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Abstract
In x-ray diffraction microscopy, iterative algorithms retrieve reciprocal space phase information,
and a real space image, from an object's coherent diffraction intensities through the use of a priori
information such as a finite support constraint. In many experiments, the object's shape or support
is not well known, and the diffraction pattern is incompletely measured. We describe here
computer simulations to look at the effects of both of these possible errors when using several
common reconstruction algorithms. Overly tight object supports prevent successful convergence;
however, we show that this can often be recognized through pathological behavior of the phase
retrieval transfer function. Dynamic range limitations often make it difficult to record the central
speckles of the diffraction pattern. We show that this leads to increasing artifacts in the image
when the number of missing central speckles exceeds about 10, and that the removal of
unconstrained modes from the reconstructed image is helpful only when the number of missing
central speckles is less than about 50. This simulation study helps in judging the reconstructability
of experimentally recorded coherent diffraction patterns.

1. Introduction
X-ray diffraction microscopy is an imaging method with no optics-imposed efficiency or
resolution limits. Following an initial suggestion by Sayre [1], Miao et al. showed that one
could reconstruct an image of a coherently-illuminated object from its measured diffraction
intensities [2]. This was done by using a finite support constraint iterative phase retrieval
algorithm as demonstrated by Fienup [3]; a “finite support” refers to a known subset of the
reconstructed image field which contains the object and can often be inferred from the
object's autocorrelation or Patterson map.
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Because the coherent diffraction intensities provide information on the modulus but not the
phase of the object's Fourier plane representation, the goal of various phase retrieval
algorithms [3–8] is to recover the Fourier plane phases and thus by simple Fourier transform
(in the farfield geometry; Fresnel transforms can be used in the near-field geometry)
reconstruct the exit wave leaving the specimen. The unknown Fourier plane phases can only
be recovered if there is some other information available regarding the object. The most
common constraint used is to work with objects that scatter light from only a subset of the
Shannon-sampled image field, in which case the finite support constraint in the
reconstruction algorithm matches the physical characteristics of the object. The finite
support constraint is imposed by adjusting pixel values outside the support towards zero, and
the measured diffraction intensities are imposed as a modulus constraint in Fourier space.
Considering a complex image to be a vector in Hilbert space, the iterative process can be
modeled as sequential projections to subspaces defined by constraints.

It has been shown that these constraints lead to unique solutions to phase retrieval problems
in two or higher dimensions [9]. After the first experimental demonstration performed in
1999 [2], x-ray diffraction microscopy was rapidly developed and applied to image material
and biological samples in both 2D and 3D.

In many actual experiments, neither constraint is perfectly determined. For soft matter or
biological samples without sharp boundaries, dedicated effort is required to refine the object
support, although the autocorrelation function and shrink-wrap procedure [10] can guide the
way to some extent. Since the intensity distribution of a diffraction pattern exceeds the
dynamic range of regular CCD detectors, the intense low spatial frequency signal of the
diffraction pattern is usually blocked by a beam stop leaving an area with missing data in the
center. A recent experiment successfully reduced the missing center size to less than one
speckle [11], but the missing centers usually obscure more. The imperfection of the Fourier
modulus constraint also comes from experimental noises, and this problem has been
discussed in [12].

In this work, we address the influence of imperfect constraints on three categories of
algorithms [13]: Error Reduction [14] (ER, gradient descent to local minima), Hybrid Input-
Output [3] and Difference Map [4] (HIO and DM, spirally convergent to global minima),
and Relaxed Averaged Alternating Reflectors [8] (RAAR, between the other two
categories), with incorrect supports and varying sizes of missing low spatial frequency data
through simulation.

2. Simulation setup
The object used in this study is a simulated biological-cell-like object as in [15]. The 200
pixel diameter spherical simulated cell filled with 10% protein solution is embedded in the
center of a 400×400×400 pixel ice cube with a pixel size of 15 nm. The cell has 3 pixel thick
lipid membrane, protein bars and protein ellipsoids inside. A bud with an 80 pixel diameter
is added to the right shoulder to break central symmetry. The refractive indices for 520 eV
incident x-rays within the water window are calculated from tabulated values [16] using a
stoichiometric composition of H48.6C32.9N8.9O8.9S0.3 and density of ρ = 1.35 g/cm3 for
protein, and H62.5C31.5O6.3 with ρ = 1.0 for lipid [17].

