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Abstract

Takens’ theorem (1981) shows how lagged variables of a single time series can be used as proxy variables to reconstruct an
attractor for an underlying dynamic process. State space reconstruction (SSR) from single time series has been a powerful
approach for the analysis of the complex, non-linear systems that appear ubiquitous in the natural and human world. The
main shortcoming of these methods is the phenomenological nature of attractor reconstructions. Moreover, applied studies
show that these single time series reconstructions can often be improved ad hoc by including multiple dynamically coupled
time series in the reconstructions, to provide a more mechanistic model. Here we provide three analytical proofs that add to
the growing literature to generalize Takens’ work and that demonstrate how multiple time series can be used in attractor
reconstructions. These expanded results (Takens’ theorem is a special case) apply to a wide variety of natural systems having
parallel time series observations for variables believed to be related to the same dynamic manifold. The potential
information leverage provided by multiple embeddings created from different combinations of variables (and their lags) can
pave the way for new applied techniques to exploit the time-limited, but parallel observations of natural systems, such as
coupled ecological systems, geophysical systems, and financial systems. This paper aims to justify and help open this
potential growth area for SSR applications in the natural sciences.
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Introduction

A growing realization in many natural sciences is that simple

idealized notions of linearly decomposable, fixed equilibrium

systems often do not accord with reality. Rather, empirical

measurements on ecosystems, metabolic systems, financial net-

works, and the like suggest a more complex, but potentially more

information-rich paradigm at work [1–14]. Despite a long history

of linear methods development in the engineering sciences, natural

systems are generally not well described as sums of independent

frequencies that can be sensibly decomposed, analyzed as non-

interacting, and reassembled (e.g. Fourier or spectral analysis) in

the style of traditional reductionism [15,16]. Rather, quantitative

measurements show many systems to be fundamentally non-

equilibrium and unstable, in a manner more consistent with

nonlinear (state dependent) dynamics occurring on a strange

attractor manifold M, where relationships between state variables

cannot be studied independently of the overall system state

[17–27]. This emergent comprehensive view may help explain

why many natural systems, such a those mentioned above, appear

so difficult to understand and predict. Mirage correlations are

commonplace in nonlinear systems where the manifold may

contain trajectories that can temporarily exhibit positive correla-

tions between variables for surprisingly long time periods (and in

some regions of the state space) and can subsequently and rapidly

exhibit negative correlations or no relationship in other time

periods (and other regions of M). This transient property of

apparent non-stationarity in correlations is one of the confounding

phenomena faced by traditional linear models that require

continual refitting and exhibit little or no predictive power.

In this paper, we present two general theorems that addresses

the problem of characterizing the coupled dynamics of nonlinear

systems using time series observations on a manifold M. A special

case of this theorem, attributed originally to Takens [12], provided

the first sketch of a mathematical proof for reconstructing a

diffeomorphic shadow manifold M ’ using lags of a single time

series as coordinate axes. The basic idea, that was earlier

demonstrated by Packard, Crutchfield, Farmer, and Shaw [28]

and Crutchfield [2], is that under generic conditions, a shadow

manifold M ’ can be created using time-lagged observations of M
based on a single observation function (Cartesian coordinate

variable) that is a smooth and smoothly invertible 1 : 1 mapping

with M. Subsequently, Sauer, Yorke, and Casdagli [29] provided

a definitive proof and an explicit extension of Takens’ theorem to

fractal sets; their theorems are also more powerful than the

original theorem, as they show embeddings are not just generic in

the sense of being open and dense in the set of all mappings, but in

fact almost every mapping in the sense of prevalence [30] is an

embedding (see [30] for an in-depth explanation of the advantages

of ‘‘prevalence’’ over ‘‘generic’’). The theorem was also extended

by Stark, Broomhead, Davies, and Huke [31,32] and Stark [33] to

include certain classes of stochastic systems. Practical methods for

reconstruction have also been explored, particularly to address the

presence of noise in real data (e.g. [29,34]). Casdagli et al. [35]
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give a thorough treatment of such techniques based on

transformations of univariate maps, showing how optimal noise

reduction can be achieved. These very important prior results all

focused on reconstruction from a single time series; however, as

proven below, they can be extended to the more practically

significant case where multiple observation functions are used to

generate M ’.
Here we prove the more general case of multivariate

embeddings (embeddings using multiple time series and lags

thereof), and show how time series information can be leveraged if

multiple time series and their lags are used to construct

embeddings of M ’. These theorems pave the way for more

extensive use of state space reconstruction methods in practical

applications where long time series may not be available, so that

multiple diffeomorphic embeddings may be created in factorial

fashion to more fully exploit the coupled non-redundant

information that can be extracted from multiple time series

(multiple observation functions of dynamics on a manifold) to

create predictive shadow manifolds [36]. The use of multiple time

series allows the possibility of noise reduction that exceeds the

limitations of univariate reconstructions in the presence of noise

[35].

