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 The pancreas has both endocrine and exocrine func-
tions. As an endocrine organ, stimulation of the pancre-
atic  � -cells results in insulin secretion to control system-
ic glucose levels. The exocrine function of the pancreas 
and the need for alkaline pancreatic secretion have been 
appreciated for more than 40 years. Yet, our knowledge 
of the cellular mechanisms (signaling, transporters and 
channels) which accomplish these critical functions has 
evolved greatly. 

 The major function of the exocrine pancreas is to pro-
duce and secrete digestive enzymes into the duodenum. 
To prevent the pancreas from digesting itself, these diges-
tive enzymes are kept inactive by elevated pH ( 1 8.0) of the 
pancreatic juice. The high pH is the result of co-secretion 
of bicarbonate (HCO 3

–). That said, the HCO 3
– concentra-

tion of secretions varies greatly between species: approxi-
mately 70–75 m M  for rats and mice, and about 150 m M  
(isotonic NaHCO 3 ) for cats, guinea pigs and humans. It is 
this difference in the 2-fold HCO 3

– concentration which 
has perplexed physiologists for 30 years. Reaching 75 m M  
NaHCO 3  can be accomplished by the channels and trans-
porters shown in  figure 1 . However, additional HCO 3

– se-
cretion must occur in the context of a continually decreas-
ing ductal Cl –  concentration, which, based on the trans-
port shown in  figure 1 , violates thermodynamics.

  Pancreatic acinar cells are responsible for enzyme se-
cretion while pancreatic ductal cells are responsible for 
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 Abstract 

The pancreas has both endocrine and exocrine functions. As 

an endocrine organ, stimulation of the pancreatic  � -cells re-

sults in insulin secretion to control systemic glucose levels. 

The exocrine function of the pancreas and the need for alka-

line pancreatic secretion (pH 8.0–8.5) have been appreciated 

for more than 40 years. Yet, our knowledge of the cellular 

mechanisms (signaling, transporters and channels) which 

accomplish these critical functions has evolved greatly. In 

the mid-1990s, basolateral Na-bicarbonate (HCO3
–) uptake by 

NBCe1 (Slc4a4) was shown to be critical for the generation of 

approximately 75% of stimulated HCO3
– secretion. In the last 

10 years, several new HCO3
– transporters in the Slc26 family 

and their interaction with the cystic fibrosis transmembrane 

conductance regulator-chloride channel have elucidated 

the HCO3
– exit step at the ductal lumen. Most recently, both 

IRBIT (inositol 1,4,5-trisphosphate receptor-binding protein) 

and WNK [with no lysine (K)] kinase have been implicated as 

additional HCO3
– secretory controllers.
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the secretion of ions (predominantly Na +  and HCO 3
–) and 

water. Failure in the transport of different ions including 
HCO 3

– in the pancreatic duct is most obvious in cystic fi-
brosis [mutations in the cystic fibrosis transmembrane 
conductance regulator (CFTR)], whereas in the pancreas 
the mucus secretion blocks the ducts  [1] .

  In order to secrete HCO 3
–, ductal cells have HCO 3

– or 
H +  transporters on both basolateral and apical mem-
branes. Until recently, the major player in HCO 3

– secretion 
in the apical membrane was consider to be CFTR ( fig. 1 ) 
 [2–4] . At that time, CFTR was consider to be a chloride 
channel capable of HCO 3

– transport activated by an in-
crease in intracellular cAMP  [5, 6] . The model indicated 
that activity of carbonic anhydrase produces HCO 3

–, 
which is then secreted into the ductal lumen. At the same 
time, an H +  is transported into the cell by a Na + /H +  ex-
changer, NHE3 ( fig. 1 ). This model later evolved to in-
clude an apical HCO 3

– exchanger, presumed to be anion 
exchanger 1, 2 or 3 (Slc4a1–3) 1 .

  At  the  basolateral  membrane,  a  HCO 3
–  transporter 

was not initially proposed. A combination of CO 2  ‘diffu-
sion across the membrane’ and a Na + /H +  exchanger was 
sought and then shown to mediate net HCO 3

– entry  [2, 7,
8] . The model indicated that activity of carbonic anhy-
drase produces HCO 3

–, which is then secreted into the 
ductal lumen. At the same time, an H +  is transported into 
the cell by a Na + /H +  exchanger ( fig. 1 ). Discovery  [9]  and 
cloning of the electrogenic Na + / n HCO 3

– co-transporter 
(NBCe1, Slc4a4)  [10]  revealed another basolateral entry 
pathway from the blood  [8] . NBCe1 transports HCO 3

– into 
the ductal cells using the electrochemical gradients (Na + , 
HCO 3

–, voltage) maintained by Na + /K +  ATPase. Thus, the 
Slc4 HCO 3

– transporters were believed to account for the 
major apical and basolateral transporters.

