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Abstract

Accurate cortical thickness estimation is important for the study of many neurodegenerative
diseases. Many approaches have been previously proposed, which can be broadly categorised as
mesh-based and voxel-based. While the mesh-based approaches can potentially achieve subvoxel
resolution, they usually lack the computational efficiency needed for clinical applications and
large database studies. In contrast, voxel-based approaches, are computationally efficient, but lack
accuracy. The aim of this paper is to propose a novel voxel-based method based upon the
Laplacian definition of thickness that is both accurate and computationally efficient. A framework
was developed to estimate and integrate the partial volume information within the thickness
estimation process. Firstly, in a Lagrangian step, the boundaries are initialized using the partial
volume information. Subsequently, in an Eulerian step, a pair of partial differential equations are
solved on the remaining voxels to finally compute the thickness. Using partial volume information
significantly improved the accuracy of the thickness estimation on synthetic phantoms, and
improved reproducibility on real data. Significant differences in the hippocampus and temporal
lobe between healthy controls (NC), mild cognitive impaired (MCI) and Alzheimer’s disease (AD)
patients were found on clinical data from the ADNI database. We compared our method in terms
of precision, computational speed and statistical power against the Eulerian approach. With a
slight increase in computation time, accuracy and precision were greatly improved. Power analysis
demonstrated the ability of our method to yield statistically significant results when comparing
AD and NC. Overall, with our method the number of samples is reduced by 25% to find
significant differences between the two groups.
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1. Introduction

The measurement of cortical thickness from 3D magnetic resonance (MR) images can be
used to aid diagnosis or perform longitudinal studies of a wide variety of neurodegenerative
diseases, such as Alzheimer’s. Manual measurements are labour intensive and have a high
variability. Accurate and automated software that maps the three dimensional cortical
thickness of the entire brain is thus desirable.

The approaches used for cortical thickness estimation in the literature can be broadly
categorised as mesh-based and voxel-based. One common aspect of these techniques is the
need for an initial classification of the different brain tissue type, namely gray matter (GM),
white matter (WM) and cerebrospinal fluid (CSF). Automatic classification and cortical
thickness measurement from MR images are affected by artifacts such as intensity
inhomogeneity, noise, and partial volume (PV) effect. PV introduces considerable errors in
the measure due to the finite resolution of MR images (~1 mm) compared to the size of the
cortical structures (~2—3 mm). Typically, two sulci banks in contact within a voxel may
appear connected if the CSF is not detected within the GM. This results in erroneously high
thickness estimates or topologically wrong surfaces of the brain.

Mesh based approaches use a deformable mesh to extract the inner and outer boundaries of
the cortex before measuring thickness. Deformable model techniques fit closed parametric
surfaces to the boundaries between regions (Pham et al., 2000), such as the inner (GM/WM)
and outer (GM/CSF) boundaries of the cortex. The main advantage of deformable model is
the smoothness constraint, which provides robustness to noise and false edges. They are also
capable of operating in the continuous spatial domain and therefore achieving subvoxel
resolution. However, deformable model are complex, incorporating methods to prevent self-
intersection of surfaces or topology correction. Another disadvantage of some of these
approaches is the need for manual interaction to initialize the model and to choose
appropriate parameters. Some implementations impose thickness constraints on the cortex
(Zeng et al., 1999; MacDonald et al., 2000) in order to model sulci. Fischl and Dale (2000)
imposed a self-intersection constraint, forcing the surface to meet in the middle of sulci. A
detailed comparison of three well established methods, CLASP (Kim et al., 2005),
BrainVISA (Mangin et al., 1995), Freesurfer (Dale et al., 1999; Fischl and Dale, 2000) is
presented in Lee et al. (2006). To our knowledge, CLASP (Kim et al., 2005) is the only
approach to explicitly model the partial volume effect to fit the deformable mesh. It is
however computationally intensive, with typical running time of over 20 h on a standard PC,
as reported in Lee et al. (2006).

In contrast, voxel-based techniques (Hutton et al., 2008; Diep et al., 2007; Lohmann et al.,
2003; Srivastava et al., 2003; Hutton et al., 2002) operate directly on the 3D voxel grid of
the image, and are therefore more computationally efficient. Those methods are however
less robust to noise and mis-segmentation as they typically lack the mechanisms required to
assess and correct topological errors. They are also hampered by the MR limited resolution,
in small and highly convoluted structures such as the GM sulci, where partial volume effects
are preponderant.

Cortical thickness can be estimated using several metrics. The definition of thickness based
on Laplace’s equation simulating the laminar structure of the cortex, first introduced by
Jones et al. (2000), has gained wide acceptance. Haidar and Soul (2006) showed that the
Laplacian approach is the most robust definition of thickness, compared to nearest
neighbour and orthogonal projections, with respect to variations in MR acquisition
parameters. Lerch and Evans (2005) performed cortical surface reconstruction and compared
six cortical thickness metrics. They found that the coupled surfaces method was the most
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reproducible, followed by the Laplacian definition. However, the coupled surface method is
highly dependant on the scheme used to construct the surface.

Whereas Jones et al. (2000) explicitly traced streamlines (Lagrangian approach), Yezzi and
Prince (2003) proposed a more efficient method that involves solving a pair of first order
linear partial differential equations (PDEs) without any explicit construction of
correspondences (Eulerian approach). The major drawback of the Eulerian approach is the
limited accuracy when estimating thickness, especially within thin structures since it is
solved over a discrete grid. The initialization of the PDEs affects the accuracy, when the
distance to the real boundary is not explicitly computed ignoring the PV effect. A hybrid
Eulerian—-Lagrangian approach was proposed by Rocha et al. (2007) to improve accuracy
while preserving efficiency, but for subvoxel initialization at tissue boundaries a
precomputed surface was required. For clinical applications, precision is of upmost
importance. For example, the expected change in GM thickness during the early stages of
Alzheimer’s disease has been shown to be less than 1mm in most brain regions (Lerch et al.,
2005; Singh et al., 2006).