The possibility of extending Takens’ theorem to allow lags of

multiple observation functions was mentioned in Remark 2.9 from

[29], but was not explicitly proven. The remark was also restricted

to mappings strictly formed from consecutive lags, which is not the

only possibility that needs to be considered in the multivariate

case. Given the potential importance of multivariate reconstruc-

tions, we believe a full proof is required—in particular, one that

extends the generalization to non-consecutive lags. We show how

Takens’ theorem is a special case of our more general Theorem 2

(below) and by following the structure of Takens’ original proof we

clarify the logic and highlight the restrictions and special cases

(non-generic cases) that can arise in its application to real world

systems. We then give explicit proof of a stronger version of

Remark 2.9 from Sauer et al. [29] that allows non-consecutive

lags. This third theorem is stronger than the first two in the sense

that it shows embeddings are prevalent and not just generic. For

those less familiar, we begin with a brief overview of some basic

terms and concepts used in our proofs.

Some Basic Concepts of Embedding Theory
Consider the classic Lorenz attractor [37] shown in Figure 1(a),

consisting of trajectories in three-dimensional space that together

define a butterfly shaped surface or manifold. For simplicity, a

manifold can be thought of as a generalized, n-dimensional surface

embedded in some higher dimensional space, where the dimension

of the manifold may be fractal (as is the case for the Lorenz

attractor). More generally, an embedding is a multivariate transfor-

mation of a manifold that resolves all trajectories on the original

manifold without crossings. That is, an embedding is globally 1 : 1
in that it resolves all singularities in trajectories that define the

manifold (singularities are points on the manifold where

trajectories cross so that future paths are not uniquely determined).

An immersion is a local embedding that may not preserve the

global topology of a manifold. Rather an immersion preserves the

topology of every local neighborhood of the original manifold, so

that each point of the tangent space of the immersed manifold has

the same dimensionality as the true manifold. Thus, an immersion

is a mapping that is 1 : 1 between any given ‘‘piece’’ of the true

manifold and the immersed manifold. However, this condition

does not guarantee that the global topology is preserved. This is

illustrated in Figure 1(c), where two different pieces of the original

manifold are mapped to the same piece of the immersed manifold,

producing an immersion that is not an embedding. Immersions

are nonetheless a useful conceptual stepping stone for constructing

proofs about embeddings, since all embeddings are necessarily

immersions.

The Lorenz attractor, Figure 1(a), provides an excellent

example to illustrate both of these concepts. Consider two different

multivariate functions that transform the original manifold,

Wy~(y(t),y(t{t),y(t{2t)) and Wz~(z(t),z(t{t),z(t{2t))
where t is a small time lag as in Takens’ theorem. Both of these

functions map points on the true manifold to points on a shadow

manifold, shown in Figures 1(b) and 1(c). Examining these shadow

manifolds, it is evident that both are immersions of the Lorenz

attractor, because zooming in on a particular piece of either will

reveal that the tangent spaces have the same dimensionality as the

original. However, only Figure 1(b) is an embedding that

successfully reproduces the two lobes of the butterfly. The

reconstruction in Figure 1(c), based on lags of the z-coordinate,

fails to do so, because the two fixed points of the original attractor

have the same z-coordinate; they are mapped to the same point on

the shadow manifold, so the two lobes are stacked on top of each

other. This singularity is a consequence of a special, non-generic

symmetry in the Lorenz system that violates an assumption of

Takens’ theorem. Figure 1(d) shows an embedding based on lags

of both y- and z-coordinates and is an example of the generalized

mappings addressed in this paper.

Results

Two Theorems in the Style of Takens: The Generic Case
Let M be a compact manifold of dimension m. A dynamical

system is a diffeophorism w defining the trajectories or ‘‘flow’’ on

M for discrete time or a vector field X on M for continuous time.

