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Abstract

Using transcriptomic and metabolomic measurements from the NCI60 cell line panel, together with a novel approach to
integration of molecular profile data, we show that the biochemical pathways associated with tumour cell chemosensitivity
to platinum-based drugs are highly coincident, i.e. they describe a consensus phenotype. Direct integration of metabolome
and transcriptome data at the point of pathway analysis improved the detection of consensus pathways by 76%, and
revealed associations between platinum sensitivity and several metabolic pathways that were not visible from
transcriptome analysis alone. These pathways included the TCA cycle and pyruvate metabolism, lipoprotein uptake and
nucleotide synthesis by both salvage and de novo pathways. Extending the approach across a wide panel of
chemotherapeutics, we confirmed the specificity of the metabolic pathway associations to platinum sensitivity. We
conclude that metabolic phenotyping could play a role in predicting response to platinum chemotherapy and that
consensus-phenotype integration of molecular profiling data is a powerful and versatile tool for both biomarker discovery
and for exploring the complex relationships between biological pathways and drug response.
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Introduction

In the quest to understand complex biological systems at

multiple levels of biological organization, the need arises to

combine knowledge from experiments of different types to create a

full picture of a system’s behavior. Modern molecular profiling

(‘‘omics’’) methods, such as transcriptomics, proteomics and

metabolomics allow one to build up a global picture of system

characteristics, and to search for interactions and coordinated

behavior between the different levels. While each level can be

studied separately, greater statistical and explanatory power can be

gained by integrating this knowledge into a single coherent model

of the system. This is currently one of the greatest challenges in

systems biology.

Inter-omic data integration can be performed at different levels

[1], the simplest of which is conceptual integration. At this level,

each omics data set is analysed separately and a coherent

biological rationale is constructed which explains phenomena

observed in the separate molecular profiles. For example, changes

in levels of both enzyme transcripts and metabolites from the same

pathway could be explained by the hypothesis of differential

regulation of that pathway. However this subjective approach can

lead to plausible biological explanations that arise through

spurious statistical associations and conversely some potentially

novel mechanisms may be overlooked. The statistical level of

integration is more objective. In this approach, links between data

sets are made using rigorous statistical procedures such as

correlation, regression or more sophisticated techniques. To date,

much inter-omic data integration has been performed at the

conceptual level [2,3,4] while various methods have been

proposed and demonstrated for statistical integration [5,6,7,8,9].

Many researchers have found that interpretation of omics data

at the level of individual molecular entities can be difficult and

have opted for an analysis at the pathway or functional level [10].

This is mainly because particular changes in biochemical

pathways, associated with phenotypic conditions such as disease

can often arise from a range of different alterations in a pathway.

A common method for performing pathway-level analysis on

single omic data is over-representation (OR) analysis [11,12], in

which a set of molecular elements (e.g. genes) that are differentially

expressed or correlated with the phenotype of interest are first

selected. The set is then compared against molecular sets defined a

priori (e.g. genes in established pathways) to identify those sets that

show greater overlap with the phenotype-associated genes than

would be expected by chance. The final list of significantly over-

represented or ‘enriched’ sets/pathways is used to aid biological
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interpretation of the data. As well as performing OR with genes,

Metabolite Set Enrichment Analysis (MSEA) [13] and other

metabolite over-representation techniques [14] have also been

developed. In this work we contrast the application of the OR

analysis approach to transcript and metabolite data individually to

the alternative of considering them simultaneously, using estab-

lished pathways to guide an integrated analysis of the two data sets.

In addition to the inter-omic integration of metabolomic and

transcriptomic data, our approach involves a further type of data

integration that we call consensus-phenotype integration. In this

approach, several examples of the same phenotype, achieved in

different ways, are used within the experimental design. For

example, one may study a particular mechanism of toxicity via the

use of different chemical treatments that have a similar mode of

action. One can thus identify features that are central to the

phenotype in question across different types of ‘‘omics’’ data, as

opposed to features that are specific to a single instance of the

phenotype being studied.

In this work, we aim to elucidate mechanisms of drug

sensitivity through the use of inter-omic statistical data

integration using drug sensitivity, transcriptomic and metabo-

lomic data from the NCI60 cell line panel [15]. The NCI60 is a

panel of tumor derived cell lines corresponding to diverse tissue

types, which has been subject to extensive molecular phenotypic

and pharmacological characterization. We used baseline

(untreated) metabolic and transcriptional profiles readily

available for 58 lines as well as growth inhibition data from

an array of 118 drugs [15,16]. We correlate growth inhibition to

the molecular profiles to identify pathways related to drug

sensitivity. We first focus on platinum sensitivity as it is a well-

defined phenotype, linked to a well-investigated mode of action

that has important clinical implications. Many chemotherapeu-

tic regimes are based on platinum compounds, and resistance to

these drugs is a major obstacle in successful treatment of some

cancers. The mechanisms that cause variation in response to

therapy are not well understood, and the ability to predict

sensitivity from a baseline profile of the tumor would help to

improve therapy selection and thereby potentially reduce

patient morbidity and mortality. We then expand our analysis

to a larger set of 118 drugs to investigate whether the method is

able to associate drugs with similar modes of action. We show

that statistical integration conducted through a joint analysis of

the data gives specific advantages in terms of sensitivity and

confidence of pathway associations.

