the UCSC genome browser. The SNPs that fell between
annotated transcriptional start and end points of genes that ranked among the top 150 nodes
in the LQTS neighborhood were identified.

Drug target analysis
We labeled the proteins (gene products) that were nodes in the human interactome and were
drug targets in DrugBank (fig. S8 and table S3) (56,57). Nodes targeted by drugs listed on
the Arizona CERT LQTS Drug List were also labeled as having a known risk of QT-related
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side effects (77). There are 951 FDA-approved small-molecule drugs in DrugBank (not
classified as nutraceuticals) that have 518 different protein targets in the human interactome.
Ninety-nine of these drugs, found on the Arizona CERT QT drug list, target 114 proteins
(58,78).

AERS database
The AERS database was processed with Perl code to match the event reports to drugs found
in DrugBank. Out of the 1.5 million adverse event reports in the database, we focused on the
5168 reports of prolonged electrocardiographic QT intervals or TdP. The distribution of
drugs associated with adverse events follows an exponential distribution (fig. S10). Drugs
that had at least one target in the LQTS neighborhood, and were thus predicted to have an
effect on QT interval, were present in 61.7% of all the reports in the database where these
reports include 92% of the QT event reports. Many of the predictions are drugs previously
associated with acquired LQTS. Of the 5091 QT event reports, 78% involved at least one
previously known QT-prolonging drug. Out of the 1123 remaining QT event reports, 78%
had targets in the LQTS neighborhood (fig. S11). As such, the predictions of drugs not
previously known to be involved in the regulation of the QT interval can account for a large
number of these QT event reports. There are 1221 drugs that are associated with event
reports where the drug was used alone. These were labeled as monotherapy drugs; 185
monotherapy drugs were associated with a monotherapy event report of QT prolongation or
TdP. Excluding the known QT-prolonging drugs from these lists produced a total of 1113
monotherapy drugs of which 129 were associated with reports of QT prolongation.
Excluding all drugs in DrugBank annotated as nutraceuticals or not annotated as FDA
approved or small molecules left 654 monotherapy drugs of which 100 were associated with
QT events and were used for further analysis.