Takens [12] proved generically that given w and M, a smooth

observation function y : M?R can be used to construct an

embedding of M in 2mz1 dimensions under the transformation

W(w,y) : M?R2mz1 where W(w,y)(x)~Sy(x),y(w(x)),y(w2(x)), . . . ,

y(w2m(x))T. Here the components Sy(x),y(w(x)),y(w2(x)), . . . ,
y(w2m(x))T correspond to time-lagged observations of the

dynamics on M defined by w. Notice that such mappings involve

a single distinct observation function (i.e. a single time series), and

represent a small subset in the larger set Y2mz1of all possible

mappings M?R2mz1 that could, for example, involve multiple

time series and their lags.

Takens explicitly refers only to the unlagged y as an observation

function, but in its most general sense an observation function is

any y : M?R. Thus, the functions y(w(x)),y(w2(x)), . . ., corre-

sponding to the lags of the time series are technically observation

functions as well. This bears mention, because in the more general

case of mappings W : M?R2mz1, the observation functions

making up the components of W are not all derived from a single

time series, but can be various lags of multiple time-series. To treat

these cases, it is necessary to acknowledge that these are all

observation functions, and we will refer to distinct time series as

‘‘unlagged’’ observation functions.

For a mapping W in the larger set Y2mz1 of all mappings

M?R2mz1, consider the case with 2mz1 component functions

yk : M?R which are multiple unlagged observation functions of M
(i.e. multiple time series). Again, an observation function is any

function M?R that assigns a real number to each point on the

manifold M. For a mapping W : M?R2mz1, we can think of W in

terms of its 2mz1 component functions, which correspond to the

coordinates in R2mz1. These component functions may all be lags of

a single distinct observation function tracking a dynamical system, as

in the case of Takens, or they may be multiple observation functions,

Generalized Embedding Theorems
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as in the case of Whitney, or they may be lags of multiple observation

functions, as in Theorems 2 and 7 below.

The question arises whether general multivariate mappings

W(x)~(y1(x),y2(x), . . . ,y2mz1(x)) form legitimate embeddings.

Here we present two theorems: one that demonstrates that maps

created from 2mz1 distinct observation functions are generically

embeddings and another that shows that maps created from lags of

multiple observation functions are also generically embeddings.

Both of these theorems generalize Takens’ theorem for which the

component functions only involve a single observation function.

It follows from Whitney [38] that generically W [ Y2mz1 is an

embedding. Note, however, that Whitney’s work does not apply to

the specific subsets of Y2mz1 involving fixed lagged relationships as

discussed by Takens for reconstructing attractor manifolds M for

dynamic systems. That is, Whitney’s theorem is generic and does

not address these specific subsets of Y2mz1 which have ‘‘measure

zero’’ (e.g. in the sense of ‘‘shy’’ defined in [30]). To tackle this

problem, we look to the proof of Takens and see that it can be

readily generalized to the other subsets of Y2mz1, including the

case of generic W [ Y2mz1.

Recall that, for a compact manifold, a mapping that is an

immersion and injective is also necessarily an embedding. Thus,

Takens’ general approach was to first show that (i) immersions are

dense in the set of mappings fW(w,y)g, then that (ii) there is a dense

set of 1 : 1 mappings within this set of immersions. Since the set of

embeddings is open in the set of all possible mappings, Takens

concludes that mappings in fW(w,y)g are generically embeddings.

The critical word here is ‘‘generically,’’ meaning there can be

exceptions (and as explained in [30], the set of such exceptions

doesn’t necessarily have zero measure).

To demonstrate both (i) and (ii), Takens argues that even when

the property of interest (e.g. the 1 : 1 property) does not hold for

Figure 1. Lorenz attractor with three shadow manifolds. The Lorenz attractor [37] is shown with three shadow manifolds created from lag-
coordinate transformations. The typical parameters were used: s~10, r~28, and b~8=3, giving the three coupled equations as _xx~10(y{x),
_yy~28x{xz{y, and _zz~xy{(8=3)z. The solution was computed using a fourth order Runge-Kutta method with a time step of dt~0:01, and the time
lag used to create the shadow manifolds was t~8dt~0:08. (A) The trajectory shown in the x, y, and z coordinates of the original system reveals a
two-lobed manifold. (B) A univariate transformation using time lags of the y-coordinate, W~(y(t),y(t{t),y(t{2t)), preserves this two-lobed structure
(and other topological properties), verifying Takens’ theorem. (C) A univariate transformation using time lags of the z-coordinate,
W~(z(t),z(t{t),z(t{2t)), does not preserve the two-lobed structure. Local neighborhoods of the original attractor are, however, preserved.
Thus, though this mapping violates a genericity assumption of the original theorem and is not an embedding, it is an immersion of the original
manifold. (D) A multivariate transformation using both the y- and z-coordinates, W~(y(t),y(t{t),z(t)), fulfills the assumptions of Theorems 2 and 7.
As predicted, it also preserves the two-lobed structure of the Lorenz and is a valid embedding.
doi:10.1371/journal.pone.0018295.g001
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some particular mapping, by making an arbitrarily small