Results

Figure 1 shows a schematic overview of our data analysis

strategy. Whole genome gene expression (transcriptomic), meta-

bolomic, and drug sensitivity data were obtained for the NCI60

tumor cell line panel. The transcriptomics data was derived using

the U133 Affymetrix chip; in total 44928 probesets were

measured, equating to 17150 gene products mapping to distinct

UniProt identifiers, each measured across 58 cell lines [17]. The

metabolomic data consisted of measurements of the total

intracellular abundance of 154 uniquely identified metabolites

across all 58 cell lines [18], including lipid compounds (e.g.

cholesterol), glycolytic intermediates (e.g. glucose-6-phosphate),

nucleic acid metabolites (e.g. adenine, uracil, hypoxanthine) and

amino acids (e.g. glutamate, taurine). The full list along with our

assigned KEGG IDs can be obtained in Table S4. We used drug

sensitivity data (GI50 values indicating the concentration of the

drug which inhibited cell growth by 50%) [15,16] initially for four

platinum-based chemotherapeutics, cisplatin, carboplatin, tetra-

platin and iproplatin. Data for a fifth platinum drug (diaminocy-

clohexyl-Pt(II)) was available, and was used at a later stage as a test

compound to validate our findings.

Identifying pathways significantly associated to platinum
sensitivity

For each drug we ranked all probe sets by their absolute Pearson

correlation (|r|) to the 2log(GI50) values across all cell lines.

Setting the false discovery rate (FDR) [19] at 60% we then selected

genes considered to be significantly associated to chemosensitivity.

A high FDR was tolerated at this stage of the analysis to ensure

that subsequent pathway analysis was adequately powered.

Repeating this process for the metabolite data we obtained

separate panels of genes and metabolites that were deemed to be

associated with the sensitivity to each drug (see Table S1). In total

3, 33, 37 and 92 metabolites and 915, 1620, 5035 & 6533 genes

were identified as associated with sensitivity to carboplatin,

cisplain, iproplatin and tetraplatin treatment respectively.

To assess which pathways characterized the drug sensitivity

phenotype we then performed OR analysis with pathways from

the ConsensusPathDB [20]. The ConsensusPathDB collates

pathways from several public databases of protein interactions,

signaling and metabolic pathways as well as gene regulation in

humans. We restricted our analysis to sources covering

biochemical reactions: KEGG [21], Reactome [22], Netpath

(http://www.netpath.org), Biocarta (http://www.biocarta.com),

HumanCyc [23] and the pathway interaction database (PID)

[24]. The use of multiple databases reduces bias by enhancing

coverage. At the time of analysis the ConsensusPathDB contained

1875 pathways from the selected sources, of which 1651 contain

at least one gene and 581 contain at least one metabolite

measured in the NCI60 data (excluding the highly prevalent

‘currency’ metabolites phosphate, diphosphate and NADP+). OR

analysis of the phenotype-associated gene panels indicated that

63, 74, 233 and 242 pathways were associated with cisplatin,

carboplatin, iproplatin and tetraplatin sensitivity respectively

(p,0.05). The equivalent analysis for metabolite panels indicated

that 24, 13, 4, & 5 pathways were associated with these

phenotypes.

Author Summary

Resistance to chemotherapy drugs in cancer sufferers is
very common. Using a panel of 59 cell lines obtained from
different types of cancer we study the links between the
genes and metabolites measured in these cells and the
resistance the cells show to common cancer drugs
containing platinum. In order to combine the information
given by the genes and metabolites we introduce a new
pathway-based approach, which allows us to explore
synergy between the different types of data. We then
extend the procedure to look at a wider panel of drugs
and show that the pathways we found were associated
with platinum are not just the pathways which are
frequently selected for a large number of drugs. Given
the increasing use of multiple sets of measurements
(genes, metabolites, proteins etc.) in biological studies, we
demonstrate a powerful, yet straightforward method for
dealing with the resulting large datasets and integrating
their knowledge. We believe that this work could
contribute to developing a personalised medicine ap-
proach to treating tumours, where the genetic and
metabolic changes in the tumour are measured and then
used for prediction of the optimal treatment regime.

Consensus-Phenotype Integration
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Consensus pathway and inter-omic integration
To highlight pathways relevant to general platinum sensitivity,

as opposed to particular platinum compounds, we looked for

pathways that were associated with more than one drug response

phenotype (‘consensus-phenotype integration’; Figure 2 A & B).

Within the gene transcript analysis (Figure 2A), the drugs

appeared to divide into two pairs that shared many pathways in

common. Iproplatin and tetraplatin were most similar, sharing 143

(133+4+4+2) of the 330 (75+5+5+4+143+92+3+1+2), ie. 43% of

the pathways associated with either drug (Figure 2A). Carboplatin

and cisplatin also show a high level of similarity (32 of 103

pathways, 31%). In the metabolic analysis (Figure 2B) the

similarity between iproplatin and tetraplatin was much lower,

while carboplatin and cisplatin retained a high level of similarity

with 7 of the 30 pathways being shared (23%). The gene analysis

highlights many more pathways than metabolite analysis due to

both the higher number of pathways with sufficient numbers of

quantified transcripts and the limited number of quantified and

identified metabolites.

