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Abstract

We investigate the dynamics of the 2009 influenza A (H1N1/S-OIV) pandemic by analyzing data obtained from World Health
Organization containing the total number of laboratory-confirmed cases of infections - by country - in a period of 69 days,
from 26 April to 3 July, 2009. Specifically, we find evidence of exponential growth in the total number of confirmed cases
and linear growth in the number of countries with confirmed cases. We also find that, i) at early stages, the cumulative
distribution of cases among countries exhibits linear behavior on log-log scale, being well approximated by a power law
decay; ii) for larger times, the cumulative distribution presents a systematic curvature on log-log scale, indicating a gradual
change to lognormal behavior. Finally, we compare these empirical findings with the predictions of a simple stochastic
model. Our results could help to select more realistic models of the dynamics of influenza-type pandemics.
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Introduction

The spread of infectious diseases is a threat to the world public

health and a subject of great scientific interest. Influenza viruses,

for example, circulate around the world every year and seasonal

influenza is one of the most worrying respiratory infections of

humans [1]. From time to time new strains of influenza virus

emerge and cause large-scale global pandemics – such as the 2009

influenza A (H1N1/S-OIV). The dynamics of influenza-type

pandemics has been the focus of several scientific works which may

provide necessary information to deal with future pandemic events

[2–9]. However, conventional modeling techniques are usually

only able to provide a general idea of how a pandemic might

evolve, since crucial information concerning model parameters is

generally unavailable.

Methods

Here, we investigate the dynamics of influenza-type pandemics

using techniques of statistical physics typically applied in the study

of complex systems. We analyze a database - from World Health

Organization - containing laboratory-confirmed cases of influenza

A (H1N1/S-OIV) infections around the world [10]. Specifically,

we analyze the total number of laboratory-confirmed cases - by

country - in a period of 69 days, from 26 April to 3 July, 2009.

We search for patterns of spread for the virus influenza A

(H1N1/S-OIV). Basically, we investigate the growth in the total

number of confirmed cases, the growth in the number of countries

with confirmed cases and the cumulative distribution of cases

among countries. We also propose a simple stochastic model

which reproduces the main empirical findings obtained from the

analysis of the database on the 2009 influenza A (H1N1/S-OIV)

pandemic.

Results

First, we consider the time evolution of the global number of

confirmed cases, Y(t). At a given time t, the total number of cases Y

is given by the sum of y over all countries. In Fig. 1A we show Y(t)

in comparison with an exponential curve, given by the equation
dY

dt
~lY , with l~0:05 (compare with results reported in ref.

[11]). This result suggests that the total number of confirmed cases

exhibits an exponential growth. However, a systematic deviation

of the exponential behavior can be observed for smaller times (t ,

20 days). In addition, Fig. 1B shows the time evolution of the total

number of countries with confirmed cases, W(t). Observe that W(t)

exhibits approximately a linear growth in all the period

considered.

Next, we investigate the distribution of confirmed cases among

countries and its time evolution. In order to reduce statistical

fluctuations, it is common to consider the cumulative distribution

R(y)~
Ð

P(y’)dy’. Here, y is the number of confirmed cases in a given

country and P(y) is the probability distribution function (PDF) of y.

The empirical cumulative distribution R(y), for initial times, is

shown in Fig. 2A. In this range, R(y) presents linear behavior on

log-log scale being well described by a power law decay,

R(y)*y{a, ð1Þ

where a is the power law exponent. The time evolution of the

power law exponent a is shown in Fig. 2B. Observe that a stays

approximately constant, 0.35,a,0.040, for 21 days.

For larger times, R(y) gradually deviates from the power law

behavior (Supplementary Figure). In this range, R(y)has a modest

negative curvature everywhere (see Fig. 3A) and is in good
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agreement with log-normal curves given by

R(y)~c exp {a ln y{b ln yð Þ2
h i

, ð2Þ

Where c is a normalization constant and a and b are the

parameters. Notice that R(y) behaves as a power law, R(y)*y{a,

when b?0. The time evolution of the parameters a and b of the

log-normal curves are shown in Fig. 3B.