ROC analysis
For every possible rank threshold cutoff (starting from the top node through all 11,090
nodes) in the ranked list of nodes, the true positive rate was plotted against the false-positive
rate with custom Perl code. A true positive rate could be the fraction of targets of QT-
prolonging drugs within the LQTS disease gene neighborhood, the fraction of QT-
prolonging drugs with at least one target in the neighborhood, or the fraction of QT-
prolonging drug classes within the neighborhood. We defined drug classes by grouping all
drugs that shared a common highest-ranked target other than the HERG ion channel. The
corresponding false-positive rate is the fraction of the remaining drug targets, remaining
drugs, or remaining drug classes within the neighborhood. The AUC was calculated by
summing the area of rectangles between each point in the ROC curve. This process was
repeated for the LQTS neighborhood ranking, as well as the 4500 random networks and all
OMIM disease networks. Statistical significance of the AUC was calculated by counting the
fraction of each control network set that had an AUC greater than or equal to the LQTS
neighborhood’s AUC. In most cases, the largest P values were associated with the GO-
matched random networks.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Multiscale relationships between mutated genes and QT interval. LQTS can be described
across several organizational scales. (A) Organ level: LQTS symptoms result from
disruptions of blood flow as a result of electrical disturbances of the heart that are observed
clinically as a prolonged QT interval on an ECG. (B) Cell level: Changes in the QT interval
arise from changes in the myocyte action potential leading to an increase in action potential
duration. Normal and prolonged action potentials are shown as solid and dashed lines,
respectively. The currents responsible for each phase are labeled. (C) Molecular level: The
genes for ion channels that give rise to these currents and the proteins known to modulate
these currents in LQTS are listed in the table. Known mutations in these genes allow clinical
genetic testing to diagnose risk of LQTS. Dashed lines in (A) highlight the QT interval and
in (B) highlight the action potential duration that gives rise to the QT interval.
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Fig. 2.
Identification of the long QT disease gene neighborhood. Gene products (11,090) in the
global human interactome were ranked on the basis of their relative MFPT distance score
with the 13 LQTS disease susceptibility genes as seed nodes. Selecting various score cutoffs
allows neighborhoods of various sizes to be defined as shown in the nested circles. Leave-
one-out (leave-seed-out) cross-validation results, shown in red on the left, demonstrates the
rank of seed nodes if they were not included as seed nodes. Several other gene products
associated with other arrhythmia syndromes or the pathogenesis of TdP, shown in blue on
the right, fall within the LQTS neighborhood. The protein-protein interaction network
formed with the interactions between the 13 seed nodes and top 42 ranked nodes is shown at
the top, demonstrating the assignment of relative importance to nodes based on network
topology.
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Fig. 3.
Distribution of fractional overlap of other subnetworks with the LQTS neighborhood. The
LQTS disease gene neighborhood was compared to disease gene neighborhoods generated
from various control seed lists. These seed lists consisted of 13 randomly selected nodes, 13
randomly selected nodes for which their degree of connectivity matched the LQTS seed list,
or 13 randomly selected nodes with GO annotation for the terms membrane and cytoplasm
in a proportion matching those in the LQTS seed lists. Four hundred and twenty-two seed
lists, with variable numbers of seeds, were created from the OMIM database. Each disease-
related seed list was used to generate a neighborhood by selecting all nodes that had a
positive score after MFPT ranking. The distribution of fractional overlap with the LQTS
neighborhood, number of nodes shared by both neighborhoods divided by total number of
unique nodes in either neighborhood, is shown for each set of random networks. Dashed
lines indicate where the overlap threshold below which 95% of the random networks in each
distribution falls. The 20 diseases showing the most overlap with LQTS are labeled. The
“long QT syndrome” network with 87% overlap is based on the 11 seed genes that were in
OMIM.
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Fig. 4.
LQTS neighborhood rankings classify QT-prolonging drug targets and drugs. ROC curves
for MFPT-ranked nodes using the LQTS seed list, nearest-neighbor expansion from the
LQTS seed list (NN), and the mean ROC curves for the various random seed list
distributions are shown. The point on the ROC curves that represents the cutoff for the
LQTS neighborhood is labeled with S > 0. Insets represent AUCs with mean and SD shown
for the random network distributions. The numbers above the dotted line in the insets is the
fraction of each distribution that had an AUC greater than or equal to the AUC of the LQTS
neighborhood. In all analyses, the LQTS MFPT ranking significantly outperformed all other
distributions (P values are indicated in insets). (A) Classification of drug targets. For every
possible cutoff, a true positive rate (the fraction of targets of QT-prolonging drugs that are in
the indicated neighborhood) is plotted against the false-positive rate (the fraction of all other
drug targets that are in the indicated neighborhood). The AUC represents the probability that
a given target of a QT-prolonging drug will rank higher than a given drug target that is not
targeted by a QT-prolonging drug. (B) Classification of drugs. For every possible cutoff, a
true positive rate (the fraction of QT-prolonging drugs that have a target in the
neighborhood) is plotted against the false-positive rate (the fraction of the remaining drugs
that have a target in the neighborhood). The AUC represents the probability that QT-
prolonging drugs target higher-ranked targets than other drugs not associated with QT
events. (C) Classification of drugs excluding HERG, the target encoded by KCNH2. The
AUC represents the probability that QT-prolonging drugs target higher-ranked targets (other
than HERG) than other drugs not associated with QT events. (D) Classification of drug
classes. ROC analysis was performed with drug classes defined by grouping all drugs that
share a common highest-ranked target, on the basis of the targets’ module distance scores,
and including only these targets in the rankings. The AUC represents the probability that a
given drug class containing QT-prolonging drugs target higher-ranked targets than drug
classes not associated with QT-prolonging drugs.
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Fig. 5.
The use of the LQTS neighborhood to classify and explain FDA adverse event reports. (A)
ROC analysis tests whether the LQTS neighborhood is more effective than the random
neighborhoods for predicting if a drug, not previously reported as causing LQTS, has the
risk of the side effect. Insets represent AUCs with mean and SD shown for the random
network distributions. The numbers above the dotted line in the insets is the fraction of each
distribution that had an AUC greater than or equal to the AUC found using the LQTS
neighborhood. The point on the ROC curves that represent the cutoff for the LQTS
neighborhood is labeled with S > 0. (B) The table lists selected drugs that were not
previously annotated as prolonging the QT interval or causing TdP, but are associated with
FDA AERS event reports of QT prolongation or TdP. (C) Tracing back to the LQTS seed
nodes (red) from two drugs (blue), the Src inhibitor dasatinib (a cancer drug) and loperamide
(an antidiarrheal) that interacts with calmodulin (CALM1), generates a subnetwork that
suggests different ways in which these drugs used to treat different pathophysiologies could
affect QT intervals.
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Table 1