We next combined the transcriptomic and metabolomic data

into a joint inter-omic OR analysis (Figure 2C) by estimating the

joint probability of association of each pathway with the drug

sensitivity phenotype assuming independence between the prob-

ability of association from the gene and metabolite data separately

(see Methods). 35 pathways were found to be significant for at least

one drug in the joint analysis that did not feature in either of the

separate analyses of gene expression or metabolite levels. To

confirm the significance of the increase in pathway detection after

integration of the metabolic and transcriptomic data, we estimated

the null distribution of the joint analysis probabilities by permuting

the gene analysis pathway probabilities relative to the metabolite

analysis pathway probabilities. For carboplatin only 3 of the 100

Figure 1. Consensus-phenotype integration of transcript and metabolite data: a schematic of the study design.
doi:10.1371/journal.pcbi.1001113.g001

Consensus-Phenotype Integration

PLoS Computational Biology | www.ploscompbiol.org 3 March 2011 | Volume 7 | Issue 3 | e1001113



permutations produced more pathways than the real data and for

cisplatin no permutations produced as many pathways as the real

data. However, for iproplatin and tetraplatin, the number of

pathways detected was not significantly enhanced by the joint OR

analysis, suggesting that the combined analysis may be most

advantageous when the numbers of significantly associated genes

or metabolites are relatively low.

To examine the significance of the numbers of pathways in the

joint OR analysis that were commonly associated to the effect of

multiple drug treatments, two null models were generated. Null

model I assumed that genes and metabolites identified as

significantly associated to a phenotype were randomly selected

whereas null model II correspondingly assumed that pathways are

selected randomly. Table 1 summarizes the pathway coincidence

between the output of joint OR analysis across the four platinum

drugs for these two null models compared to the real data and

reports the associated FDR in each analysis. We observed that by

setting our criterion of significant association between a pathway

and platinum sensitivity at requiring a majority of the drugs to be

associated with that pathway (i.e. at least 3/4) we achieved

acceptable FDRs of 0.2% (null model I) and 16.9% (null model II,

the most extreme scenario).

Using the majority overlap criterion we compared the number

of pathways consistently associated with platinum sensitivity

between the individual and joint analyses (Figure 2D). The joint

OR analysis identified all pathways highlighted by the individual –

omic OR analyses combined (17 in total), but also indicated a

further 13 pathways that were consistently associated (+76%). No

pathways were found to be common between both the separate

gene and metabolite analyses.

Overall 30 pathways met the majority criterion of association

with sensitivity at least 3 platinum drugs and hence general

platinum cytotoxicity (Table 2; Figure 2C & D). All the databases

used to compile the ConsensusPathDB contributed pathways to

the final selected consensus pathways, highlighting the value of the

ConsensusPathDB strategy in pathway analysis. While this subset

of pathways included those with established relationships to

platinum sensitivity and general chemosensitivity, such as DNA

repair and Akt regulation of nuclear transcription, there were also

several pathways related to metabolic processes not previously

Figure 2. Consensus-phenotype and inter-omic integration at the pathway level. The numbers of common pathways significantly over-
represented for each compound are shown as Venn diagrams. A transcript data, B metabolite data, C inter-omic analysis using both metabolite and
transcript data and D comparison of the three approaches using pathways which are significant for at least three drugs. (All Venn diagrams produced
by Venny [55]).
doi:10.1371/journal.pcbi.1001113.g002
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reported as determinants of platinum sensitivity. These included

nucleotide metabolism, fatty acid, triglyceride and lipid metabo-

lism.

The added value of the inter-omic OR analysis prior to

consensus phenotype integration can be more clearly discerned at

the individual pathway level. Figure 3 is a network representation

of the base excision repair (BER) pathway from Reactome and

depicts both the detected entities and the drugs with which each

detected entity is associated. While the majority of entities were

significantly associated to the effect of at least one of the four

platinum agents, there was significant variation in the pattern of

association and no gene or metabolite was significantly associated

to all four treatments. Accordingly the pathway was only

significantly associated to tetraplatin and iproplatin sensitivity

using the transcriptome data alone, and to carboplatin and

cisplatin sensitivity using the metabolite data in isolation. Using the

joint OR analysis the BER pathway was significantly associated to

the sensitivity to all four platinum compounds (Table 2) and the

evidence for association with each drug was increased, due to the

added information from the alternative data type. Of the 12

pathways for which inter-omic OR analysis improved the

consensus between the drugs, 10 refer to metabolic processes.

In order to validate and to test the generalisability of our

findings we then examined GI50 data from a test compound,

diaminocyclohexyl-Pt(II). After conducting the same inter-omic

OR analysis as described previously, we observed that the effects

of this compound on the NCI60 panel was associated with 5 of the

6 pathways common to all 4 other platinum drugs along with a

further 12 pathways from Table 2 and 90% (220/245) of the

pathways associated with diaminocyclohexyl-Pt(II) were Associat-

ed with at least one of the other platinum drugs. In particular there

were 138/152 pathways commonly associated between diamino-

cyclohexyl-Pt(II), iproplatin and tetraplatin sensitivity. Since OR

analysis makes no distinction between positive and negative

molecule/sensitivity correlations, we also examined the direction

of associations between the metabolites detected in the consensus

pathways and the GI50 of all platinum drugs (Table 3). In total, a

panel of 22 metabolites were associated with the consensus

metabolic pathways from analysis of the four training compounds.

While there was variation in the metabolites associated with

specific treatments, where a significant association was observed

the direction of correlation was consistent across the training set.