Building upon Yezzi and Prince (2003), we have improved the precision of the voxel-based
thickness measurement by taking into account the PV coefficients at the GM boundaries to
appropriately initialize the PDEs without previous upsampling and interpolation of the
images. Our scheme can be considered as a combined Lagrangian—Eulerian approach: the
boundaries are initialized with an explicit integration along the streamlines achieving
subvoxel accuracy, and for the remaining grid points two PDEs are solved as in the Eulerian
approach, preserving the computational efficiency. Unlike Rocha et al. (2007), the detection
of the boundaries is performed within the gray matter partial volume map, without previous
delineation of the surface. Rocha et al. (2007) additionally proposed the correction for
divergent streamlines in thick and irregular structures, introducing a distance tolerance (1).
In cortical thickness this is unlikely to occur as the GM, which is a few mm thick, spans one
or two voxels (for a typical full brain MR resolution in a clinical setting: 1 mm x 1mm x 1.2
mm).

In the remainder of this paper, we first describe the method. We then validate the accuracy
of our approach on synthetic data, and its reproducibility on real MR data. In the final
section, we apply our cortical thickness estimation approach to a subset of the ADNI
database, including 43 healthy elderly individuals or normal controls (NC), 53 mild
cognitive impaired (MCI) and 22 Alzheimer’s disease patients (AD). We compared our
method against the Eulerian approach of Yezzi and Prince (2003). The ability of our method
to reach higher power when comparing two groups was demonstrated, with good
computational efficiency (30 min in average on a standard PC).

2. Methods

The proposed method consists of several stages as depicted in Fig. 1: firstly, 3D T1-
weighted MR images are classified into GM, WM and CSF in their original space using a
priori probability maps registered with an affine followed by non-rigid registration (Section
2.1). Secondly, the fractional content of GM for the voxels along tissue interfaces is
computed by modelling mixture of tissues and performing a maximum a posteriori
classification (Section 2.2), which results in a GM partial volume coefficients (GMPVC)
map. In a further step, a continuous GM layer covering the WM is obtained (Section 2.3).
Then, the thickness is computed with accurate initialization of the PDEs (Section 2.4).
Finally, regional statistical analysis is performed using the automated anatomical labelling
(AAL) after extraction and smoothing of the cortical thickness map projected along the
WM/GM boundary (Section 2.5).
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2.1. Pure tissue segmentation

Based on the previously proposed expectation maximisation segmentation (EMS) algorithm
(Van Leemput et al., 1999a; VVan Leemput et al., 1999b), we have implemented a method for
the segmentation of brain tissues (GM, WM and CSF), which includes a fourth order 3D
polynomial-based bias field model and a Markov Random Field (MRF) to improve spatial
coherence, reducing the effects of noise. The probability density functions of the tissues are
modelled with six Gaussian functions (one for each of the main three tissue types, and three
for non-brain tissues including skull and background). Colin atlas is first affinely registered
to the data using a robust block matching approach (Ourselin et al., 2001), followed by a
free form non-rigid registration (NRR) (Rueckert et al., 1999) seeking to maximise
normalised mutual information (Studholme et al., 1998). Probabilistic tissue maps associated
with the atlas were used to initialize and guide the segmentation. NRR control points were
restricted to 20 mm spacing to reduce computation time while achieving excellent matching.
Smooth deformation fields were obtained in less than 6 min on a standard PC.

The resulting output probability maps (soft classifications) for each class are discretised by
assigning each voxel to its most likely tissue type. Hard segmentations (Fig. 2b) and bias
field corrected images are used as an input for the partial volume estimation.

2.2. Partial volume classification

In this step, partial volume (PV) along tissue interfaces is estimated by modelling mixtures
of pure tissues and performing a maximum a posteriori (MAP) classification. We adopted a
two-stage procedure relying on both intensity and spatial interaction similar to the one
presented by Shattuck et al. (2001) and Tohka et al. (2004). This scheme has been optimised
to compute eventually a single map containing the fractional content of GM using the hard
segmentations and bias corrected images obtained after the EMS algorithm. Since voxels
containing partial volume are mostly present along boundaries, PV evaluation is restricted to
the region formed by a dilated GM grid (radius 4).

In our implementation only three pure classes (GM, WM and CSF) and two mixture classes
(GM/CSF and GM/WM) are considered. Although there are some other possible
combinations, they are not taken into account as they are unlikely to occur (e.g. CSF/WM or
CSF/IGM/WM) or they are not relevant (e.g. CSF-background). The labels are thus restricted
to the set I"= {GM, CSF, WM, GM/CSF, GM/WM}. Pure voxels are assumed to have a
Gaussian probability density function, defined by its mean («) and standard deviation (o).
These values ¢ and ¢ are computed over the bias field corrected MR image using the hard
segmentations obtained in the previous segmentation step. Mixed voxels, containing at most
two tissues, are modelled with a probability density function which uses weighted sums of
Gaussians over all the possible values of PV as proposed by Santago and Gage (1993). The
labelling is performed with a Potts model as in Shattuck et al. (2001) and solved with the
Iterative Condition Modes (ICM) algorithm (Besag, 1986). This model encourages
configurations of voxels that are likely to occur such as GM/CSF or GM/WM voxels
adjacent to GM, and guarantees spatial coherence of pure tissue segmentations WM, GM
and CSF.

Once voxels have been labelled using 7", we compute for each voxel the portion of pure
tissue, called here fractional content, which ranges between [0, 1]. The fractional content F;
of voxels classified as pure tissue are set to 1 for the class j and 0 otherwise. For voxels
classified as mixed, their fractional content Fj; between both pure tissues j and k is
computed as in Shattuck et al. (2001), using the bias corrected intensity x; and the means 4
and g of the two pure tissue types obtained in the previous step as:
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Fju=U ('uk -~ xi]
Mk — Hj (1)

where U(-) is a limiter restricting the range of the fractional content to [0,1]. The final partial
volume coefficients (PVVC) map of GM used for cortical thickness estimation is then
obtained as GMPVC = Fgpmmwm U Fem U Femicse- Likewise, a GM grid is constituted with
only those voxels classified as pure GM tissue Fgpy. Fig. 2¢ and d shows an example of
computed GMPVC map and GM grid.

