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Abstract

Propensity score weighting is sensitive to model misspecification and outlying weights that can unduly influence results.
The authors investigated whether trimming large weights downward can improve the performance of propensity score
weighting and whether the benefits of trimming differ by propensity score estimation method. In a simulation study, the
authors examined the performance of weight trimming following logistic regression, classification and regression trees
(CART), boosted CART, and random forests to estimate propensity score weights. Results indicate that although misspecified
logistic regression propensity score models yield increased bias and standard errors, weight trimming following logistic
regression can improve the accuracy and precision of final parameter estimates. In contrast, weight trimming did not
improve the performance of boosted CART and random forests. The performance of boosted CART and random forests
without weight trimming was similar to the best performance obtainable by weight trimmed logistic regression estimated
propensity scores. While trimming may be used to optimize propensity score weights estimated using logistic regression,
the optimal level of trimming is difficult to determine. These results indicate that although trimming can improve inferences
in some settings, in order to consistently improve the performance of propensity score weighting, analysts should focus on
the procedures leading to the generation of weights (i.e., proper specification of the propensity score model) rather than
relying on ad-hoc methods such as weight trimming.

Citation: Lee BK, Lessler J, Stuart EA (2011) Weight Trimming and Propensity Score Weighting. PLoS ONE 6(3): e18174. doi:10.1371/journal.pone.0018174

Editor: Giuseppe Biondi-Zoccai, University of Modena and Reggio Emilia, Italy

Received October 10, 2010; Accepted February 25, 2011; Published March 31, 2011

Copyright: � 2011 Lee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Award Number K25MH083846 from the National Institute of Mental Health (PI: Stuart). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: bklee@drexel.edu

Introduction

Propensity score methods are a means of controlling for

confounding in non-experimental studies [1]. Briefly, the propen-

sity score is the probability of receiving a treatment conditional on

observed covariates. By conditioning on the propensity score one

can achieve an unbiased estimate of the treatment effect, assuming

no unmeasured confounding. Conditioning on the propensity

score typically occurs through weighting, matching, stratification,

or regression adjustment. Although any of these methods can be

used for propensity score adjustment, some evidence suggests that

weighting and matching may be optimal in some instances [2]. For

example, in studies involving complex sampling methods where

units have differential probabilities of inclusion, propensity score

weighting may be particularly recommended [3].

Propensity score weighting is similar with survey sampling

weighting, which accounts for over- or under- sampling by

weighting the sample to represent the population from which the

sample was drawn. In the propensity score context, weighting is

used to account for different probabilities of exposure between

comparison groups. Different weighting schemes are possible. The

most frequently used is inverse probability of treatment weighting,

where exposed and unexposed individuals are weighted to represent

the population. A variation we use here, which is described in detail

below, weights the unexposed group to resemble the exposed group.

Propensity score weighting is frequently used in a variety of

epidemiological settings to estimate causal effects (e.g. [3,4,5,6,7,8]).

Diagnostics are a crucial element of using propensity score methods

in general, and in particular the key diagnostics are generally those

that compare the covariate distributions in the propensity-score-

adjusted samples (e.g., the weighted or matched samples), ensuring

that the groups are comparable with respect to the observed

covariates (see Stuart, 2010 [9], or Rubin, 2001 [10], for further

discussion of propensity score diagnostics). A particular diagnostic

concern with regard to propensity score weighting is that

observations with extremely large weights may unduly influence

results and yield estimates with high variance [10,11,12]. Because

weights are derived directly from propensity scores, misspecified

propensity score models are one potential cause for extreme

weights. Two possible solutions for extreme propensity score

weights due to model misspecification are to improve the

specification of propensity score models, and to reduce the impact

of extreme weights through trimming [13,14]. Weight trimming,

sometimes referred to as truncation [15], refers to the reduction of

weights larger than some value w0 to w0 [16]. In some cases, authors

have trimmed low weights smaller than some value w0 to w0,

although we do not consider that method here [15]. Although

common in the survey sampling world, weight trimming has not

been investigated as thoroughly in propensity score settings.