The GI50 values of our test compound, diaminocyclohexyl-Pt(II),

was significantly correlated to 19/22 metabolites in this panel,

with complete consistency in the direction of association with the

training set data.

Global analysis of chemosensitivity pathways
To explore more broadly the relationships between chemosen-

sitivity and biological pathways across a range of agents, and to

ascertain the specificity of the consensus phenotype analysis for

platinum sensitivity pathways, inter-omic OR analysis was

performed using GI50 data for all 118 compounds available within

the NCI 60 dataset. In total 1262 pathways were significantly

associated with the drug sensitivity of at least one compound, while

82 compounds gave at least one significant pathway. Figure 4

shows the clustered heat-map of the binary association matrix in

which each element is set to one if a pathway is significantly

associated with sensitivity to a given drug and zero otherwise (see

Table S2). Significant clustering of the drugs according to mode of

action is visible. For example the dihhryofolate reductase inhibitor

methotrexate co-clustered with related compounds aminopterin,

trimetrexate, and Baker’s-soluble-antifolate (triazinate) (Figure 4,

blue asterisks); the sensitivities to all four compounds were

associated with 91 common pathways. While one might expect

structural analogues such as these to produce a similar pattern of

sensitivity and hence similar pathway associations, structurally

unrelated compounds that share a common molecular target also

co-clustered in certain instances. One interesting observation was

the similarity in pathway association, reflected by common

membership of a cluster, of several structural analogues, the

anthracycline-based compounds, (doxorubicin, zorubicin, danor-

ubicin hydrochloride and deoxydoxorubicin) with the podophyl-

lotoxin-based etoposide and teniposide (Figure 4, green asterisks).

The four anthracyclines in the cluster share a large proportion of

associated pathways: 63 of the 401 pathways associated with any of

the anthracyclines are commonly associated to the effect of all four

compounds, and of these, 60 are also associated to the

chemosensitivity to either teniposide or etoposide. Etoposide and

its derivatives directly inhibit topoisomerase II activity, followed by

induction of DNA strand breaks and selective cytotoxicity in

tumour cells [25] whereas anthracyclines intercalate DNA,

indirectly inhibiting the progression of topoisomerase II and

blocking replication [26]. Thus, the inter-omic pathway analysis is

apparently able to associate chemosensitivity phenotypes on the

basis of a common pathophysiological link independent of whether

the key molecular targets are affected directly, or indirectly by an

upstream process.

While such mechanistic relationships were readily observable,

the most prominent division between the compounds, visible as the

two largest clusters in Figure 4, appeared to be separating on the

overall frequency of pathways associated with chemosensitivity,

with the top cluster in the diagram possessing on average 2.95

times the number of positive associations of the lower cluster.

While each of the five platinum compounds in the dataset were

most similar in pathway associations to another platinum

compound, they were separated across the two largest clusters

with cisplatin and carboplatin forming one group and tetraplatin,

iroplatin and diaminocyclohexyl-Pt II another. This separation

agreed with the low numbers of common chemosensitivity

pathways between members of these two groups in earlier analyses

(Figure 2). Thus, the clustering structure did not describe

associations common across the platinum compounds, illustrating

the difficulty of using clustering approaches alone to identify

pathways that may determine class-specific chemosensitivity and

the advantages of the consensus phenotype approach.

To assess the specificity of the identified consensus platinum-

sensitivity pathways we compared these to the most frequently

associated pathways in the global inter-omic OR analysis (Table

S2). Of the 54 (top 50 including ties) most frequently associated

pathways (Table S3), just seven intersect with pathways identified

Table 1. Null models I and II.

Number of pathways common to
exactly n drugs and FDR

Number of drugs, n 1 2 3 4

Real data
(inter-omic analysis)

251 182 24 6

Null model I 161.8 6.6 0.06 0.0

Cumulative false discovery rate 36.4% 3.2% 0.2% 0.0%

Null model II 539.3 81.2 5.0 0.1

Cumulative false discovery rate 40.7% 16.9% ,0.1%

The numbers of pathways associated with exactly n drugs for each of the null
models and in real data.
doi:10.1371/journal.pcbi.1001113.t001

Consensus-Phenotype Integration
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Table 2. Pathways significant by over representation analysis with respect to platinum drug sensitivity.

Effective size of pathway in
terms of… Number of drugs with this pathway over-represented in…

Pathway and source database genes metabolites Inter-omic analysis gene analysis metabolite analysis