The simulated cell's complex-value exit wave was generated by assuming a plane wave
illumination with 106 incident photons per pixel followed by a multislice propagation
process [18,19]. The simulated exit wave is shown in Fig. 1(a). The far-field diffraction
pattern was calculated by Fourier transforming this exit wave. Photon noise simulated using
a positive-integer-truncated Gaussian distribution was added to the resulting diffraction
intensity as shown in Fig. 1(b).
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Note that the initial exit wave presents an object in a bright background. According to
Babinet's principle, its contrast-flipped counterpart image with a dark background gives the
identical diffraction intensity except for the central pixel. In this study, an area of at least
2×2 pixels is set to zero at the center of the diffraction pattern to represent the region
typically blocked due to detector saturation. A typical reconstructed image magnitude is
shown in Fig. 2(a). For HIO and RAAR algorithms, β was set to 0.9. For DM, β = 1.15, γm =
β–1 and γs = –β–1 were used in this simulation. Besides the support and the Fourier modulus
constraints, no other constraint (such as positivity constraint) was used in this simulation.
Because 2 pairs of Fourier transforms are applied in a DM iteration, while 1 pair is applied
in a HIO, ER and RAAR iterations, the iteration numbers of the latter 3 algorithms were
doubled from that of DM. In the simulation, DM was run 1000 iterations and averaging
started after 800 iterations with an interval of 2 iterations. The other 3 algorithms were run
2000 iterations and averaging started after 1600 iterations with an interval of 4 iterations.
With each algorithm, reconstruction was performed 10 times from individual random phase
starts [20], and the final image was averaged from those 10 reconstructions.

3. Incorrect support tolerance
In simulations with a known object, one knows exactly what support constraint to apply.
However, in experiments one may have only imperfect knowledge of the object's support as
obtained from the autocorrelation of the diffraction pattern. While the support constraint can
be gradually improved through the use of a “shrinkwrap” procedure [10], one can still wind
up with an incorrect support constraint. For this reason, we carried out a series of
simulations where we introduced known errors onto the support and examined their effects
on reconstructed images. The correct support was generated from the shape of the simulated
cell, as shown in Fig. 2(b). The “bump-out” incorrect support was obtained by including a
number of pixels (1439 pixels) outside the correct support at a local area (Fig. 2(c)). The
“bite-in” support excludes some pixels (1382 pixels, or 0.9% of the 400×400 array) inside
the correct support at a local area (Fig. 2(d)). The “loose” support increases the size of the
correct support uniformly by 2 pixels which adds 1477 pixels (Fig. 2(e)). The “tight”
support reduces the correct support size uniformly by 2 pixels which removes 1439 pixels
(Fig. 2(f)).

The reconstructed images with different supports are shown in Fig. 3. We also used two
measurements to quantify the image quality: a real space r factor Rreal [21] calculated as

(1)

and a signal-to-noise ratio SNR [15] calculated as

(2)

where M1,2 and I1,2 are magnitudes and intensities of two reconstructed images with
individual random starts. Rreal compares the normalized difference between reconstructed
images, and SNR measures their consistency. Smaller Rreal and larger SNR indicate more
reliable reconstructions. Table 1 shows that HIO and DM give the best reconstruction
quality for correct, bump-out and loose supports. RAAR gives abnormally good Rreal and
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SNR values, while the images show significant artifacts, which implies that the algorithm is
more likely to stagnate at an incorrect solution when using incorrect supports. The
reconstructed image quality from ER doesn't vary much at a relatively poor level with
different supports.

All the algorithms give good reconstructions for the correct support. For the bump-out
support, because the extra support area does not introduce translation ambiguity, the
reconstruction quality is not affected significantly. For the bite-in support, the reconstructed
image quality becomes worse, because the overly tight support imposes a constraint for a
different object which would not have the same Fourier modulus. For the loose support, in
order to mitigate translation ambiguity, the output image from each iteration was aligned
with one iterate using the peak of the cross correlation function. It also gives reasonable
reconstructions. For the tight support, all algorithms failed to find the solution for the same
reason as for bite-in support.