Discussion

The exponential growth shown in Fig. 1A is consistent with

typical results in epidemiology. Well known models for the spread

of epidemics, such as SEIR model, predicts exponential growth in

the number of infections at early stages of the epidemic. A possible

explanation of the deviation of exponential behavior for smaller

times, also shown in Fig. 1A, may be found in Fig. 1B. The growth

of individual countries is added to the growth of the number of

countries with new cases. For initial times, when the total number

of cases is small, this combination may generate a deviation of the

exponential behavior. For larger times, when the number of cases

is large, the effect of the entry of new countries with few infections

may be much less intense.

According to results shown in Fig. 2, the distribution of cases

among countries exhibits power law behavior - indicating scale

invariance. The presence of power law behavior suggests that the

system self-organizes into a scale-free state. This phenomenon is a

remarkable characteristic of a wide range of complex systems -

from physics to biology and medicine [12]. Scale invariance in the

global spread of influenza pandemic for initial stages is a

Figure 1. Temporal evolution of cases and countries with
confirmed cases. (A) The world total number of influenza A (H1N1)
laboratory-confirmed cases, Y(t), on mono-log scale, for the period of 69
days, from 26 April to 3 July, 2009. The solid line is given by
y(t)~2825exp(lt), with l~0:05. (B) The total number of countries with
confirmed cases, W(t), for the same period. A linear least-square fit to
the data (solid line) suggests W (t)~1:02z1:69t.
doi:10.1371/journal.pone.0017823.g001

Figure 2. Cumulative distribution of cases among countries:
power law behavior. (A) Empirical cumulative distribution, R(y), of
laboratory-confirmed cases y for distinct times (few specific days are
displayed for better visualization). The solid lines are power laws, given
by Eq. (1), with exponents following Fig. 2B. (B) Temporal evolution of
the power law exponent a, obtained by least-square fits to the data.
Observe that 0.35,a,0.40 for a period of about 20 days.
doi:10.1371/journal.pone.0017823.g002

Figure 3. Cumulative distribution of cases among countries:
log-normal behavior. (A) Empirical cumulative distribution, R(y),
laboratory-confirmed cases y, for larger times (for better visualization,
we display few specific days). The systematic curvature on log-log scale
indicates a gradual deviation from power law behavior. The solid lines
are given by Eq. (2), with parameters shown in Fig. 3B. (B) Temporal
evolution of parameters a (circles) and b (squares) obtained by least-
square fits of Eq. (2) to the data.
doi:10.1371/journal.pone.0017823.g003
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remarkable feature which is unpredicted by many traditional

models for the evolution of infectious diseases. This finding bring

to mind a previous study on the distribution of epidemic events in

isolated populations [13]. In both cases, the cumulative distribu-

tion of events follows a power law behavior, with exponent a,0.3

for isolated populations and 0.035,a,0.40 for the 2009 influenza

pandemic.

A possible factor contributing to the observed scale invariance is

human mobility - which has been considered a fundamental

ingredient for infectious diseases to spread rapidly through the

world population [14–16]. Human mobility may alter the

evolution of local epidemics, with the entry of new infectious

individuals in a given region, causing a non-local effect [17].

Surprisingly, human travel exhibits scaling laws such as the power

law distribution that we find for influenza pandemics [14].

Therefore, it is natural to consider human mobility, including

the air traffic in the worldwide air-transportation network, as a

possible mechanism contributing for the power law behavior

shown in Fig. 2A.

In contrast, other factors may contribute for the deviation from

power law behavior observed for larger times. Country-based

contingency plans, for example, have been implemented in order

to control the international spread of influenza pandemic. Studies

have estimated the impact of restricting international travel and

imposing entry or exit screening of passengers at airports [18].

Other local contingency plans, which may be a function of the

country’s level of preparedness to deal with the pandemic, have

been implemented in order to reduce the spread of influenza

infections [17]. In addition, it is well known that seasonality and

weather conditions, such as temperature and relative humidity,

affect the dynamics of influenza transmission [19–20]. We cannot

discard the possibility that such factors, which can largely vary

from country to country, may contribute towards changing the

shape of the cumulative distribution of cases among countries.