Metabolic Pathways

22 2 3 2 0

Triacylglyceride Biosynthesis Reactome 29 3 4 3 0

Purine metabolism Reactome 82 16 3 2 1

Purine metabolism - Homo sapiens
(human) KEGG

412 19 3 2 1

DNA Repair Reactome 144 5 3 1 1

Hormone-sensitive lipase
(HSL)-mediated triacylglycerol
hydrolysis Reactome

23 2 3 1 2

Lipid and lipoprotein
metabolism Reactome

243 9 3 2 0

De novo biosynthesis of pyrimidine
deoxyribonucleotides HumanCyc

17 1 3 1 0

Salvage pathways of purine and
pyrimidine nucleotides HumanCyc

45 9 3 1 0

Phosphatidylcholine biosynthesis
pathway BioCarta

6 1 3 2 0

Base Excision Repair Reactome 27 3 4 2 2

Nucleotide metabolism Reactome 137 27 3 2 1

Pyruvate metabolism and TCA cycle Reactome 52 6 3 3 0

Reversible phosphorolysis of pyrimidine
nucleosides Reactome

2 3 3 0 3

Phospholipid biosynthesis II HumanCyc 57 4 3 3 0

Non-Metabolic pathways

Signaling in Immune system Reactome 467 1 3 2 0

Hemostasis Reactome 390 1 3 2 0

Rho GTPase cycle Reactome 265 0 4 4 N/A

lck and fyn tyrosine kinases in initiation
of tcr activation BioCarta

18 0 3 3 N/A

AKT phosphorylates targets in
the nucleus Reactome

31 0 3 3 N/A

TCR signaling in naı̈ve CD8+ T cells PID 107 0 3 3 N/A

TCR NetPath 267 0 4 4 N/A

BCR NetPath 316 0 3 3 N/A

Immunoregulatory interactions between a
Lymphoid and a non-Lymphoid cell Reactome

138 0 3 3 N/A

amb2 Integrin signaling PID 98 0 3 3 N/A

Apoptotic dna-fragmentation and tissue
homeostasis BioCarta

17 0 4 4 N/A

Apoptotic cleavage of cell adhesion
proteins Reactome

16 0 3 3 N/A

Notch receptor binds with a ligand Reactome 20 0 3 3 N/A

Receptor-ligand binding initiates the
second proteolytic cleavage of
Notch receptor Reactome

22 0 3 3 N/A

Integrin cell surface interactions Reactome 171 0 4 4 N.A

Pathways shown are those significantly over-represented in at least 3 drug lists for the inter-omic analysis. N/A indicates no quantified metabolites were present in the
pathway. Rows shown in bold are those where the inter-omic analysis means that the pathway is significantly associated with chemosensitivity to more drugs than the
individual analyses combined. The pathways are split into two classes, metabolic and non-metabolic and then ordered so that the pathways with improved detection in
the inter-omic analysis are at the top of the table.
doi:10.1371/journal.pcbi.1001113.t002
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by consensus phenotype integration, mostly related to immuno-

regulatory processes (‘‘T-cell receptor’’ – Netpath; ‘‘B-Cell

receptor’’ – Netpath; ‘‘Rho GTPase cycle’’ – Reactome; ‘‘lCK

and FYN tyrosine kinases in initiation of TCR activation’’ –

BioCarta; ‘‘AMB2 integrin signalling’’ – PID; ‘‘Immunoregulatory

interactions between a Lymphoid and a non-Lymphoid cell’’ –

Reactome; and ‘‘TCR signalling in naive CD8 T cells’’ – PID).

Hence the remaining 23/30 consensus platinum-sensitivity

pathways, dominated by metabolic processes, are not associated

with sensitivity to a wide range of chemotherapeutic agents and

are more likely to be specific to platinum sensitivity.

Discussion

Our results show that an inter-omic, consensus phenotype

approach to integration of molecular profiles can reveal a cellular

metabolic phenotype robustly associated with platinum chemosen-

sitivity across the NCI-60 cell line panel. Many of the specific

aspects of this phenotype are consistent with the perturbations

described across many studies of tumour cell metabolism, and

several of these have been associated with the development, or likely

acquisition, of drug resistance phenotypes. The classic hallmark of

tumour cell metabolism is the Warburg effect: an increase in glucose

uptake and glycolysis to lactate even in normal oxygen conditions.

In addition to the Warburg effect tumour cells are frequently

reported as exhibiting higher rates of glutaminolysis, fatty acid and

lipid metabolism, and nucleotide synthesis [27]. Our observations

from the NCI-60 molecular profiles suggest a positive correlation

between all of these phenotypes and platinum chemosensitivity.

Figure 5 summarises some of the key correlations observed

between gene transcription, metabolite levels and platinum

sensitivity from the consensus pathways indicated by our analysis.

The relatively higher levels of citrate and phosphoenolpyruvate

(PEP), observed in more sensitive cell lines (Figure 5A), are

consistent with low TCA cycle activity (via product inhibition) and

increased diversion of glycolytic intermediates into anabolic

pathways such as the pentose phosphate which feeds nucleotide

synthesis [28]. Under these conditions tumour cells increase the

uptake of glutamine and its conversion to oxaloacetate via

glutamate and 2-oxoglutarate (2-OG) in order to replace TCA

cycle intermediates and NADPH [29]. Both glutamate and 2-OG

levels were also higher in more sensitive cell lines. Thus more

‘Warburg–like’ cells appear more sensitive to platinum treatment

than less metabolically transformed lines. The selection of TCA

cycle and pyruvate metabolism as a sensitivity pathway in our

analysis is likely to reflect these associations.