Machine learning refers to a diverse set of automated

classification and prediction algorithms that are commonly used

in data mining and artificial intelligence. Several authors have

suggested the use of such techniques in propensity score estimation

[17,18,19,20,21,22] and empirical evidence indicates that these
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methods can perform well in a variety of scenarios [20,23]. In a

previous study of propensity score estimation using classification

and regression tree (CART) methods, we found that certain

machine learning data fitting methods could provide substantially

better bias reduction and confidence interval coverage compared

with logistic regression [24]. In particular, the machine learning

methods of boosted CART [19] and random forests [25] provided

consistently superior performance. In this manuscript, we build on

our previous work and consider the problem of variability and

potential outlier status of propensity score weights. In particular

we apply weight trimming techniques to determine how trimming

influences treatment effect estimates, and whether the effects of

trimming vary when propensity scores are estimated using logistic

regression versus machine learning methods.

Methods

Simulation setup
We used a simulation framework introduced by Setoguchi and

colleagues based on real-world claims data modeling statin use

[20]. This established simulation setup allows us to investigate

weight trimming in scenarios that were explored to answer other

questions, therefore ensuring comparability with previously

published results. Each simulated dataset consisted of N = 500

observations with a binary exposure, continuous outcome, and 10

covariates (4 associated with both exposure and outcome, 3

associated only with the exposure, and 3 associated only with the

outcome). Covariates were generated as standard normal random

variables with zero mean and unit variance, and several of the

covariates were correlated. The exposure probability at the

average of covariates was approximately 0.5. The continuous

outcome was generated from a linear combination of the exposure

and covariates such that the true effect of exposure equaled 20.4.

One thousand datasets were simulated for each of three different

scenarios where the true propensity score model had the following

properties:

N Scenario 1: additivity and linearity (main effects only)

N Scenario 2: mild non-additivity and non-linearity (three two-

way interaction terms and one quadratic term)

N Scenario 3: moderate non-additivity and non-linearity (ten

two-way interaction terms and three quadratic terms).

Scenarios 1, 2, and 3 correspond with Scenarios A, E, and G in

the study by Setoguchi et al. [20] and our previous study [26]; the

formulae used to generate these scenarios are listed in the

appendix of their manuscript. In addition, for reproducibility, and

to see the details of the simulation settings, R code and all

parameter values to generate the simulation datasets are included

in Supporting Information Text S1.

Propensity score estimation
We used R 2.9.2 to estimate propensity scores using the

following methods:

N Logistic regression: standard logistic regression estimating

probability of treatment from all 10 covariates, with a main

effect term for each covariate (no non-linear terms or interactions)

N CART: recursive partitioning; implemented with the rpart

package with default settings [27]

N Random forests: CART iteratively fitted to repeated samples

of the original dataset using random predictors; implemented

with the randomForest package with default settings [28]

N Boosted CART: iteratively fitted CART to random subsets of

data where each new iteration provides greater priority to

incorrectly classified observations in the previous tree;

implemented using the twang package [29] with recommended

parameters and an iteration stopping point minimizing the

mean of the Kolmogorov-Smirnov test statistics.

For all methods we used the default settings since that is often how

these methods are implemented in practice, even if fine-tuning the

settings may lead to improved performance for any particular dataset.

Propensity score weights
Although various weighting schemes have been used with

propensity score weights, we choose to perform weighting by the

odds to estimate the average treatment effect among the treated. This

estimand, which is often of interest in observational studies, refers to

the average treatment effect in a population with a covariate

distribution similar to that of the sample that received the treatment

[3,8,19]. Subjects in the treated/exposed group receive a weight of 1,

and those in the untreated/unexposed group receive a weight of pi/

(1-pi), where pi refers to an individual’s probability of receiving the

treatment (i.e., the individual’s propensity score). This weights the

control group to resemble the treatment group. In other words,

untreated/unexposed subjects who are dissimilar to the exposed/

treated group will have a pi near zero and a weight near zero;

untreated/unexposed subjects that are more similar to the exposed/

treated group will have a larger pi and therefore larger weights. The

propensity score weights are then incorporated as weights into a

standard outcome linear regression model with only the treatment as

a predictor variable and no covariates [12]. To better isolate the

effects of weight trimming, we do not perform ‘doubly robust’

regression adjustment for covariates after weighting is applied [30].