Figure 4(a) shows Wiener-filtered Phase Retrieval Transfer Function (wPRTF) [22] curves
from the DM algorithm with different supports. The wPRTF curves for the correct and
bump-out supports are almost overlapping. The loose supports lead to a noticeable decrease
in the wPRTF curves at higher spatial frequencies, as fine features are not well constrained
in their real space locations. The wPRTF's from the bite-in and tight supports are
dramatically lower, which means they lead to less consistent phase retrieval. Figure 4(b)
plots PRTF curves from different algorithms with the correct support, which shows that HIO
gives images with best quality. All these conclusions are consistent with those from Rreal
and SNR metrics.

The fact that the bump-out support does not affect reconstruction quality could be used in
the support-refining process. If a part of the support is not defined with sufficient
confidence, we can enlarge the support in that area and keep the rest of the support
untouched. Reconstruction with the new support could give a new boundary of the object in
the target area.

4. Missing center tolerance
Because far field diffraction patterns tend to have their signal decrease as the fourth power
of spatial frequency, the center pixels can be saturated on many present-day detectors. While
one can use a variety of beamstop positions and assemble multiple images to minimize this
limitation, it is often the case that one works with coherent diffraction intensities with
unreliable or unknown values at some number of pixels near the center. For this reason, we
carried out a series of reconstruction simulations with various numbers of missing central
pixels in the diffraction intensities, ranging from 2×2 pixels up to 15×15. The 2D
oversampling ratio σ , i.e. the entire image array pixel number divided by reconstructed
object pixel number is about 4.6 in these simulations, so the corresponding missing speckle
number can be calculated by dividing the missing pixel number with σ. To test the
oversampling ratio dependency of reconstructions, we generated a second simulated cell
with the same features and an oversampling ratio of 7.5 by increasing the ice cube size to
512 × 512 × 512 pixels and keeping the cell size the same. The missing center sizes for this
cell were tested up to 19×19 pixels.

Some reconstructed images of the σ = 4.6 simulated cell are shown in Fig. 5. HIO has the
highest tolerance for missing center size with no significant artifact showing up to 13
missing speckles. DM works well up to 10 missing speckles. RAAR and ER do not
reconstruct images well with missing data.
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Artifacts presented in reconstructed images using diffraction pattern with missing center can
be modeled as Fourier transform pairs which satisfy both support and Fourier modulus
constraints so that they are allowed by algorithms using those constraints. We used the
approach proposed in [19] to approximate these missing modes using harmonic oscillator
modes as an orthogonal basis set. These modes were ranked by their corresponding
eigenvalues which represent coefficients of the mode expansion distributed in the measured
pattern and outside the support. The least constrained modes were then scaled and subtracted
from the original reconstructed image in the way that minimizes the variance of pixel values
within the support. Images before and after removing modes from HIO reconstructions for
both σ = 4.6 and σ = 7.5 simulated cells are shown in Fig. 6. Up to 13 missing speckles, no
obvious artifact emerges in reconstructions for both cases. Removing unconstrained modes
recovers images up to 21 missing speckles for σ = 4.6 cell and 30 for σ = 7.5. Above that
level, artifacts cannot be completely removed. When the missing speckle number becomes
larger than 48, remarkable artifacts show up in images even with unconstrained modes
removed in both cases. The starting points for non-negligible and permanent artifacts are not
sensitive to the oversampling ratio, while the recoverable tolerance range can be improved
with larger σ .