Our findings suggest a crossover in the shape of the cumulative

distribution of cases among countries - from power law for initial

times to log-normal for larger times. However, we remark that a

log-normal distribution can be mistaken locally for a power law. In

fact, a log-normal distribution can mimic a power law over a

relatively large interval. Concerning its origin, typically log-normal

forms underlie random multiplicative process [12] – a pure

random multiplicative process is defined as y tz1ð Þ~l tð Þy tð Þ,
being l tð Þ a random number. Thus, factors such as the ones

described above may be acting in a multiplicative way in the

dynamics of influenza pandemic. This may be a possible origin of

the log-normal behavior or R(y) observed for large times.

Next we present an alternative way to interpret our empirical

findings. We compare our results with the predictions of a simple

stochastic model. Let us consider that the number of cases in a

given country follows a process given by the rule

y tz1ð Þ~y tð Þzl tð Þy tð Þ, ð3Þ

Where y(t+1) and y(t) are the number of cases in the times t+1 and t

respectively, and l tð Þ is a random number following an

exponential distribution with mean m. Each country evolves

independently of the others countries. The system evolves starting

from a given initial condition – for example, a particular number

of countries with y(t = 0) = 1. For each time step two new

countries are added to the system, each one with probability p.

The rule described in Eq. 3 indicates that the number of cases in

the time t+1 depends of the number of cases in the time t. This

assumption is compatible with the dynamics of an infectious

Figure 4. Simulation of the stochastic model. The model is given by Eq. (3), with m~
1

24
and p = 0.85. Initial condition: there are only one country

with y(t = 0) = 1. (A) Temporal evolution of the total number of confirmed cases, Y(t), on mono-log scale, for time steps from 1 to 70. The solid line is
given by Y (t)*exp(lt), with l = 0.05. (B) Temporal evolution of the total number of countries with confirmed cases, W(t), for the same time steps.
The solid line is W (t)*1:7t. (C) Cumulative distribution, R(y), for t = 10 steps (squares), t = 30 (up triangles), t = 50 (down triangles) and t = 70 (circles).
For comparison, we show a power law given by Eq. (1), for t = 10, and a lognormal curve given by Eq. (2) for t = 10 steps.
doi:10.1371/journal.pone.0017823.g004
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disease. Each individual infected with influenza virus, for example,

has the potential to spread the virus to its neighborhood. Observe

also that the random nature of l tð Þ in Eq. (3) is not essential to

obtain the results described below. However, the random nature of

l tð Þ mimics possible fluctuations which are common in real

systems.

A typical simulation of this model is shown in Fig. 4 for a

particular choice of parameters. Observe that the model predicts

qualitatively several aspects of the empirical results – the

exponential growth after an initial transient, the linear growth in

the number of countries with confirmed cases and a cumulative

distribution exhibiting a systematic curvature on log-log scale

indicating lognormal behavior.

In this study, we identify spreading patterns of the 2009

influenza A (H1N1/S-OIV) pandemic for a particular time period.

Our results provide quantitative evidence of a crossover in the

shape of the cumulative distribution of cases – from power law

behavior at early stages to log-normal behavior for larger times.

We discuss possible factors that may contribute towards changing

the shape of the cumulative distribution from power law to log-

normal. Country-based contingency plans, country’s level of

preparedness to deal with the pandemic, seasonal effects, weather

conditions among others may be acting in a multiplicative way

generating the observed behavior.

Our findings may give us information on the underlying

mechanisms governing influenza-type pandemics. For example,

the simple stochastic model proposed in this work suggests that the

number of confirmed cases in a given country follows a

multiplicative process with exponential noise.

The future evolution of any influenza pandemic is difficult to

predict. However, the analysis of epidemiological data and the

selection of realistic models may provide some insight in the spatial

and temporal evolution of pandemic events. Models for the spread

of infectious diseases are useful tools - can project plausible

scenarios, guide control strategies, suggests roles of antiviral drugs

and vaccines and so on. Our empirical results could help to select

realistic models of the dynamics of influenza-type pandemic

events.

Supporting Information

Figure S1 Cumulative distribution of cases among
countries for all data. Empirical cumulative distribution,

R(y), of laboratory-confirmed cases y for all data (48 days within the

period of 69 days, from 26 April to 3 July, 2009). The data are

shown from smaller to larger times – from left to right and from

top to bottom. Observe the gradual convergence from a linear

behavior on log-log scale (power law behavior) to curves with a

modest negative curvature everywhere (log-normal behavior).

(TIF)
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