Figure 3. Base Excision Repair Pathway (Reactome). The Pathway diagram was generated using ConsensusPathDB [20]. All quantified
metabolites and transcripts are marked and the drugs with which they appeared associated are shown. A solid line indicates a substrate or product
(or protein participating in a protein complex) and a dotted line shows an enzymatic link.
doi:10.1371/journal.pcbi.1001113.g003

Consensus-Phenotype Integration
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The dependency of tumour cells on glycolysis for synthetic

intermediates could be exploited in platinum chemotherapy; for

example the clinically-relevant glycolysis inhibitor 2-deoxy-glucose

(2-DG) has been shown to enhance cisplatin cytotoxicity in head

and neck cancer cells [30]. Interestingly, this synergy appeared to

be mediated in part via oxidative stress, a process that would lead

to DNA lesions (e.g. 8-oxo-29-deoxyguanosine) requiring base

excision repair (BER) which was one of the key consensus

sensitivity pathways selected by our analysis (Figure 3). While it is

clear that nucleotide excision repair (NER) capacity is linked to

cisplatin resistance [31,32,33]; it is becoming evident that BER is

also important in the effect of cisplatin derived drugs [34]. Cross-

linking of DNA via platinum derived drugs can increase the

production of free radicals by disrupting the cellular redox balance

[35]. We suggest that the association of the BER pathway with

four platinum drugs observed in the present study is related to

increased ROS production and not adduct formation (repaired by

NER). Intracellular levels of ROS seem vital to the cytotoxic effect

of the platinum derived drugs, further evidenced by the fact that

oxaliplatin (a later generation of Pt drug) is highly cytotoxic but

forms less platinum-DNA adducts compared to equal amounts of

cisplatin [35].

A particularly high degree of coordination between gene

transcript and metabolite levels was observed in nucleotide

metabolism, revealing a robust association between increased

nucleotide synthesis, both de novo and via recovery of catabolic

intermediates, and tumour cell Pt sensitivity (Figure 5B). For

example, in the de novo pathway, we observed a positive correlation

between levels of dUTP (a precursor to dTMP), expression of

dUTP pyrophosphatase (DUT r = 0.38), expression of thymidylate

synthase (TYSY r = 0.27) and platinum sensitivity. dUTP has to be

hydrolysed to dUMP by DUT to prevent the incorporation of

uracils into DNA and suppression of DUT has been shown to

sensitize cells to other chemotherapeutics such as pyrimidine anti-

metabolites [36].

Increased expression of nucleotide salvage pathway enzymes

(e.g. uracil phosphoribosyl transferase or UPP (r = 0.20), hypo-

xanthine-guanine phosphoribosyl transferase or HPRT, r = 0.27)

in sensitive cell lines was accompanied by decreases in several

intermediates of purine and pyrimidine catabolism (namely

guanine, guanosine, hypoxanthine, inosine, uracil, uridine and

urea) and increase in CMP, the nucleotide product of HPRT.

Kowalski et al. [37] have shown clear links between inactivation of

salvage pathway enzymes such as HGPRT or loss of feedback

inhibition to AMP and GMP de novo synthesis and cisplatin

resistance in yeast. Interestingly in the same study the addition of

low concentrations of extracellular purines also abolished cisplatin

cytotoxicity; thus the metabolome may have a causal influence on

platinum sensitivity and not just represent epiphenomena that is a

passive consequence of aberrant cell division.

Our pathway analysis also predicts that lipid metabolism has a

direct impact on chemosensitivity. We observed lower cholesterol,

glycerol, and hexadecanoic acid (palmitate) in more sensitive cell

lines, together with negative correlations between expression of

apolipoprotein E (APOE; mean R = 20.21), LDL receptor

(LDLR; mean R = 20.27) and platinum sensitivity (Figure 5C).

All these observations are consistent with a hypothesis that

increased uptake of lipoproteins and constituent triglycerides, fatty

Table 3. Metabolites involved in the pathways from Table 2, showing the direction of association (if above the FDR cutoff) and r,
the correlation coefficient to the 2log(GI50) values.

Carboplatin Cisplatin Iproplatin Tetraplatin Diaminocyclohexyl-Pt II

2-oxoglutarate 0.18 q 0.26 0.20 0.12 q 0.16

Adenine 0.01 20.01 0.13 q 0.21 q 0.15

b-alanine 20.13 20.04 0.05 q 0.28 q 0.23

Citrate 0.00 0.01 0.23 q 0.21 q 0.19

CMP 20.04 20.04 0.15 q 0.22 q 0.21

dUTP 0.20 q 0.25 0.20 q 0.24 q 0.25

L-glutamate 0.00 0.09 0.02 q 0.23 q 0.22

Phosphoenol-pyruvate 0.00 0.09 q 0.26 q 0.33 q 0.30

S-adenosyl-L-methionine 0.02 20.01 0.20 q 0.27 q 0.20

Taurine 20.14 20.03 0.11 q 0.45 q 0.35

Cholesterol 20.16 Q 20.25 Q 20.35 Q 20.37 Q 20.38

Deoxyuridine 0.03 0.02 20.02 Q 20.21 Q 20.18

Glycerol 20.21 Q 20.27 Q 20.43 Q 20.38 Q 20.36

Guanine 20.02 20.04 20.15 Q 20.20 Q 20.18

Guanosine 20.06 20.16 Q 20.30 Q 20.24 Q 20.30

Hexadecanoic Acid 0.03 20.09 Q 20.26 Q 20.22 Q 20.27

Hypoxanthine Q 20.36 Q 20.36 20.13 20.05 20.04

Inosine 20.21 Q 20.25 20.07 20.05 20.10

Uracil 20.19 Q 20.25 Q 20.28 Q 20.19 Q 20.21

Urea 20.14 Q 20.25 Q 20.31 Q 20.36 Q 20.37

Uridine Q 20.38 Q 20.34 20.17 Q 20.18 Q 20.20

Xanthine Q 20.32 Q 20.25 20.13 20.07 20.02

doi:10.1371/journal.pcbi.1001113.t003
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acids and cholesterols can confer resistance to platinum, a

phenomenon previously shown in drug resistant leukemic cell

lines [38]. A related pathway highlighted as associated with

sensitivity was phosphatidylcholine biosynthesis. We observed a

positive correlation between choline kinase (CK, r = 20.28,

correlation to 2log(GI50)) expression and resistance to platinum.