Trimming was performed using percentile cutpoints [15]. In

particular, we trimmed high weights downwards, with cutpoints

ranging from the 99th to the 50th percentiles, at 1% intervals. For

example, when trimming at the 90th percentile, all weights with

value above the 90th percentile were set equal to the 90th

percentile. We evaluate the performance of weight trimming by

examining the bias (the absolute percentage difference from the

true treatment effect), 95% confidence interval (CI) coverage, and

standard error of effect estimates.

Results

Before trimming, propensity score weights for the unexposed

group differed by estimation method and scenario (Table 1). For

all estimation methods, the most complex scenario (3 - moderate

non-additivity and non-linearity) increased the proportion of

extreme weights. Compared with the other estimation methods,

boosted CART produced fewer extreme weights across all

scenarios. For example, in scenario 3, the average sum of

unexposed observation weights above the 95th percentile (in other

words, the average sum of weights for the top 5% of unexposed

persons, roughly 12 observations) was as follows for each method:

logistic regression = 82.3; CART = 59.6; random forests = 80.6;

boosted CART = 37.1. Spearman correlations of the weights by

estimation method are described in Table 2. Logistic regression

weights were strongly correlated with random forests and boosted

CART weights in scenarios 1 and 2 (r from 0.75 to 0.83) but these

correlations weakened in scenario 3 (r = 0.63 and 0.65, respec-

tively). CART weights were less strongly correlated with the

weights from other methods, with correlations ranging from 0.39

to 0.59. Boosted CART and random forests weights were the most

highly correlated, at approximately 0.90 in all scenarios.

Weight Trimming and Propensity Score Weighting
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Bias
In the simplest scenario (1: additivity and linearity), all

estimation methods except CART yielded little bias before

trimming was applied (Figure 1). In part because of low bias

without trimming, trimming in scenario 1 did not greatly reduce

bias for any estimation method – in fact, trimming only increased

bias for boosted CART, random forests, and CART. However,

with increasing scenario complexity, the benefit of trimming

became more apparent, particularly in the case of logistic

regression and CART, where some (but not too much) trimming

reduced bias in the estimated treatment effect. The optimal

trimming level for logistic regression was at the 95th percentile in

scenario 2 (mild non-additivity and non-linearity, 7.8% absolute

bias versus 17.7% untrimmed), and at the 87th percentile in

scenario 3 (moderate non-additivity and non-linearity, 6.5%

absolute bias versus 30.3% untrimmed). In contrast, random

forests benefited only slightly from trimming. For example, in

scenario 3, even at the optimal trimming level of the 92nd

percentile, the absolute bias was 9.0% trimmed versus 11.6%

untrimmed. Boosted CART did not benefit at all from trimming in

any scenario. The amount of trimming was also crucial: for all

methods and scenarios, weight trimming beyond the optimal level

substantially increased bias.

Standard error
As expected, trimming decreased the standard error of effect

estimates across all estimation methods and scenarios in a

monotonic fashion (Figure 2). In particular, trimming sharply

reduced the standard error for logistic regression (e.g., for

scenario 3, at the 87th percentile, 0.080 versus 0.102 untrimmed).

Although trimming reduced the standard errors for boosted

CART and random forests, the reductions were not as dramatic,

in part because the untrimmed standard errors for boosted

CART and random forests (e.g., for scenario 3, 0.083 and 0.085

respectively) were already lower than for untrimmed logistic

regression (0.102).

Table 1. Distribution of Propensity Score Weights for the Unexposed Group by Estimation Method and True Propensity Score
Model Scenario.