2.3. Correction of 3D GM grid

It is assumed that the GM is a continuous layer of neurons covering the WM surface. To
compute a reliable GM thickness, a continuous domain (GM grid) is required where the
PDEs can be solved. Because in very thin regions (less than one voxel thick), the partial
volume classification step may introduce some gaps, a further correction of the GM grid,
obtained in Section 2.2, is required to enforce continuity. This is achieved by re-labelling
any voxel at the interface WM/CSF to GM. We implemented an algorithm which checks
whether in the 3 x 3 x 3 neighbourhood of each WM boundary voxels there is any CSF
voxel breaking the GM/WM continuity, in which case it is reclassified as GM. Fig. 2e
depicts in an example the result of this reclassification at the GM boundary after the pure
tissue voxels (Fig. 2d) are selected. This does not affect the measure of thickness as the
algorithm relies afterwards on the partial volume information, but it allows a reliable
computation of laplace’s equation, and subsequent distance functions as described in Section
2.4,

Restricting the GM mask to only pure tissue voxels provides a good delineation of deep
sulci as illustrated in Fig. 2d and e compared to the initial GM segmentation shown in Fig.
2b. Furthermore, correcting for the WM/CSF gaps allows us to measure thin GM zones,
even when they span less than one voxel. The deep gray matter and GM detected around the
ventricles is not taken into account for thickness estimation purposes.

2.4. Thickness estimation

Once pure tissue segmentation and partial tissue classification are performed, the thickness
of the resulting GM is afterwards computed following Jones’s definition (Jones et al., 2000)
as shown in Appendix A, but here in a combined Lagrangian—Eulerian approach. The reader
should refer to Appendix A for the notation. Fig. 3 illustrates the different steps yielding to a
GM thickness map. The Laplace’s equation V2f(x) = 0 is first solved within the corrected
GM grid obtained in Section 2.3. Then, a normalised gradient vector field T— of f(x) is

—_ Vf
computed as g M which provides several paths, or streamlines, guaranteeing a unique
correspondence between WM and CSF. The thickness is therefore the distance between WM
and CSF along these paths, but projecting them outwards into the GMPVC map to detect the
real boundaries. This is done by solving the Eulerian PDEs for the distances Lg and L
within the discrete GM grid, as in Yezzi and Prince (2003), but after a Lagrangian
initialization using the GMPVC map.

To detect the real boundary without any resampling, for each GM voxel sharing a boundary
with one or more mixed voxel GM/CSF (or GM/WM) we follow the streamline, in a ray
casting scheme, from the GM in the direction of T— (—T—, respectively). Assuming that
the point spread function is a boxcar, the boundary is the point where the GM partial volume
coefficient equals the CSF (WM, respectively) partial volume coefficient. The
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implementation is based on a dichotomy search restricted in one direction, with decreasing
stepsize down to & = 1/1073 of the voxel size.

Fig. 4 illustrates the idea of the initialization in a 1D model of voxels shared by two tissues
A and B. Assuming the PVC map is known, a simple model for the combined signal is the
summed fractional signals of tissues A and B. Let hy be the voxel size, a < 1 the fraction of
voxel i occupied by tissue A and APVC the discrete PVC map for the tissue A. Because the
PV is represented at the centre of the voxels, the boundary between A and B (between voxels
i —1and i) is the point (xg) where the interpolated PVC is equal to 0.5, resulting in a
measured size of the tissue A as hy + ahy. The boundary point (xg), can be detected with a
ray cast from the centre of the voxel i — 1 (tissue A) towards the mixed voxel i.

Figs. 5-7 shows un example of thickness computation of a 5.2 voxels thick structure
(mimicking GM) in a regular grid. The spatial sampling of the structure leads to its
representation in both pure and partial volumed voxels. To achieve an accurate measure,
voxels being shared by two pure tissues are tagged within the corresponding GMPVC map
before computing their fractional content. In this example, the fractional content of GM at
the CSF boundary is 0.4 and the fractional content of GM at the WM boundary is 0.8.
Afterward, with the boundary conditions fixed at the WM and CSF interfaces (0 and 1,
respectively), Laplace’s equation is solved within the pure tissue voxels and the gradient
vector field is obtained defining the streamlines between the WM and the CSF (Fig. 6). The
gradient vector field is regularised with a Gaussian convolution (typically ¢ = 1 to reduce
discretisation effects). Subsequently, the Eulerian PDEs are solved within the GM grid after
a Lagrangian initialization at the boundaries (Fig. 7). Finally, the expected thickness of 5.2
voxels is computed as W= Lg + L;.

Because of the thin and convoluted structure of the brain, special care is taken for two
configurations of partial volumed voxels. Firstly, when GM voxels appear with low
GMPVC values in thin regions, as depicted in Fig. 8; Secondly, in deep sulci where mixed
GMY/CSF voxels appear surrounded by GM in opposite directions as depicted in Fig. 9. On
one hand, in very thin structures after the correction of the 3D GM grid, it might occur that
for a given voxel x within the GM grid at the boundary, the computed GMPVC (x) < 0.5. In
that case, the direction of the ray cast must be reversed towards the actual position of the
boundary supposedly inwards. This means, for instance, that for a GM voxel lying on the
GMY/CSF boundary and whose fractional content is lower than 0.5, the ray r follows the
streamline in the direction of —T—(opposite signs) as shown in Fig. 8. On the other hand, in
deep sulci it is common to find mixed GM/CSF voxels surrounded by GM in opposite
directions as depicted in Fig. 9. When the fractional content of GM is computed it might not
reflect the actual geometry of the structure, leading to overestimated thickness if the ray
casting approach is used. Because of the spatial sampling, those voxels are indeed a mixture
of GM/CSF/GM. They are therefore split into two mixed voxels (GM/CSF and CSF/GM)
and their PVC is redistributed consequently according to the magnitude of the projection of
the 3D unit vector field T— over the rectangular grid.