perturbation, it is possible to find a nearby mapping for which

that property holds. The key to the theorem and also to adapting it

to other sets of mappings is finding how to make these

perturbations. The proof is most straightforward for the general

case involving 2mz1 distinct observation functions (each a distinct

time series) because it is possible to perturb the component

functions of WSykT independently. Thus we begin with this proof to

add clarity to the more powerful main theorem 2 involving lags of

multiple observation functions.

Theorem 1. Consider a compact, m-dimensional manifold M and a

set of 2mz1 observation functions Sy1, . . . ,y2mz1T, where yk : M?R

smoothly; by ‘‘smooth’’ we mean at least C2
. Then it is a generic property of

all possible SykT that the mapping WSykT : M?R2mz1 defined as

WSykT~ y1(x),y2(x), . . . ,y2mz1(x)ð Þ

is an embedding.

Proof. Consider an arbitrary set of 2mz1 observation

functions S�yykT on M. We define a corresponding mapping

WS�yykT [ Y2mz1 by letting each of these 2mz1 observation

functions be one of the component functions of WS�yykT. Now,

recall that an immersion is a map with a derivative that is globally

injective, i.e. 1 : 1. We denote the total derivative of a function f as

Df . If the derivative is evaluated at a particular point x in the

domain of f , we will write (Df )x, and if Df is a matrix, then we

denote the derivative at a particular point and along a particular

tangent vector v as (Df )x(v).

For any point x [ M, we can perturb the co-vectors

(D�yyk)x [ T �(M) independently by perturbing individual �yyk. By

making infinitesimal perturbations at points x [ M for which

rank (DWS�yykT)xvm, we can get a set of observables S��yy�yykT
arbitrarily close to S�yykT such that rank (DWS��yy�yykT)x~m for all

x [ M—i.e., WS��yy�yykT is an immersion. Since the set of immersions is

open in the set of all mappings, there is a neighborhood

U5Y2mz1 around this WS��yy�yykT such that every WSykT [ U is an

immersion.

Since immersions are local embeddings, we can find a dw0
such that on the manifold, 0vr(x,x’)ƒd implies WS�yykT(x)=
WS�yykT(x0). Here we depart from Takens’ notation and let d denote

infinitesimal separations between two points on the manifold M to

avoid confusion with the later defined e which is used to perturb

the observable; r is any fixed metric on M. In fact for this fixed d,

there is a subset U05U such that for any SykT in U0, the associated

map WSykT is an immersion, and r(x,x’)ƒd implies that

WSykT(x)=WSykT(x0).
Next, we show that we can find a globally 1 : 1 WSykT [ U0

arbitrarily close to WS��yy�yykT . To do this, we construct a finite

collection of subsets Uif gN
i~1 such that the Ui are open subsets of

M, the collection covers M, and diameter (Ui)vd for every i.

Then, we take a partition of unity flig corresponding to these Ui,

so that we can vary the value of any ��yy�yyk by an infinitesimal amount
��yy�yyk?��yy�yykzekili without altering the value of W��yy�yyk

(x) for x 6 [Ui.

We now consider the mapping Y : M|M?R2mz1|R2mz1

defined as Y(x,x0)~(W��yy�yyk
(x),W��yy�yyk

(x0)). We define the set

W5M|M as W~f(x,x0) [ M|Mjr(x,x0)§dg, so that (by

our choice of d), the mapping WS��yy�yykT is necessarily injective on the

complement of W in M|M. Furthermore, note that the

intersection of Y(W ) with the diagonal of R2mz1|R2mz1 gives

the set of points f(x,x0) [ M|MjW��yy�yyk
(x)~WS��yy�yykT(x0)g, and

therefore Y(W )\D~ 6 0 is equivalent to WSykT injective. Our

task, then, is to perturb the manifold Y(W ) using the eki and eki’ so

that it does not intersect the diagonal manifold D.