1st quartile Median 3rd quartile Maximum Proportion $10 Proportion $20

Scenario 1: additivity and linearity

Logistic regression 0.30 0.60 1.22 119.5 0.37% 0.05%

CART 0.26 0.37 1.39 49.0 0.16% 0.009%

Random forests 0.41 0.74 1.35 91.5 0.25% 0.04%

Boosted CART 0.21 0.40 0.75 14.3 0.004% 0.000%

Scenario 2: mild non-additivity and
non-linearity

Logistic regression 0.21 0.46 1.00 110.1 0.42% 0.07%

CART 0.21 0.31 0.52 37.0 0.13% 0.008%

Random forests 0.31 0.59 1.13 59.7 0.15% 0.02%

Boosted CART 0.16 0.31 0.61 15.3 0.005% 0.000%

Scenario 3: moderate non-additivity
and non-linearity

Logistic regression 0.41 0.77 1.45 98.3 0.52% 0.06%

CART 0.22 0.35 1.64 49.0 0.48% 0.05%

Random forests 0.40 0.76 1.43 177.0 0.48% 0.06%

Boosted CART 0.19 0.38 0.75 20.3 0.01% 0.000%

doi:10.1371/journal.pone.0018174.t001

Table 2. Spearman Correlations of Estimated Propensity
Score Weights by Estimation Method and True Propensity
Score Model Scenario.

Scenario 1: additivity and linearity

LGR CART RFRST BOOST

LGR 1

CART 0.46 1

RFRST 0.77 0.55 1

BOOST 0.83 0.53 0.89 1

Scenario 2: mild non-additivity and non-linearity

LGR CART RFRST BOOST

LGR 1

CART 0.44 1

RFRST 0.75 0.55 1

BOOST 0.81 0.53 0.90 1

Scenario 3: moderate non additivity and non-linearity

LGR CART RFRST BOOST

LGR 1

CART 0.39 1

RFRST 0.63 0.59 1

BOOST 0.65 0.56 0.90 1

LGR: logistic regression.
CART: classification and regression trees.
RFRST: random forests.
BOOST: boosted CART.
doi:10.1371/journal.pone.0018174.t002
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95% CI coverage: In scenario 1, trimming only slightly improved

CI coverage for logistic regression (at the optimal trimming level of

the 98th percentile, coverage was 99.4% trimmed versus 97.0%

untrimmed) and did not improve coverage for any of the other

estimation methods (Figure 3). In more complex scenarios,

trimming greatly improved the CI coverage of logistic regression

even as the standard error decreased. Optimal trimming levels and

corresponding coverage rates were as follows: logistic regression -

scenario 2: 99.9% trimmed at the 95th percentile versus 87.5%

untrimmed, scenario 3: 100% trimmed at the 92nd percentile

versus 64.3% untrimmed. Trimming only improved coverage for

CART in scenario 3, from 75.7% coverage untrimmed to 83.6%

trimmed at the 81st percentile. Overall, trimming did not greatly

improve 95% CI coverage rates for boosted CART or random

forests.

Discussion

In various simulation scenarios, weight trimming had the

potential to improve the performance of propensity score weights,

in particular for logistic regression-estimated weights. However,

trimming did not improve the performance of propensity score

weights estimated by boosted CART and random forests; in such

situations, trimming can actually induce bias. The performance of

boosted CART and random forests without weight trimming was

similar to the best possible performance obtained by logistic

regression with trimming. For all methods and scenarios, as the

level of trimming increased, the standard error of the effect

estimate progressively decreased. Note that here we refer to

standard error in the statistical sense of estimated uncertainty in

the effect estimate, absolute error (i.e., bias) may in fact increase

Figure 1. Average percent absolute bias in the estimate of treatment effect after propensity score weight trimming for 1000
simulated datasets of N = 500, by propensity score estimation method and degree of complexity in the true propensity score model
scenario. Scenario 1: additivity and linearity; Scenario 2: mild non-additivity and non-linearity; Scenario 3: moderate non-additivity and non-linearity.
The 100th percentile of weight trimming indicates no trimming was applied.
doi:10.1371/journal.pone.0018174.g001