2.5. Smoothing of cortical thickness maps and region-based analysis

Finally, when studying regional population changes, each individual cortical thickness map
is smoothed using the interquartile mean (IQM) within a 5 mm radius sphere within the GM.
Thus, the effects of discontinuities is reduced. Smoothing is currently applied in many other
methods when comparing populations and assessing brain significant changes (Lerch et al.,
2005; Hutton et al., 2008). To overcome variability of the cortical folding, our smoothing is
performed on the WM/GM boundary, and restricted to the connected components of the GM
mask inscribed within the sphere and thus respecting anatomical boundaries (Fig. 10). After
thickness estimation and smoothing, the automated anatomical labelling (AAL) template
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(Tzourio-Mazoyer et al., 2002) is mapped to the patient, using the deformation field
previously computed, resulting in a list of mean thickness per region to be used for
interindividual comparisons, as shown further in this paper.

3. Experiments and results

This section describes the experiments performed to evaluate the proposed method. Our
approach was to validate each step separately on both phantoms and real data, then test the
reproducibility on the overall technique and, finally, show the results of a study on clinical
data. We also compared the performance of our method with the Eulerian implementation as
proposed by Yezzi and Prince (2003) ignoring the PV. All the algorithms were implemented
in C++, using the open source ITK libraries. Tests were performed on a Dual Core 2.4 GHz
computer running linux.

3.1. Fractional content and PV validation

To evaluate the accuracy of the fractional content computation and PV labelling,
experiments were performed on BrainWeb simulated data set (Kwan et al., 1996; Collins et
al., 1998). The images had an isotropic voxel resolution of 1 mm?3 and varying degrees of
noise and intensity inhomogeneity. The resulting PV maps were compared with the ground
truth fractional volumes using the root mean square error (RMS).

The low RMS error (Table 1) demonstrates that most of the partial voluming occurs along
tissue boundaries validating the PV labelling assumption. A higher RMS error for CSF is
attributed to the fact that the mixture between CSF and background is not considered by our
model. Fig. 11 shows an example of partial volume classification on a BrainWeb simulated
image (noise 3%, bias field 20%), compared to the ground truth.

3.2. Accuracy of the thickness measurement over phantoms

To determine the accuracy of the thickness measurement using PV estimation, experiments
over synthetic spherical shells with constant thickness and a spiky shell, mimicking cortical
folds, were performed. To simulate the partial voluming occurring at the boundary of a real
object when discretised, the binary phantoms were first generated on a high resolution grid
(N x N x N, with N = 1100) with 0.1 mm3 spacing and resampled to a lower resolution
similar to actual MR. The value of each voxel was defined by the percentage of non-zero
voxels within the region covered by this voxel on the original grid.

3.2.1. Spherical shell—A hollow sphere with inner radius r = 20 mm and external radius
R = 23 mm was constructed to define a size and thickness similar to the ones of the brain
cortex. Fig. 12 depicts an example of simulated P\VC map for an isotropic 0.5 mm sphere
and the computed thickness differences when the PVC is taken into account. Fig. 13 shows
the computed thickness around the sphere (angles between 0 and #/2) at a single slice with
and without PVC. The results of thickness estimation for different resolution spheres is
shown in Table 2. A further comparison was performed taking into account voxels PVC >
0.5. The results showed that with PVVC, accurate measurements can be performed for both
isotropic and anisotropic data and that accuracy is proportional to the image resolution. The
errors caused by the partial volume effect on the sphere mean thickness were greatly
reduced with the use of PVC maps. For a 1 mm3 resolution image the error was reduced
from 9.33% to 1.33%. As expected, without the PVC map the thickness measurements were
as accurate as with the PVC only along the orthogonal axes of the sphere and when the
borders coincide with the spatial sampling, whereas the error was increased in oblique
directions. Similar results were found when PVVC map was thresholded to 0.5. In contrast,
when the PV map was used and the boundaries were initialized according to the direction of
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the structure an accurate measurement over the entire sphere was computed. The combined
Eulerian—-Lagrangian approach used in average 38% more computation time for these
examples. The increase was due to the intialization using the ray casting at the boundary. As
an example, for the sphere with the largest amount of GM voxels (139429, for the 0.5 mm?3)
the computation time incremented from 1.585 s to 2.005 s.

3.2.2. Spiky shell—A synthetic phantom consisting of a 3D donut shape with a simulated
layer of tissue was constructed. The equivalent of WM was first created in a high resolution
2D binary image (256 x 256) of a circle with four added spikes (mimicking four gyri):

= 1, D<20+30.+/cos(4nr), 1€][0,1]
1o, Otherwise @)

where D is the distance to the centre of the image. The diameter in the vertical direction was
set to 70% of the one in the horizontal direction. The binary image was then dilated by a
disk of 30 voxels to simulate the equivalent of a GM layer (Fig. 14b). The resulting image
was then rotated around its vertical axis to create a donut like shape within a 512 x 512 x
256 volume (Fig. 14a).

To create a pseudo ground truth, the thickness of the GM layer of the high resolution volume
was computed using the Laplacian method (Fig. 14c) and then downsampled by a factor of 8
resulting in a 64 x 64 x 32 volume. The WM, GM and CSF layers were also subsampled,
resulting in the P\VC maps used for the thickness computation at low resolution. Fig. 14
shows the high resolution phantom, the GMPVC map generated and the estimated thickness.

Thickness computation at low resolution with and without using the PVC were evaluated.
The results, presented in Table 3, showed that the thickness estimation with PVVC map used
for initialization was more stable and accurate in all areas of the phantom. This effect can be
appreciated in the central region (thin WM), where most of the voxels are being shared by
GM voxels in opposite directions. When the PVC map was thresholded at 50% of GM, the
computed thickness was higher.

3.3. Experiments and results using real MR data

3.3.1. Patients—Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://www.loni.ucla.edu/ADNI). The ADNI was launched in 2003 by the National Institute
on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB),
the Food and Drug Administration (FDA), private pharmaceutical companies and non-profit
organisations, as a $60 million, 5-year public—private partnership. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD). Determination of sensitive and specific markers
of very early AD progression is intended to aid researchers and clinicians to develop new
treatments and monitor their effectiveness, as well as lessen the time and cost of clinical
trials. The Principle Investigator of this initiative is Michael W. Weiner, M.D., VA Medical
Center and University of California — San Francisco. ADNI is the result of efforts of many
co-investigators from a broad range of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across the US and Canada. The initial goal of
ADNI was to recruit 800 adults, ages 55-90, to participate in the research — approximately
200 cognitively normal older individuals to be followed for 3 years, 400 people with MCI to
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be followed for 3 years, and 200 people with early AD to be followed for 2 years. For up-to-
date information see http://www.adniinfo.org.