Overlap between disease neighborhoods. Diseases with gene neighborhoods that had a >25% overlap with the
LQTS gene neighborhood are shown. Gray shading indicates cardiac diseases, yellow indicates neurological
disorders. Bold indicates channelopathies.

OMIM disease name Neighborhood
size

Number
seed

Leave-
one-out
recovery

Overlap with LQTS
neighborhood (%)

LQTS 1629 13 1 100

Long QT* 1561 11 1 87

Short QT 1409 3 1 64

Brugada syndrome 1680 3 1 48

Atrial fibrillation 1474 5 0.8 43

Hypokalemic periodic paralysis 1434 2 1 38

Attention deficit hyperactivity disorder 1713 3 1 37

Congestive heart failure 1609 2 1 35

Sick sinus 1452 2 0 33

Insomnia 1652 2 0 32

Epileptic encephalopathy 1703 3 0.67 31

Autism 1579 8 0.5 31

Febrile convulsions 1181 2 0 31

Neurofibromatosis 1666 3 0.33 31

Episodic ataxia 1249 4 0.5 31

Schizophrenia 1641 15 0.33 30

Epilepsy 1286 20 0.5 30

Glomerulosclerosis 1587 3 1 30

Hypomagnesemia 1522 5 0.4 29

Hyperekplexia 1205 3 0.67 29

Ventricular tachycardia 1432 3 0.67 29

Anorexia nervosa 1367 2 1 28

Griscelli syndrome 1432 3 1 28

Nephrolithiasis 1354 3 0 28

Acromegaly 1191 2 1 28

Obsessive compulsive disorder 1404 3 0.67 27

Fraser syndrome 1130 2 1 27

Becker muscular dystrophy 1281 2 0 27

Myotonia congenita 1378 2 0 26

Adenocarcinoma of lung 1714 3 1 26

Dilated cardiomyopathy 1411 26 0.88 25

Malignant hyperthermia susceptibility 1242 2 1 25

*
Based on OMIM disease-associated genes for the seed list.
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Table 2

Loci identified in QT-interval GWAS or by LQTS gene neighborhood ranking. Genes within the LQTS gene
neighborhood are marked in bold. Other genes that are within 150 kb, but were not in the LQTS gene
neighborhood, are not bold. A negative value in the LQTS MFPT score means the gene fell outside the LQTS
neighborhood. NA means the gene did not have any protein interactions and thus could not be scored. Gray
rows were not found to be significant in either of the two GWAS (52,53), but fell in intronic or coding regions
of one of the 150 highest-ranked LQTS neighborhood genes and had an association strength of P < 5 × 10−6 in
the QTSCD GWAS.

SNPs
(GWAS
study or LQTS
neighborhood
ranking)*

Genes
within 150 kb
of SNP (LQTS
MFPT score,
distance to SNP
in base pairs)

Chromosome 1

RNF207(NA, 0)

ICMT(−5.9 × 10−6, 1883)

C1orf211(NA, 18,501)

RPL22(−0.0026, 19,690)

rs846111(Both) HES3(NA, 24,892)

GPR153(NA, 28,044)

CHD5(NA, 39,186)

ACOT7(−0.00015, 44,962)

KCNAB2(0.0014, 118,846)

rs16857031(QTGEN) NOS1AP(0.0043, 0)

rs12143842(Both) OLFML2B(NA, 40,245)

rs12029454(QTGEN) ATF6(−0.00039, 105,037)

ATP1B1(−0.00020, 0)

rs10919071(QTSCD) NME7(−0.00024, 2286)

Chromosome 2

rs13394655 (LQTS) SLC8A1 (0.0059, 0)