Figure 2. Average standard error in the estimate of treatment effect after propensity score weight trimming for 1000 simulated
datasets of N = 500, by propensity score estimation method and degree of complexity in the true propensity score model scenario.
Scenario 1: additivity and linearity; Scenario 2: mild non-additivity and non-linearity; Scenario 3: moderate non-additivity and non-linearity. The 100th
percentile of weight trimming indicates no trimming was applied.
doi:10.1371/journal.pone.0018174.g002
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even in settings where the estimated standard error decreases. Of

course, decreasing the standard error is only good if the desired

confidence interval coverage is maintained. Our results indicate

that an ideal level of trimming exists such that bias and CI

coverage are optimized, although this ideal level of trimming

varies with scenario. As with other simulation studies, our results

may not be generalizable to all situations utilizing propensity score

weights. However, the scenarios used are similar to those typical in

pharmacoepidemiologic studies, including common exposure,

moderate magnitude of the exposure effect, collinearity of

covariates, ranges of variables, and coefficients based on claims

data modeling of statin use [20].

The present results demonstrate the detrimental effects of using

misspecified propensity score models. Correctly specified logistic

regression models performed quite well with low bias while

misspecified logistic regression models that were missing important

interactions and non-linearities in pre-treatment covariates pro-

duced high bias. The poor performance of misspecified logistic

regression propensity score weighting due to large weights has been

reported in other situations [23,31]. However, large weights in and

of themselves may not always be problematic when the propensity

score model is correctly specified. Even when the distributions of

weights estimated by random forests and logistic regression in our

simulations were comparable (both with a number of large weights),

trimming substantially improved logistic regression but not random

forests (which performed well without trimming). This suggests that

extreme weights alone are not largely responsible for increased bias

and standard errors. Rather, it is the systematic misspecification of

propensity scores by logistic regression models with only main

effects terms that induced problems.

Although weight trimming appears to improve the performance

of logistic regression-estimated propensity score weights in a

variety of scenarios and is computationally easy to carry out,

questions remain regarding how to implement trimming. The use

of ad hoc adjustment methods such as propensity score weight

trimming may be considered an admission of the failure of the

underlying statistical methods used to estimate the propensity

score. Hence, before trimming is implemented, it may be useful to

examine and modify other aspects of the propensity score

estimation process, especially concerning specification of non-

linearities and interactions, variable selection, and variable

parameterization [32,33]. Machine learning algorithms such as

boosted CART and random forests may be helpful in these tasks

[21]. In addition, the distributions of weights should be examined

to determine if results are sensitive to the few most extreme

weights. It should be noted that methods to address extreme

weights can be implemented directly within (instead of in addition

to) machine learning methods. For example, Ridgeway and

McCaffrey describe how the boosted CART algorithm (which we

implemented here) has the effect of reducing the risk of obtaining

spurious probabilities near 0 and 1 that lead to extreme weights

[23]. Finally, without guidance on the optimal level of trimming,

there exists the dangerous potential for trimming being used to

artificially achieve a desired result. Bayesian methods to perform

weight pooling and weight smoothing may be useful to objectively

optimize weights [16,34] for propensity score adjustment,

although this has not been explored.

In conclusion, our results show that weight trimming can help

reduce bias and standard error associated with logistic regression-

estimated propensity score weights. However, weight trimming is

of little to no utility for boosted CART and random forests-

estimated propensity score weights, possibly because those

methods perform so well already. We suggest that analysts should

focus attention on improving propensity score model specification

and rely less on weight trimming to optimize propensity score

weighting.

Supporting Information

Text S1 The R code used to generate the simulation data is

presented in the Supporting Information Text S1.

(PDF)
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Figure 3. 95% confidence interval coverage for 1000 simulated datasets of N = 500 after propensity score weight trimming, by
propensity score estimation method and degree of complexity in the true propensity score model scenario. Scenario 1: additivity and
linearity; Scenario 2: mild non-additivity and non-linearity; Scenario 3: moderate non-additivity and non-linearity. The 100th percentile of weight
trimming indicates no trimming was applied.
doi:10.1371/journal.pone.0018174.g003
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