3.3.2. Reproducibility of the thickness measurement—To evaluate the
reproducibility of the method, we selected 17 subjects (eight NC, eight MCI and one AD)
from the ADNI database, who underwent a baseline and a repeat scans during the same
session. Only patients who had the highest quality ratings for both images were kept. All
patients were imaged on a 1.5 T scanner with in-plane resolution of 0.94 x 0.94 mm, 1.25 x
1.25 mm and 1.30 x 1.30 mm, and slice thickness of 1.2 mm (Detailed information about
MR acquisition procedures is available at the ADNI website www.adni-info.org). All
images were corrected for gradient non-linearity distortion, intensity non-uniformity, and
were scaled for gradient drift using the phantom data.

We computed the thickness using the proposed approach and compared the results with the
Eulerian approach as proposed by Yezzi (without taking into account partial volume
effects). Fig. 15 shows an example of cortical thickness maps computed with the two
methods. Fig. 16 shows the differences between the two measures as an average of the
cortical thickness in the full brain. If the PV is not taken into account, a mean + SD(std.
dev.) cortical thickness of 3.104 mm + (0.18) was computed over the whole brain for all the
subjects, whereas a value of 2.18 mm + (0.18) was obtained with the proposed approach.

In order to assess the precision of the two methods, the sum of square of differences was
computed for each region of the AAL template (Tzourio-Mazoyer et al., 2002). The
cerebellum and subcortical nuclei were excluded from the analysis. The average for all the
regions was 0.13 with the Eulerian approach and only 0.08 with the proposed method.
Besides the tendency of thickness overestimation, higher variability was evident for sulci
detection in some regions when the PV was not taken into account as shown in Fig. 15.
Indeed, because of the spatial sampling, the sulci may be well delineated from one of the
acquisitions and mis-detected from the other, detrimental to the reproducibility.

3.3.3. Computational performance—On real 3D MR data (166 x 256 x 256 voxels) the
entire procedure to compute the cortical thickness took in average 30 min over the 17
individuals from ADNI. Most of the time was spent on the initial pure tissue classification (9
min in average + 6 min registration) and in the partial volume labelling (10 min in average).
This step is computationally expensive because of the multiple neighbourhood iterations in
the ICM for the MAP classification. Once the WM, GM, CSF and GMPVC are available,
the computation time for cortical thickness estimation slightly differs between the Eulerian
and the proposed combined Lagrangian—Eulerian approach. Fig. 17a shows the differences
in number of voxels against computation time for both approaches. The Eulerian approach is
slightly faster, but the number of voxels of the GM grid increased because the partial
volumed voxels were included in the computation. In the proposed approach, the size of the
GM grid was reduced by 40% (272,535-163,954 in average), resulting in a smaller domain
where the PDEs are solved. Thus, Laplace’s equation and the distance equations with the
current implementation are computed in less time. In average 7.2 s vs. 2.1 s for the Laplace
equation and 21.7 s vs. 8.5 s for the distances. This difference compensates for the relatively
expensive computation of the boundaries with the Lagrangian initialization when the PVE is
taken into account (18.5 s in average). Fig. 17b depicts the computation time for the
different steps constituting the cortical estimation part. (Solution to Laplace’s equation,
Computation of Gradient Vector Field, Distances Initialization at the boundaries and
Solution to Distance equations.)

3.3.4. Cortical thickness differences between healthy controls (NC), MCI and
AD—In this study, we investigated the ability of our method to detect regional cortical
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thickness differences between NC, MCI and AD. We selected 22 AD patients (mean age at
baseline 75.58 + 5.69, mean MMSE 23.41 + 1.79), 53 MCI (mean age at baseline 75.51
7.70, mean MMSE 27.02 + 2.00), 43 NC (mean age at baseline 74.46 + 5.06, mean MMSE
28.85 + 1.22). All images were identified in the ADNI database as best in terms of the
quality ratings, and underwent the same preprocessing as described in the previous section.

Comparisons between the three groups were carried out using the mean thickness by region.
Two sample t-tests were performed between NC/MCI, MCI/AD and NC/AD to identify
regions where a significant atrophy exists, with a p < 0.05, corrected for multiple
comparisons using false discovery rate (FDR). The results show significant differences
between the three groups (Table 4, pFigs. 18 and 19). As expected, the thickness was lowest
for the AD group, the highest was for the NC group, whereas the MCI patients show
intermediate thickness values. The largest variances in the measure were found within the
MCI, which is consistent with the heterogeneity of this group. The most important
differences were found when comparing NC against MCI, compared to the differences
between MCI and AD. Despite the atrophy measured in some affected regions when
comparing MCI and AD, they are not significant, as revealed by the -values.

The most significant differences (p-values) were found in some regions of the temporal lobe,
the parietal lobe and the frontal lobe in both the NC/MCI and NC/AD comparisons. The
smallest atrophy was found in the occipital lobe.

Although the whole temporal lobe was affected, the strongest differences were revealed in
the hippocampus and parahippocampal gyrus. As can be appreciated in Fig. 19, there was a
progressive thinning of the inferior and middle temporal gyri, then superior temporal gyrus.

In the parietal lobe, the most significant differences appeared in the angular gyrus (NC-
MCI: 0.29 mm; NC-AD: 0.42 mm), the posterior cingulate region, supramarginal gyrus and
parietal inferior gyrus. The atrophy was in general bilateral except in the precuneus region,
where the right (NC-AD: 0.38 mm) appeared more affected than the left (NC-AD: 0.23
mm).

In the frontal lobe, the superior gyrus appeared slightly more affected than the middle and
inferior gyri. Although a small atrophy was found in the orbitofrontal region, the differences
were not significant (p > 0.1).

Table 4 shows the differences between the three groups for some selected regions. The star
sign (*), indicates significantly atrophied regions, using a FDR-corrected p < 0.05. Fig. 18
illustrates the differences for four regions using box plots and Fig. 19 depicts the regional
differences over the generic AAL template.