Chromosome 3

SCN5A(0.082, 0)

rs11129795(QTSCD) ENDOGL1(NA, 22,721)

rs12053903(QTGEN) ACVR2B(−0.0012, 54,529)

XYLB(NA, 132,695)

SCN10A(0.00051, 145,444)

Chromosome 6

rs11970286(QTSCD) C6orf204(NA, 0)

rs11756438(QTGEN) SLC35F1(NA, 41,534)

PLN(0.00034, 112,044)

Chromosome 7

KCNH2(0.20, 4186)

NOS3(0.0061, 50,284)

ABP1(−0.00023, 63,782)

Sci Signal. Author manuscript; available in PMC 2011 March 31.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Berger et al. Page 28

SNPs
(GWAS
study or LQTS
neighborhood
ranking)*

Genes
within 150 kb
of SNP (LQTS
MFPT score,
distance to SNP
in base pairs)

ATG9B(NA, 71,441)

ABCB8(−7.6 × 10−5, 87,647)

rs4725982(QTGEN) ACCN3(0.0012, 107,742)

rs2968864(QTGEN) CDK5(0.0047, 113,036)

rs2968863(QTSCD) SLC4A2(0.00052, 118,794)

TMEM176A(NA, 119,953)

TMEM176B(NA, 123,713)

FASTK(−0.00027, 135,845)

TMUB1(NA, 140,309)

AGAP3(NA, 145,091)

Chromosome 11

KCNQ1(0.17, 0)

rs12576239(QTGEN) TRPM5(NA, 40,527)

rs2074238(QTGEN) TSSC4(0.00027, 59,696)

rs12296050(QTSCD) CD81(−0.00024, 66,153)

TSPAN32(0.00029, 145,372)

Chromosome 16

LITAF(−0.00022, 10,430)

rs8049607(Both) SNN(NA, 70,548)

TXNDC11(−0.00043, 81,190)

LOC400499(NA, 106,141)

CNOT1(−0.00049, 0)

SETD6(NA, 13,685)

SNORA46(NA, 15,165)

rs37062(QTGEN) NDRG4(NA, 19,714)

rs7188697(QTSCD) SNORA50(NA, 26,462)

SLC38A7(NA, 78,120)

GOT2(0.00048, 118,857)

GINS3(NA, 127,189)

Chromosome 17

LIG3(−0.00030, 0)

RAD51L3(−0.00062, 11,749)

RFFL(NA, 11,749)

rs2074518(QTGEN) ZNF830(NA, 34,176)

CCT6B(−0.00011, 35,875)

FNDC8(NA, 124,249)

NLE1(−0.00013, 133,986)

rs9910577 (LQTS) PRKCA (0.053, 0)

Chromosome 21
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SNPs
(GWAS
study or LQTS
neighborhood
ranking)*

Genes
within 150 kb
of SNP (LQTS
MFPT score,
distance to SNP
in base pairs)

KCNE1(0.11, 0)

LOC388820(NA, 25,415)

rs1805128(QTGEN) FAM165B(−0.00014, 46,605)

RCAN1(−9.3 × 10−5, 67,104)

KCNE2(0.11, 78,239)

*
“Both” refers to the identification of the SNP in each GWAS.
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Table 3

Identification of putative QT-relevant targets of kinases with AERS QT events, but not classified as QT drugs.
All targets, including those ranked above 1629 and thus outside the LQTS neighborhood, are shown. Bold
indicates the highest-ranking LQTS targets for each drug (the target of each drug with the largest module
distance score compared to its other targets).

Drug AERS QT
events

Total AERS
events

Targeted
kinases

Target
rank

Dasatinib 1 524

SRC 42

PDGFRB 96

FYN 226

YES1 478

KIT 1182

ABL2 1550

ABL1 3093

EPHA1 5197

EPHA2 6570

LCK 7562

Sorafenib 4 1620

PDGFRB 96

BRAF 333

RAF1 491

KIT 1182

KDR 2392

FLT3 2664

FLT4 6442

Imatinib 4 2691

PDGFRB 96

PDGFRA 107

RET 319

NTRK1 573

KIT 1182

CSF1R 1553

ABL1 3093

DDR1 6743

Sutent 0 0

PDGFRB 96

KIT 1182

KDR 2392

Gefitinib 1 1372 EGFR 105
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