At each p [Y(W )\D we know that r(x,x’)wd, so x and x0

cannot belong to the same Ui . Consequently, varying an eki or eki’

only alters the value of WS��yy�yykT at either x or x0 (respectively). In the

tangent space T �p(R2mz1|R2mz1), then, the direction of the

(2mz1)z(2mz1) infinitesimal changes given by the eki and eki’

are all linearly independent (indeed orthogonal) and as such span

T �p(R2mz1|R2mz1). Since the tangent spaces of Y(W ) and D are

at most 2m and 2mz1 dimensional, respectively, we can construct

a vector from a linear combination of
LY
Leki

� �
p

and
LY
Leki’

� �
p

that

lies outside of both T �p(Y(W )) and T �p(D). Therefore, an

infinitesimal perturbation corresponding to this linear combina-

tion will move the sub-manifolds Y(W ) and D away from each

other at the point p without creating a new intersection at another

point. By keeping the size of these perturbations sufficiently small,

we ensure that we stay confined to U0, so that WSykT is still an

immersion. This is a more transparent statement of the

transversality argument used in the Takens proof (1981).

Thus, we have shown that for any arbitrary set of 2mz1
observables S�yyT, we can find a set of observables SykT arbitrarily

close to S�yykT such that WSykT is an embedding—i.e., there is a

dense set of observables fSykTg5Y2mz1 such that WSykT is an

embedding. The set of embeddings is open in the set of all

mappings, so this set is dense and open, meaning that the

embedding property is generic over all mappings.

When mappings are confined to fixed lag relationships, Takens

showed it is valid to independently perturb each component of W
at a given point of the domain by perturbing the unlagged

observation function, y, in the other parts of the domain

corresponding to neighborhoods of the lagged states w{1(x),
w{2(x), etc. This ensures that the perturbations to W maintain the

structure of the lag relationships and that we have not

inadvertently left the subset of interest. As we now show, this

allows the above result to be easily extended to families of maps

having component functions that are the lags of multiple

observation functions. This is the relevant case for many practical

examples where lags of multiple time series (multiple variables or

observation functions) are required to achieve a mechanistic

reconstruction of M (e.g. [20]). It also allows information on M to

be leveraged when the time series are short, as is the case in many

physical and biological problems [22,36].

Before starting the proof, however, we must clarify exactly what

the ‘‘subsets of interest’’ are. We define these sets as follows. First,

we say yq is a lag of the observable y if we can write yq~wb(y) for

positive b. We consider the lags in the positive time direction only

to simplify notation in the proof, noting that the results apply

equally to negative lags. Let r~fr1,r2, . . .g be the subset of

k~1, . . . ,2mz1 for which yr, r [ r is an unlagged observable, i.e.

yr is not a lag of another y [ SykT. We begin with the ‘‘unlagged’’

observation functions, yr, or observation functions that are not a

lag of another observable in SykT. Now define a set Cr for each

r [ r that contains yr and any other observation function in SykT
which is a lag of it. That is, Cr is the set of yq [ SykT that are lags

of yr given as yq~wbq (yr), where the lags bq are distinct for fixed r.

This choice of C~fCr : r [ rg and b~fbk : k~1, . . . ,2mz1g
determine a subset ~YY2mz1

C,b 5Y2mz1 containing all choices of

2mz1 observables SykT which obey the correct lag relationships

under a dynamical system w. Note that each element of ~YY2mz1
C,b can

be identified by the dynamical system and the yr. We denote such

an element, then, as (w,SyrT).
Theorem 2. Consider a diffeomorphism w : M?M on some compact

manifold M of dimension m, along with 2mz1 observation functions

yk : M?R, smoothly; by ‘‘smooth’’ we mean at least C2
. Restrict the yk to

have the lag relationships corresponding to a collection of sets C and lags b

Generalized Embedding Theorems
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under the dynamical system w, and impose the following generic [12,39]

properties on w:

1. The set A of periodic points with period pvmax(bk) has finitely many

points,

2. The eigenvalues of (Dwb)x at each x in a compact neighborhood A are

distinct and not equal to 1.

Then, for generic SykT [ ~YY2mz1
C,b , the mapping described by

W(w,SyrT)~ y1(x),y2(x), . . . ,y2mz1(x)ð Þ

is an embedding.

Proof. The proof of this theorem closely follows the logic of

the previous proof and the original argument of Takens [12]. As

noted above, any perturbations to W via its component functions

SykT must remain within ~YY2mz1
C,b (the set of observables having the

desired lag relationships under w prescribed by the Cr and the bq).

Here we must also deal with points of M that are fixed points or

periodic under the dynamical system w, i.e. the points for which

there exists a b such that wb(x)~x (including the fixed point case,

b~1). The above proof shows that the mapping WSykT is

generically an immersion because the co-vectors (D�yyk)x [
T �(M) can be independently perturbed. This is also true for

non-periodic points where there are fixed lag relationships

between some observables, as we can perturb yr in the

neighborhood of w{bq (x) and thus perturb yq~yr(w
bq (x))

without affecting yr in the neighborhood of x.