Recent work by Shah et al. [39] in breast cancer cells have shown

that CK regulates pro-survival MAPk and PI3K/Akt signaling via

phosphatidic acid, and that overexpression leads to drug

resistance.

While previous pathway analysis was conducted on gene

expression profiles alone from the NCI60 dataset [40], the use of

correlation analysis and the combination of metabolite and gene

transcription measures in our study provides an unprecedented level

of detail into the contribution of metabolic pathways to drug

sensitivity. Using gene set enrichment analysis (GSEA), Reidel et al.

[40] suggested that, in addition to a number of cell signaling and

survival networks, methionine metabolism may contribute to

chemotherapeutic resistance to multiple agents, while fatty acid and

b-alanine metabolism were specifically associated with platinum-

resistance. In the context of fatty acid metabolism we show here that

lipid uptake and processing may in fact be the driving factor in this

association. It is also interesting to note that although we did not

observe over-representation of b-alanine and methionine metabolic

pathways, both b-alanine and S-adenosylmethionine levels were

significantly positively correlated to platinum sensitivity, adding

functional evidence in support of these earlier findings.

At present, our study is one of very few that presents a strategy

for simultaneous interpretation of gene expression data, metabolic

profiles and physiological endpoints using biological pathway

analysis, and has several advantages over other approaches.

Multivariate analysis using pattern recognition algorithms such as

PCA, [41], PLS [42] and Kohonen Networks (Self-Organising

maps) [43], have been shown to be useful in revealing novel

associations between ‘‘-omics’’ datasets, but fail to take into

account prior biological knowledge relevant to the phenomenon at

hand - a feature which is clearly present in pathway-based

techniques. Gene and metabolite coregulation at the pathway level

has been previously studied using OR analysis [44,45]. Transcripts

significantly correlated to metabolite levels were examined for

over-representation of Gene Ontology terms [46] or pathways

(defined by MapMan BINS). Bradley and Gibons’ work reveals a

degree of coordination present between transcriptional and

metabolic measurements at a pathway level, a necessary

prerequisite for our approach to be successful. Importantly none

of these examples use a function physiological endpoint (cytotox-

icity) as driver in pathway selection, leading to a consensus

phenotype description of the phenomenon of interest. We show

here that such an approach is critical in reducing false positive

selection of pathways.

All OR techniques share the limitation that they rely on a

database containing pre-defined pathways, and therefore cannot

identify novel pathways or functional modules. In this work we

have tried to overcome this limitation somewhat through

deconstructing the pathways which were significantly associated

and then functionally interpreting the elements of the pathways

which showed significant associations (Figure 5). However, even

this requires that the elements of the process are sufficiently

grouped in existing pathways to allow for those pathways to be

significantly associated.

Figure 4. Clustering drugs according to the pathways significantly correlated to sensitivity. Red and blue indicates a pathway which is or
is not significant in the inter-omic analysis. A significance level of p,0.05 was used for each pathway. Clustering was performed using complete
linkage and the Hamming distance metric. Pathways not associated with any drug have been omitted from the figure. Red asterisks indicate platinum
drugs, blue asterisks indicate antifolates and green asterisks indicate anthracycline-based drugs.
doi:10.1371/journal.pcbi.1001113.g004
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Ultimately, a systems biology approach, such as the inter-omic

pathway analysis presented in our study, could assist the

development of anti-resistance chemotherapeutic strategies, and

better individualization of treatment, i.e. personalized medicine.

Using gene expression models (GEMs) based on cytotoxicity in the

NCI-60 panel, Williams et al. [47] were able to stratify tumour

response and/or patient survival in seven independent cohorts of

patients with breast, bladder and ovarian cancer. Crucially, the in

vitro derived GEMs outperformed those derived directly from in

vivo data. Recently it has also been shown that pre-treatment

metabolic profiles can be used to predict the metabolic fate or

effect of drugs in rodents [48], healthy humans [49,50] and breast

cancer patients [51]. Given that the metabolic phenotype of

cancer is already the basis of imaging techniques such as FDG-

PET that are currently used to detect early responses to therapy,

there is potentially great value in combing such pharmaco-

metabonomic studies with other characterization of the patient or

tumour genome and it is our belief that the integration of

molecular profile data yields more than the sum of its parts. It

remains to be seen if the combination of ‘‘-omics’’ data provides a

competitive advantage over targeted biomarker studies for

prognosis and prediction of drug response in oncology. It remains

to be seen if the combination of ‘‘-omics’’ data provides a

competitive advantage over targeted biomarker studies for

prognosis and prediction of drug response in oncology. Several

major challenges to such approaches and translation from in vitro

studies, in particular tumour heterogeneity, require further study.

However, irrespective of biomarker development, the knowledge

that chemotherapeutic sensitivity is in part determined by the

metabolic phenotype suggests that metabolic enzymes may be

potential targets in oncology for both drug naive and chemore-

sistant patients.