Cortical thickness was also computed for the same individuals using Eulerian approach as in
Yezzi and Prince (2003) and without taking the PVC into account. When comparing with
the Eulerian approach, the number of regions with significant atrophy decreased (using a
FDR-corrected p < 0.05). For example, for the comparisons NC/AD, atrophy in superior
temporal and middle temporal gyri were not detected as significant, whereas they were
detected with the proposed method. Similarly for the comparison between NC/MCI, which
showed significant changes in the hippocampus and temporal lobe, whereas only the
hippocampus left was detected as significant with the Eulerian approach.

3.3.5. Power analysis comparison with the Eulerian approach—When the PVC
was not taken into account, the differences detected between the groups decreased and were
on average less significant. It should be noted that the atrophy in the brain differs depending
on the location but when the whole brain thickness was considered, the mean difference
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between healthy controls and AD was 0.27 mm (p < 0.001) without the PVC, compared to
0.31 mm (p < 0.001) with the proposed method. Similarly, the difference between NC and
MCI was 0.22 mm (p < 0.001) without the PVC and 0.22 mm (p < 0.001) with the proposed
approach. Although the differences are still statistically significant in both cases, with
Yezzi’s approach atrophy was estimated to be less pronounced across the brain in almost all
the AAL regions. In order to compare the ability of both methods to differentiate cortical
thickness in healthy controls vs. AD, power calculations were performed per AAL region on
both sets of results using a general power analysis program called G*Power 3 (Faul et al.,
2007).2 Sub cortical gray nuclei regions were excluded from the analysis. In both cases the
significance level (a as type | error probability) was set to 0.05 and the power, defined as 1
— S was set to 0.95. For each method, we answer the question of how many individuals n are
needed to find significant differences between AD and NC. Table 5 summarizes the results
for some of the AAL regions typically atrophied in Alzheimer’s disease. Overall, the
number of individuals needed to detect significant changes between AD and NC is reduced
by 25% when our method is used. Likewise, the effect size (9) was larger, which suggests
that more subtle changes can be detected. The opposite appeared only in the left
hippocampus (28 vs. 30 individuals); nevertheless, the hippocampus is the largest structure
to be measured, with an average thickness above 5 mm, where the partial volume effect is
not as prominent as in other thinner regions. Fig. 20 depicts the power as a function of the
sample size for the full brain.

4. Discussion and conclusion

We have described a novel voxel-based method for accurate and reproducible cortical
thickness estimation, which uses partial volume classification to achieve subvoxel accuracy.
The main contribution of our method is the preservation of the efficiency of the Eulerian
approach while improving the accuracy through a better initialization. Unlike other
approaches, all the calculations are performed on the discrete grid. The method is fully
automatic and simple, using a ray casting technique in the direction of the tangent field, such
that the estimated boundary defines an equilibrium between the shared fractional content.
For the most challenging cases, where a PV voxel shares its boundary with two or more pure
voxels in opposite direction, the tangent field cannot be used and the fractional content is
equally distributed amongst the opposite voxels.

One advantage of our approach, compared to published mesh-based techniques, is its speed.
In addition, we performed extensive experiments on phantoms that showed high accuracy
for a wide range of configurations. The full algorithm, including atlas non-rigid registration,
segmentation, PV estimation, thickness estimation, smoothing and regional statistics
extraction runs under 30 min on a standard PC, compared to the 20 h reported by mesh-
based methods. Compared to other voxel-based techniques, the computational cost was
marginally increased because of the MAP classification of partial volume voxels. However,
once the three tissues were classified and the GMPVC was computed, the time for thickness
computation was similar. This is due to the reduced number of voxels to be computed with
the Eulerian approach and the efficiency of the Lagrangian initialization, performed with a
ray casting method and a dichotomy search at the GM boundary. If the number of voxels
were the same, our method would be slightly more expensive, but still as efficient and
accurate as required for clinical studies.

Intensity-based segmentation methods may overestimate cortical thickness in challenging
cases such as buried sulci. This issue has been previously treated as a post-processing step
using thickness constraints to cut the sulci and preserve the topology. Unlike existing

2http://WWW.psycho.uni-duesseldorf.de/abteiIungen/aap/gpower?.»/.
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methods, our approach implicitly delineates most sulci because the initial binary
segmentation is reclassified into pure and mixed voxels. This improves the detection in
highly convoluted regions where partial volume effect is more pronounced.

There is no gold standard of cortical thickness estimation, or even accepted ways to measure
the thickness on highly convoluted surfaces. Our approach in this paper was to validate each
step separately on both phantoms and real data, and then test the reproducibility on the
overall technique. The PV estimation was validated against the BrainWeb dataset and the
thickness estimation was validated on simulated phantoms, showing excellent accuracy on
both isotropic and anisotropic data. The reproducibility of the technique was then evaluated
on real data, showing a good agreement between the baseline and repeat scans. A study on
clinical data showed regional differences between healthy elderly individuals, individuals
with mild cognitive impairment and Alzheimer’s disease patients. The most significant
atrophy was measured in the temporal lobe when comparing NC to MCI and NC to AD,
which is consistent with the published literature (Lerch and Evans (2005)).

When comparing with other voxel-based approach without taking into account the PV, our
technique produced better results as it was more able to detect subtle differences in cortical
thickness. When the PV was ignored, precision was compromised as there was a tendency to
overestimate the thickness in some areas on phantom studies. In population studies the
precision is important as it is related to the ability in differentiating between groups. We
proposed a method with more statistical power as compared with the classical Eulerian
approach. Evidence suggests that with groups reduced by 25% the proposed method will be
able to yield a statistically significant result. When considering the structures first affected in
Alzheimer’s disease such as the temporal lobe, the number of the individuals to obtain
statistically significant differences can be reduced by up to 39% in average.

In the future, we plan to use our technique on clinical data to study cortical atrophy in other
neurodegenerative diseases. We intend also to develop techniques for voxel-based inter-
subject comparisons, a challenging issue given the large anatomical variability between
patients.
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Appendix A. Cortical thickness and the boundary conditions

In the original method (Jones et al., 2000) the Laplace’s equation is solved in the GM
volume (with the WM and CSF adjacent to the boundaries of the GM set to fixed potentials)
such that:

V2 £(x)=0 (A.1)

The normalised gradient of the Laplace solution provides several paths, or streamlines,
between the WM and CSF, which do not intersect, are locally perpendicular to the
equipotential sublayers, and guarantee a unique correspondence between the two boundaries
following a tangent vector field T— (see Fig. A.2), computed as

i

—y
T=r—+

oAl (A2)

Thus, the thickness W(x) at a given point x is computed by the sum of two functions Lg(x)
and L3(x) measuring, respectively, the arc length of the streamline from the WM to x and
from the CSF to x (Fig. A.1).