Note that periodic points x can exist such that the period b or

some integer multiple of it, n:b, is the fixed time lag between two

observables yq1
,yq2

[ SykT belonging to the same Cr. Let V5M
be a compact neighborhood of all such points. For x [ V , the

vectors (Dyq1
)x and (D(yq1

0wn:b))x cannot necessarily be perturbed

independently. Nonetheless, while yq1
(x)~yq1

(wn:b(x)) for such a

point, it is not generally true that (Dyq1
)x~(D(yq1

0wn:b))x. By

assumption, for each x [ V , the eigenvalues of the (Dwb)x are

distinct and not equal to 1. Thus, by the chain rule, it is clear that

(Dyq1
)x and (D(yq1

0wn:b))x are linearly independent. As noted

above, all the other (Dyk)x can be perturbed independently, so we

can find a set of observables S�yykT arbitrarily near SykT in ~YY2mz1
C,b

for which W(w,S�yyrT) is an immersion on V . Note that because the set

of immersions is open, there is an open neighborhood in ~YY2mz1
C,b

around this S�yykT for which every set of observables in that

neighborhood gives an immersion.

We must also satisfy W(w,SyrT) injective. The proof above

relied on the ability to independently perturb the manifold

Y(W )5R2mz1|R2mz1 at any point (x,x0) by an infinitesimal

amount in any coordinate direction. For a periodic point on M
with perioid b and two observables related as yq and yq0w

n:b
, it is

impossible to independently perturb Y(W ) locally in the

coordinate yq(x) or yq(x0), as you also perturb yq(x)0wn:b
or

yq(x0)0wn:b
. By assumption, the set V has a finite number of

elements. For such a generic w and any set SykT [ ~YY2mz1
C,b , any

neighborhood of the SykT will contain a set of observables S�yykT
for which the unlagged observation functions S�yyrT take distinct

values at each point in V .

We first perturb the yr to find an open neighborhood of

observables which give immersions when restricted to the set V .

We then further perturb the observables to find within this

neighborhood a set of observables S�yykT for which W(w,S�yyrT)jV is

also injective and therefore an embedding (on V5M ). Since

embeddings are dense in the space of all mappings, there is a

neighborhood U5 ~YY2mz1
C,b such that for all (w,SyrT) [ U, the map

W(w,SyrT)jV is an embedding.

We now show that we can find a (w,S��yy�yyrT) [ U such that W(w,S��yy�yyrT)

is an embedding on all of M. We first note that at points x [ M\V ,

the vectors (D�yyk)x [ T �(M) can be perturbed independently, so

we can find (w,S��yy�yyT) [ U for which W(w,S��yy�yykT) is an immersion.

Because an immersion is a local embedding, there is a d such that

for x,x0 [ M, 0vr(x,x0)vd implies that W(w,S��yy�yyrT)(x)=
W(w,S��yy�yyrT)(x

0). Since the set of immersions is open in the set of

possible mappings, there is a neighborhood U05U such that for

any (w,SyrT) [ U0, the corresponding mapping W(w,SyrT) is an

immersion. Thus, for the same d as above, 0vr(x,x0)ƒd implies

W(w,SyrT)(x)=W(w,SyrT)(x
0).

Now we need to show that there is a (w,SyrT) [ U0 such that

W(w,SyrT) is also injective on M. As noted in the first proof, this is

equivalent to Y(V )\D~ 6 0 for the mapping Y : M|M?
R2mz1|R2mz1 defined as Y(x,x0)~(W(w,SyrT)(x),W(w,SyrT)(x

0)). If

x and x0 are both in V or r(x,x0)ƒd, we already know that

W(w,SyrT)(x)=W(w,SyrT)(x
0). Thus we restrict ourselves to the set

W~fx,x0 [ M|Mjw(x,x0)wd and not both x,x0 [ int(V )g.
To perturb the manifold Y(W ) away from D at points of

intersection, p [Y(W )\D, we must be able to find variations for

which the tangent vector
LY
Le

� �
p

is linearly independent from the

2m tangent vectors
LY
Lxi

� �
p

and
LY
Lx’i

� �
p

and lies outside of

T �p(D). In the first proof, it was obvious that each component of Y
could be perturbed independently. Now we must be more careful.