  In 1999, Melvin and associates  [11]  discovered that 
 Slc26a3 (downregulated in adenoma) functions as a 
 Cl – -HCO 3

– exchanger. This discovery revealed that an-
other protein family (Slc26) could have HCO 3

–   transport 
activities, which has forever changed the dogma that only 
Slc4 proteins transport HCO 3

–.
  With the discovery of Slc26 Cl – -HCO 3

– exchangers, the 
physiological role of CFTR-HCO 3

– transport by CFTR is 
becoming more disputed in the pancreatic ductal cells 

 [12] . This dispute was further complicated by the discov-
eries that Cl – :HCO 3

– coupling in mice is 2:   1 for Slc26a3 
 [13]  and 1:   2 for Slc26a6  [13, 14] . A further feature is that 
human SLC26A6 coupling is 1:   1  [15] . Three of 11 mem-
bers of the Slc26 family seem involved in pancreatic 
HCO 3

– secretion (Slc26a3, Slc26a6 and Slc26a9)  [13, 16,
17] . All are found on apical epithelial membranes  [17, 18] .

  Slc26 proteins transport anions as exchangers or chan-
nels  [18–21] . Slc26a6 also transports oxalate, formate and 
sulfate  [14, 22, 23] , whereas Slc26a9 possesses several 
transport modes:  n Cl – -HCO 3

– exchanger, anion channel 
 [20, 24–26]  and Na +  transporter  [26] .

  The relationship of Slc26 proteins with CFTR is a 
2-way street. When R-CFTR binds the sulfate transport-
er anti- �  domain of Slc26a3 or Slc26a6, exchange ac-
tivity is increased  [13]  while the same interaction with 
Slc26a9 inhibits transport  [27] . This interaction also 
 increases CFTR-Cl –  channel activity  [16, 21] , although 
Slc26a9-sulfate transporter anti- �  interaction activation 
requires cAMP  [25, 28] . Not surprisingly, Slc26a9 does 
not stimulate  � F508-CFTR activity  [29] , the most com-
mon mutation in cystic fibrosis, implying that Slc26a9 

  1     SLC is the Human Genome Organization nomenclature for solute car-
riers. There are presently 46 known Slc gene families. Human genes are 
represented with capitals, while genes from other organism are given in 
lowercase letters. See http://www.bioparadigms.org/slc/menu.asp for de-
tailed explanation of these Slc gene families. 

Lumen

Blood

Cl–

CFTR

NaHCO3

NHE3
Na+

H+
ATP

NKA

ADP

K+

NBCe1

nH
CO

3–

Cl–

AE2
CA
H2O

CO2

CO2

  Fig. 1.  HCO 3
– transport by the pancreatic duct, prior to 2004. 

Transductal NaHCO 3  secretion is accomplished by predominant-
ly (75%) basolateral NBCe1-B and apical CFTR Cl –  channel. Oth-
er transporters involved in sodium, potassium and chloride are 
anion exchanger 2 (AE2) and NHE3. CO 2  from the blood is hy-
drated and then carbonic anhydrase (CA) makes HCO 3

– and H + . 
For each H +  excluded from the cell, 1 HCO 3

– is transported in the 
lumen of the pancreatic duct or exchanged for Cl –  on the basolat-
eral membrane. NKA = Na + /K +  ATPase. 
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may be associated with the severity of cystic fibrosis phe-
notypes.

  Several of these interactions and regulatory cascades 
are controversial. Cl –  exit via CFTR and H +  recirculating 
by NHE3  [30]  are necessary for Cl – -HCO 3

– exchange ac-
tivity of Slc26a3/Slc26a6 and HCO 3

–   secretion. Slc26a6-
like Cl – -HCO 3

– exchange activity increases with CFTR in-
hibition in the apical membrane of guinea pig pancreatic 
ductal cells   , opposed to the results in HEK-293 cells 
 [13] . Similarly, Slc26a9  [24]  as well as CFTR  [32]  can be 
inhibited by WNK1/4 [with no lysine (K) 1/4] kinases, 
which are mutated in familial hyperkalemic hyperten-
sion.   At physiological inositol-3-phosphate, its receptor 
releases IRBIT (inositol 1,4,5-trisphosphate receptor-
binding protein) to apparently activate downstream mol-
ecules. Recently, IRBIT was found to increase basolateral 
NBCe1  [33, 34]  and CFTR activity  [34]  ( fig. 2 ). Thus, in-

creasing IRBIT in pancreatic ductal cells would lead to 
stimulation of transductal HCO 3

– secretion  [34] .
  Future studies will almost certainly reveal additional 

details of the regulation as well as the pathophysiology of 
pancreatic HCO 3

– secretion. Fortunately, we can now at 
least account for the mechanism of isotonic NaHCO 3  se-
cretion found in humans.
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  Fig. 2.  An updated model of the HCO 3
– 

transport by the pancreatic duct. Apical 
players are Slc26a3, Slc26a6 and Slc26a9 
members which can interact with CFTR. 
Slc26a9 and CFTR are inhibited by WNK 
kinases and possibly activated by sub-
stance P. NBCe1-B is the major basolateral 
HCO 3

– transporter (pNBCe1), which is 
 activated by IRBIT, thereby increasing
HCO 3

– secretion by pancreatic duct cells.
R = R region; STAS = sulfate transporter 
anti- � ; AE2 = anion exchanger 2; IP 3  = ino -
 sitol-3-phosphate; DAG = diacyl-glycerol; 
AC = adenylate cyclase; NKA = Na + /K +  
ATPase. 
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