An explicit integration of T—(—T—) between x and the CSF (WM, respectively) following
the streamlines can be used to compute L1(x) (Lo(X), respectively). This approach, called
Lagrangian, is computationally expensive since each trajectory is explicitly traced. Yezzi
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and Prince (2003) proposed an Eulerian approach whereby a pair of first order partial
differential equations are solved to compute the length of the trajectories without explicitly
tracking the streamlines:

— —
VLy-T=1-VL,-T=1 (A.3)

with boundary conditions Ly(x) =0, L1(x) =0, V x € [WM,CSF]. Rocha et al. (2007)
showed that the main advantage of the Eulerian approach is the computational speed.
However, its major drawback is the loss of accuracy, which is emphasised when the
anatomical structures, such as the GM, are small compared to the spatial resolution (see Fig.
A2).

The most important factor affecting the precision of the Eulerian approach for computing the
thickness in the GM layer is the choice of initial boundary conditions for Lg and L;. In Yezzi
and Prince (2003) they are fixed to 0, implicitly assuming that the boundaries coincide with
the centre of the grid points, producing an overestimation of the thickness when Ly and L
are summed. Fig. A.3 illustrates this bias effect on a 1 mm spacing grid.

Initialization of the boundaries to half of the negative mean voxel spacing (i.e. —0.5 for 1
mm spacing isotropic images as shown in Fig. A.4), as proposed by Diep et al. (2007),
produces the correct thickness but only for isotropic images, when the boundaries coincide
with voxels borders (no partial volume effect) and they are aligned to the grid. Other
possibilities imply upsampling and interpolation, but with high computational costs.

Appendix B. Numerical implementation: finite differences for anisotropic

images

1

To avoid resampling when the images are anisotropic, we solve iteratively the Laplace finite
difference approximation as in Diep et al. (2007). Thus, given a 3D grid with voxel spacing
hy, hy and h, in the x, y and z directions, respectively,

2+

(B.1)

where fi1(i, j,K) is the potential of the voxel (i, j,k) during the (t + 1)th iteration.

Given the unit vector field T—, the finite difference approximations used to solve (A.1) are
also generalised for anisotropic images. To reduce the effects of voxelisation when
computing the finite differences, first, a regularised tangent field perpendicular to the
structure is obtained by

—
To=Gs =T, (B.2)
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where G, is a Gaussian function (¢ = 1), convolved with each one of the components of T—

from Eq. (A.2). Using Ty[i, j,k], Ty[i, j,K] and T,[i, j,k] as the components of T_(: at the grid
point (i, j,k)

1 . : . ..
XU hxhyh +hyh |Tx|\Lo(iFhy, j, K)+hyih |Ty|Lo(i, jFhy, k)+hhy|T:|LoG, j, kFh;)]

Lo(i, j. k)=
O L ho T e[l Ty gy T (B,

Ly, j, k)=

hyhyh,+hyh,|Ty|Li(ixhy, j, k)+hoh,|Ty|Li(i, j£hy, k)+hohy|T,|L1 (i, j, k<h,
h)~hZ|Tx]+hXhz|T)-[+hxh_y|T;|X[ xhyhy+hyh, | Tx|Ly(ixhy, j, k)+hih [Ty|Li(i, j£hy, K)+hihy|T |L1(, j, k+h;)] ®

wherewhere

. | ithy, T>0
’ih-“{ i—hy T<0 -

and

. i—hy, T.>0
i+hy, T,<0 °

and similarly for the voxels j, k, with hy and h,. Egs. B.1, B.3, B.4 are solved iteratively
using the successive over-relaxation (SOR) method (Press et al., 1988), which is a numerical
method used to speed up convergence of the Gauss—Seidel method for solving a linear
system of equations. With a good relaxation factor, SOR can require half as many iterations
as the Gauss—Seidel method. Experimentally we chose a relaxation factor of 1.28 for Eq. (B.
1) and 1.2 for Egs. (B.3) and (B.4). This produces a cortical thickness map (Fig. 2f) where
all the voxels in the GM grid are tagged with the thickness measured along the streamline
crossing through this point.
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Fig. 1.
Overall process for cortical thickness estimation.
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Fig. 2.

(&) MR T1W image. (b) Initial GM hard segmentation from EMS. (c) Computed GMPVC
map. (d) GM pure tissue voxels (GMPVC = 1). The lost of continuity in the GM is
highlighted. (e) Continuity corrected GM grid. (f) Overlaid of resulting thickness map and
original MR image.
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Fig. 3.
Combined Lagrangian—Eulerian thickness estimation.
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Fig. 4.

Unidimensional model of a voxel occupied by two pure tissues A and B. Top: Voxel i — 1
contains only tissue A, voxel i contains both A and B and voxel i + 1 contains only tissue B.
Bottom: PVC representation for the tissue A. The boundary (xg) of A is found by linear
interpolation at APVC = 0.5.
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Fig. 5.
Example of an isotropic 5.2 voxels thick structure (GM), represented in pure and mixed
tissue voxels. If only pure tissue voxels were considered the resulting thickness would be 4.
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Fig. 6.
Solution to Laplace’s equation and computation of gradient vector field within the GM grid.
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Fig. 7.

Computation of thickness. After initialization of distance functions Lg in the GM/WM
interface, and L4 in the GM/CSF interface with the GM fractional content, the PDEs are
solved for the remaining voxels. The thickness is computed as expected and the values are
updated only in the GM grid.
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Fig. 8.