Methods

NCI60 and pathway data
The NCI60 data was downloaded from http://dtp.nci.nih.gov/

mtargets/download.html on 27th August 2008. For this work

three datasets were used: metabolite levels, gene expression levels

and drug sensitivities. The metabolite data consists of measure-

ments of 352 metabolites, 154 identified, across 58 cell lines,

performed by Metabolon Inc. [52]. The transcriptomics data was

obtained using the U133 Affymetrix chip by Genelogic [17].

44928 probesets were measured, equating to 17150 genes

mapping to distinct UniProt identifiers, measured across the same

58 cell lines. The drug resistance data was selected from the 118

‘mechanism of action’ drugs data [15,16]. Each compound was

profiled in between 2 and 1176 independent experiments in a 48-

Figure 5. Processes associated with platinum sensitivity. Three processes associated with platinum sensitivity, the arrows indicate the
direction of correlation to the 2log(GI50) values for that gene or metabolite. A Energy metabolism. B Nucleotide de novo synthesis and salvage. C
Lipid uptake.
doi:10.1371/journal.pcbi.1001113.g005
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hour sulforhodamine B assay. The values used are the 2log(GI50),

where GI50 is the dosage of the drug which inhibits the growth of

the cells by 50%. . GI50 values were averaged across the replicates

for each cell line, thus increasing the robustness of the primary

phenotypic endpoint.

Pathways were derived from the ConsensusPathDB [20] which

assimilates pathways from a range of public databases (see Results).

Gene IDs are mapped to UniProt [53] protein IDs. For

metabolites, where available KEGG [21] compound IDs were

used, else, ChEBI [54] IDs were used.

Construction of gene/metabolite lists and
over-representation analysis

Pearson correlations were calculated between all transcript/

metabolite levels and 2log(GI50) values for each drug. Tran-

scripts/metabolites significant below a false discovery rate

threshold of 60% were retained in each test set for OR analysis.

Each UniProt identifier in the ConsensusPathDB pathways can be

mapped to zero or more gene identifiers on the U133 chip. The

background estimate (m in equation 1) for OR analysis was

adjusted to reflect the following: 1) Where ConsensusPathDB

proteins could not be mapped to any gene identifiers, these were

ignored; and 2) where ConsensusPathDB proteins mapped to

multiple probesets measuring genes in the transcript data, the

number of probesets was used. In addition, several metabolites,

often referred to as ‘‘currency metabolites’’, which appear in many

pathways and do not provide specificity were removed before

analysis. The currency metabolites removed were phosphate,

diphosphate and NADP+. Thus, given the transcriptomic and

metabolomic data, an ‘‘effective size’’, Ni, could be defined for

each pathway, I, in terms of genes and metabolites, The effective

pathway size may be larger or smaller than the actual number of

proteins/metabolites in the pathway. Pathway significance was

calculated using the hypergeometric distribution,

pi~
Xmin (K ,Ni)

j~ki

Ni

j

� �
M{Ni

K{j

� �

M

K

� � ð1Þ

where K is the number of genes or metabolites associated with the

drug and ki is the number of genes or metabolites from the

pathway. P,0.05 was used as the criterion defining significance of

pathway enrichment.

Joint transcript and metabolite analysis
We used the pathway p-values pi from the individual analyses to

combine the data. If there were no transcripts or no metabolites

measured for pathway i, we set pi = 1 for that data type. Since the

transcript/metabolite data were generated from separate experi-

ments. We thus assumed independence of the pathway associa-

tions from the different data sets. We thus computed the joint

probability pJi of association of pathway i with the drug sensitivity

phenotype as pJi = pGi pMi where pGi and pMi denote the probability

of association from the individual gene and metabolite data

separately.

Null models
Null model 1 was generated by creating random gene and

metabolite lists of matching size to those observed for each of the

drugs. Standard OR analysis was then performed and then

numbers of overlapping pathways were recorded. 100 sets of

random lists were generated and the mean number of pathways

common to different numbers of drugs were recorded in table 1.

Null model II assumes that the pathways are selected at

random, and so taking the numbers of pathways selected for each

drug, the exact probability of a pathway being selected for n drugs

was calculated. To do this we calculated the probability of a

pathway being selected at random from the full list of pathways,

given the number of pathways selected. By calculating this for each

of the drugs we have.

Additionally, we examined the added information given by the

joint analysis. For each drug the lists of p-values from the

metabolite and transcript analyses were randomly permuted 100

times before combination (randomizing the pathway association

between the two sets). The number of times in which more

pathways were significant (p,0.05) for the permuted lists than in

the real data was recorded.

Cumulative false discovery rates for all models were calculated

by dividing the ‘expected’ number of pathways as given by the null

model, by the actual (cumulative) number of pathways found in

the real data in at least n drugs.

Supporting Information

Table S1 Panels of genes and metabolites that were deemed to

be associated with the sensitivity to each drug.

Found at: doi:10.1371/journal.pcbi.1001113.s001 (0.57 MB XLS)

Table S2 The binary table used to produce the heatmap in

Figure 4.

Found at: doi:10.1371/journal.pcbi.1001113.s002 (0.39 MB XLS)

Table S3 The pathways most frequently associated with drugs

from the panel.

Found at: doi:10.1371/journal.pcbi.1001113.s003 (0.01 MB XLS)

Table S4 List of metabolites measured in the NCI60 panel,

along with our assigned KEGG IDs.

Found at: doi:10.1371/journal.pcbi.1001113.s004 (0.05 MB XLS)
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