To quantify these observations, Rreal (Eq. (1)) was calculated with respect to the perfect
image before and after removing unconstrained modes for HIO reconstructions of both cells,
which are plotted as dark and gray curves in Fig. 7. Considering that Rreal measures the
difference from the perfect image, we can see a Rreal jump when the missing speckle number
increases beyond 13 for both σ = 4.6 and σ = 7.5, which implies that the reconstruction
quality becomes significantly worse above that level. Rreal climbs after 21 missing speckles
for σ = 4.6 and after 30 for σ = 7.5 in the mode-removed curves, which means that removing
unconstrained modes cannot fully recover the image any more. There is another Rreal jump
after 42 missing speckles in curves both with and without removal of unconstrained modes
for both cells, where permanent artifacts are left in images. The red curves in Fig. 7 show
SNR calculated from HIO reconstructions. The SNR curves are flattened at around 13
missing speckles, where the algorithm might converge to a pseudo-stable stagnation
solution. It decreases again after 21 and 30 missing speckles for σ = 4.6 and σ = 7.5 cells,
respectively. Both Rreal and SNR are consistent with the quality of reconstructed images
shown in Fig. 6. We did not carry out this analysis for a variety of simulated objects with the
same oversampling ratio; we suspect that one would have different detailed results but a
similar trend of sensitivity to missing central speckles.

5. Conclusion
We have carried out simulation studies to illuminate the effects of two specific errors that
can arise in x-ray diffraction microscopy or coherent diffraction imaging. We have found
that overly tight support constraints prevent all algorithms from obtaining a high quality
reconstruction of the object. However, we also found that “bump-out” or local extra
additions to the support constraint do not affect reconstruction quality, so that the addition of
various local bump-outs can be used to help refine the support constraint. For missing low
spatial frequency data, noticeable artifacts start to appear when the missing speckle number
is larger than about 10 for HIO (the number is lower for DM, RAAR and ER). When the
missing speckle number rises to about 50, permanent artifacts are shown in reconstructions.
These two thresholds are not dependent on the over-sampling ratio. With missing speckle
numbers between 10 and 50, artifacts can be removed by removing unconstrained modes,
and the recoverable tolerance range is sensitive to the over-sampling ratio.
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Fig. 1.
(a) The exit wave magnitude of the simulated fake cell. (b) Simulated diffraction pattern
with photon noise and 2×2 pixel missing center.
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Fig. 2.
Illustration of the various support errors studied. A blue area denotes a region added to the
correct support. A red area denotes a region removed from the correct support. (a)
Magnitude of a reconstructed cell image from diffraction pattern with 2×2 pixel missing
center. (b) The correct support. (c) The “bump-out” support generated by including 1439
pixels (out of 400×400) outside the correct support at a local area. (d) The “bite-in” support
generated by excluding 1382 pixels inside the correct support at a local area. (e) The “loose”
support generated by increasing the size of the correct support uniformly by 2 pixels which
adds 1477 pixels. (f) The “tight” support generated by reducing the correct support size
uniformly by 2 pixels which removes 1439 pixels.
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Fig. 3.
Reconstructed image magnitudes with HIO, DM, RAAR and ER algorithms using correct,
“bump-out”, “bite-in”, “loose” and “tight” supports. Only the central part of images are
displayed.
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Fig. 4.
Wiener-filtered phase retrieval transfer functions: (a) from DM reconstructions with
different supports, (b) from different algorithms with the correct support.
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Fig. 5.
Magnitudes of reconstructed images of the σ = 4.6 simulated cell from different algorithms
with varying sizes of missing centers. Only the central part of diffraction patterns and
reconstructed images are displayed. The green line indicates where artifacts becomes
noticeable in reconstructed images.
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Fig. 6.
Image magnitudes before and after unconstrained modes were removed from HIO
reconstructions with various missing center sizes for σ = 4.6 cell (top row) and σ = 7.5 cell
(bottom row). Up to 13 missing speckles, the artifacts in reconstructed images are negligible
in both cases. Unconstrained mode removal works well up to 21 missing speckles for the σ =
4.6 cell, and 30 for the σ = 7.5 cell. Above that level, artifacts cannot be completely
removed. When the missing speckle number is greater than 48, permanent artifacts are
present in images in both cases.
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Fig. 7.
Measurements of the effects of missing central speckles in the measured diffraction
intensities. Shown here are both the signal-to-noise ratio with unconstrained modes removed
(red curve), and Rreal calculated before (grey curve) and after (black curve) removal of
unconstrained missing modes. The results are shown for the same size simulated cell in a
smaller array (σ = 4.6) at left, and a larger array (σ = 7.5) at right.
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