Depending on the computed GMPVC for a given GM voxel x, two cases of boundary
detection are considered. When GMPVC > 0.5 the ray r follows the direction of the unit
vector field. The opposite when GMPVC < 0.5 as the boundary has to be supposed inwards
with respect to the centre of the voxel x.
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Fig. 9.
Partial volumed voxels in deep sulci are composed of a mixture GM/CSF/GM (GM in
opposite directions) which can be reapportioned in mixtures GM/CSF and CSF/GM.
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Fig. 10.

Example of cortical smoothing. (a) Computed cortical thickness map. (b) Smooth map of
GM/WM surface using a 5 mm radius sphere over the connected components. (¢ and d)
Marching cubes rendering of voxel maps (a) and (b), respectively.
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Fig. 11.

Example of partial volume classification on simulated MR data: (a) Initial MR T1 weighted
Image (noise 3%, bias field 20%), (b) Hard GM segmentation obtained with EMS algorithm,
(c) Ground truth PV map, and (d) Computed GMPVC map.
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Fig. 12.

Example of thickness computation for a 3 mm synthetic hollow sphere (isotropic 0.5 mm
spacing). (a and b) PVVC map generated from a high resolution sphere. (c) Computed
thickness with initialization at negative half of the voxel spacing. (d) Computed thickness
with PVC initialization.
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Fig. 13.

Comparison of computed thickness for the 0.5 x 0.5 x 0.5 mm sphere. The thickness was
measured around the WM/GM surface in the central slice, with angles ranging between 0
and z/2.
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Fig. 14.

Thickness computation for the spiky phantom. (a) Semitransparent 3D view. (b) 2D cutplane
of simulated WM, GM and CSF layers. (c) Pseudo ground truth: computed thickness at high
resolution (HR). (d) PVC map generated by subsampling the original phantom by a factor of
8. Computed low resolution thickness maps (e) without using the PVC (only pure tissue
voxels), (f) thickness using the PVC > 50%, (g) thickness using PVC map.
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Fig. 15.
Cortical thickness maps (a and c¢) without using PVE and (b and d) with the proposed

approach. A natural delineation of the sulci is achieved by taking into account the partial
volume effect.
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Fig. 16.

Comparison of mean cortical thickness of the 17 subjects computed from two different scans
and with the two methods: (i) No PVE as in Yezzi’s approach and (ii) proposed method

using the PV.
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Fig. 17.

Comparison in computation time, for the cortical thickness estimation part, between the two
approaches on real MR data: Eulerian (NO PVE) and Combined Lagrangian—Eulerian
(PVE). (a) GM grid size vs. total time. (b) Disaggregated times for each one of the steps.
LE: SOR computation of Laplace’s Equation, GVF: Computation of Gradient Vector Field,
DIST INI: Initalization of PDEs at the boundaries (Lagrangian in PVE case), DIST:
computation time for distances functions Ly and L. When the PV is being used, most of the
computation time is spent in the Lagrangian initialization, however this time is compensated
by the reduced number of voxels being included in the grid for the Eulerian part.
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Fig. 18.
Difference in thickness among the three groups for different regions. (a) Parahippocampal

gyrus (PHG),(b) hippocampus (Hipp), (c) supramarginal gyrus (SMG), (d) middle temporal
gyrus (MTL), (e) angular gyrus, and (f) superior temporal gyrus (STG).
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Fig. 19.

AAL template showing the regional mean cortical thickness difference between the groups
over the surface. Top: NC and AD; Bottom: NC and MCI. Left: lateral and Right: medial
views.
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Fig. 20.

Power analysis for the whole brain: Comparison of power (1 — $) against the number of
subjects required using both methods. One can see that using the PVE, a fewer number of
subjects is needed when taking partial volume into account to reach high power (>0.8) and
detect significant changes between NC and AD.
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Fig. A.1.
Distance equations Lg and L4 for computation of thickness W at a given point x. Thus, W(x)

= Lo(x) + L1(X).
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Fig. A.2.
Representation of initial pure tissue segmentations (WM, GM and CSF) and computation of

the normalised gradient vector field.
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Fig. A.3.

Since the distances are measured from the centre of the voxels, the initialization of the
boundaries at 0 as in Yezzi and Prince (2003) leads to an overestimation of the thickness W=
Lo+ L.
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Table 2

Comparison of thickness accuracy for the 3 mm thick spheres. using Yezzi’s approach: (i) without taking into
account the PVC (only pure tissue voxels), (ii) taking into account only the voxels whose PVC > 50% and (iii)
with our approach using the PVC.

Resolution NO PVC map Mean + SD  PVC>50% Mean + SD  With PVC map Mean = SD

05%x05x05 2.86+0.08 2.86 +0.09 3.01+0.01
05x05x1 2.80+0.16 2.81+0.17 3.02 £0.02
Ix1x1 2.72+0.17 2.74+0.16 3.04 £0.02
1x1x15 2.68+0.24 2.70+0.24 3.05+0.08
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Comparison of thickness for the synthetic original spherical spiky shell. High resolution phantom (0.1 mm?q)

and low resolution phantom (0.8 mm3), initializing without and with P\/C maps.

Resolution Mean(mm)+£SD Max Min
Original phantom 0.1x0.1x0.1 3.14+0.19 3.74 286
Pure tissue 0.8x0.8x08 208+0.28 2.60 145
PVC > 50% 0.8x0.8x08 4.07+0.23 449 3.62
With PVC 08x0.8x08 324+0.19 390 298
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Power analysis for cortical thickness estimation with two approaches to differentiate betweeen AD and NC
groups. a = 0.05, power = 0.95. ¢ is the effect size and n is the number of samples needed to reach that power.

Structure NO PVE PVE
n o n o

Full brain 62  0.847 46 1.006
Ang L 46  1.004 32 1.228
Ang R 52 0.939 30 1.251
STGL 52 0.929 34 1.169
STGR 54 09153 30 1.247
SFG L 19 0.804 11 1117
SFGR 36 0.560 19 0.803
PHG L 54 0914 24 1.4027
PHGR 24 1.406 18 1.6942
Hipp L 28 1.327 30 1.276
Hipp R 30 1263 26 1.368
MTG L 46 0.998 32 1215
MTG R 56 0.953 28 1.276

Hipp, hippocampus; PHG, Parahippocampal gyrus; MTG, Middle temporal gyrus; STG, Superior temporal gyrus; Ang, Angular gyrus.
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