We do this by first creating a collection of N open subsets of M,

fUig, with the following properties:

1. The fUig cover the closure of M\V .

2. For each bq and i~1, . . . ,N, the diameter of w{bq (Ui) is less

than d.

3. For all choices of i,j [ f1, . . . ,Ng, the set Uj intersects with

w{bq (Ui) for at most one bq.

4. For x and x0 such that w{b(x) [ M\|Ui for some b [ b,

x0 6 [V , and r(x,x0)wd, no two of x,fwbq (x)g,x0,fwb(x0)g
belong to the same Ui.

Take a partition of unity flig corresponding to this fUig.
Because of the way we constructed the fUig, we can vary the value

of each ��yy�yyk at any point x [ M\V by an infinitesimal amount

without altering the value of the other ��yy�yyk in the neighborhood of x.

We make this explicit as follows. To perturb the yr, we take
��yy�yyr?��yy�yyrzerili for i corresponding to x [ Ui. To perturb the other

yk (yk~yr0w
bq for some r), we perturb ��yy�yyr?��yy�yyrzerili for i

corresponding to w{bq (x) [ Ui . Consider the 2mz1 perturba-

tions,

eri, which are independent shifts at x in distinct yk. In

R2mz1|R2mz1, we note that each corresponding tangent vector

LY
Leri

� �
p

lies outside of T �p(D). Note the
LY
Leri

� �
p

together with any

basis of T �p(D) form a linearly independent set of vectors. Since the

dimension of span
LY
Lxi

� �
p

,
LY
Lxi’

� �
p

 !
is at most 2m, there must

be a linear combination of the
LY
Leri

� �
p

that lies outside of both

T �p(Y(W )) and T �p(D), which can be used to perturb Y(W ) away

from D. By keeping variations in the eri sufficiently small, we can

find a set of SykT such that (w,SyrT) [ U0 and Y(x,x’)\D~ 6 0
(where Y now corresponds to the Ww,SykT map). This pair gives a

mapping W(w,SykT) that is both an immersion and injective, and

thus is an embedding. Because U0 was an arbitrarily small

neighborhood of any point in ~YY2mz1
C,b , this means embeddings are
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dense in ~YY2mz1
C,b , and the set of embeddings is open in the set of

mappings. Thus, the map W(w,SyrT) given by (w,SyrT) [ ~YY2mz1
C,b is

generically an embedding.

Just as Takens extends the original result for discrete time to

dynamical systems in continuous time, we can extend our result as

follows:

Corollary 3. Consider a smooth vector field X on some compact

manifold M along with 2mz1 observables yk : M?R, smoothly; by

‘‘smooth’’ we mean at least C
2
. Define wt as the flow on X . Suppose we

restrict the yk to have the lag relationships corresponding to a collection of sets

Cr and lags bq under the discrete dynamical system wt, where t is a constant.

We impose the following generic properties on X :

1. For points x such that X (x)~0, the eigenvalues of (Dwt)x are distinct

and not equal to 1.

2. No periodic integral curve of X has integer period ƒ2mz1.

Then, for generic SykT [ ~YY2mz1
C,b , the mapping described by

W(wt,SyrT)~ y1(x),y2(x), . . . ,y2mz1(x)ð Þ

is an embedding.

Proof. In this case, wt is a discrete time dynamical system on

M satisfying the conditions imposed in the theorem above, and

this corollary follows directly.

A Theorem in the Style of Sauer et al.: The Prevalent Case
We now give an explicit proof of Remark 2.9 from [29] using

the framework constructed in their original paper, but we extend

the language to cover reconstructions using non-consecutive lags

(from multiple time series). The proof uses Lemma 4.1, 4.6, and

4.11 from [29] to show that 1 : 1 mappings and immersions are

prevalent in the space ~YY2mz1
C,b , just as Sauer et al. use Lemma 4.6 to

prove Theorem 3.3, and Lemmas 4.1 and 4.11 to prove Theorem

3.5. These lemmas are now stated (for the proofs, see their original

paper).

Lemma 4. (Originally part 2 of 4.1) Let n and k be positive integers,

x1, . . . ,xn distinct points in Rk, u1, . . . ,un in R, and v1, . . . ,vn in Rk.

Then there exists a polynomial h in k variables of degree at most n such that

for i~1, . . . ,n, +h(xi)~vi.

Lemma 5. (Originally 4.6) Let A be a compact subset of Rk. Let

W0,W1, . . . ,Wt : A?Rn be Lipschitz maps. For each integer r§0, let Sr

be the set of pairs x1=x2 in A for which the n|t matrix

Mx1x2
~ W1(x1){W1(x2), . . . ,Wt(x1){Wt(x2)ð Þ

has rank r, and let dr~ lower boxdim (�SSr). Define Wa~

W0z
Pt

i~1 aiWi : A?Rn. If drvr for all integers r§0, then for

a~(a1, . . . ,at) outside a measure zero subset of Rt, the map Wa is 1 : 1.

Lemma 6. (Originally 4.11) Let A be a compact subset of a smooth

manifold embedding in Rk. Let W0,W1, . . . ,Wt be a set of smooth maps from

an open neighborhood U of A to Rn. For each positive integer r, let Sr be the

subset of the unit tangent bundle S(A) such that the n|t matrix

(DW1)x(v), . . . ,(DWt)x(v)ð Þ

has rank r, and let dr~ lower boxdim (�SSr). Define Wa~

W0z
Pt

i~1 aiWi : A?Rn. If drvr for all integers r§0, then for

almost every a [ Rt, the map Wa is an immersion on A.

To apply these lemmas, it is necessary to restrict the dimension

of the sets of periodic orbits—that is, the sets Ap~
fx [ A : wp(x)~xg for pvmax(fb [ bg). For the case of consec-

utive lags, Sauer et al. state sufficient conditions to be boxdim

(Ap)vp=2. A sufficient condition for non-consecutive lags

is a bit more complicated. Define the constants Bpr~
number of yq [ Cr such that bq~m:pzbq’ for at least one bq’

and m [ N. Also, define Bp~
P

r Bpr. A sufficient condition on the

Ap is 2:boxdim(Ap)vn{Bp.
Theorem 7. Let w be a diffeomorphism on an open subset U of Rm,

and let A be a compact subset of U , boxdim(A)~d. Let C be a collection

of sets and b a set of lag relationships as above, such that n~
P

r nrw2d .

Assume that for every positive integer pƒmax(fb [ bg), the set Ap of

periodic points of period p satisfies 2:boxdim(Ap)vn{Bp, and that for

each point of Ap, the Jacobian Dwp
has distinct eigenvalues. Then, for almost

every set of n observation functions fykg satisfying the given lag relationships,

the map

W(w,SyrT)(x)~(y1(x), . . . ,yn(x))

is an embedding on A.

Proof. Without loss of generality, assume we have ordered the

components of W(w,SyrT) with yr1
and all its lags first, then yr2

and

its lags, etc. That is,

W(w,SyrT)(x)~(yr1
(x),y

b2
r1

(x), . . . ,yr2
(x), . . . ):

To show prevalence, we find a suitable probe space (see [29]). The

infinite dimensional space for the univariate theorem is the

observation functions y : U?R, smoothly. For maps constructed

from multiple lags, this becomes the sets of sr~size(r) unlagged

observation functions. Sauer et al. take the probe space for the

univariate theorem to be any set H of polynomials in m variables

which include all such polynomials up to degree 2n. It is now

necessary to have a set of polynomials for each of the yr. Thus, we

take the probe space for this theorem to be the Cartesian product

of sr copies of H.

Let Sh1, . . . ,htT be a basis for H . We want to show that for

almost all choices of sr|t coefficients ar,t, the map W(w,S�yyrT)

defined by the observation functions �yyr~yrz
Pt

i~1 ar,ihi is an

embedding. We first demonstrate that almost every W(w,S�yyrT) is

1 : 1, proceeding as in the proof of Theorem 4.3 in [29].

To sensibly apply Lemma 5, we adopt the following convention:

think of W(w,S�yyrT) as a perturbation of W(w,SyrT), which is the

summed effect of perturbations on each yr separately. For each

pair (r,i), r [ r and i [ f1, . . . ,tg, there is a map Wr,i : U?Rn

which is W(w,S~yyr’T) for ~yyr’~hi if r~r’ and 0 otherwise. The

components of Wr,i(x) are either 0 or of the form hi(w
bq (x)).

Consequently, Ww,S�yyrT~Ww,SyrTz
P

r

Pt
i~1 ar,iWr,i(x), which

matches the structure Lemma 5.

We now check that the rank of the matrix Mx1x2
satisfies the

conditions of Lemma 5 for each pair of distinct x1,x2 [ A. Note

that to avoid confusion with the previous section of this paper and

Takens’ original work, we continue to use row vectors to describe

the transformations W. However, Sauer et al. [29] prefer column

vectors, so it is necessary to use of transposes in several instances.

Thus, we have

MT
x1x2

~

Wr1,1(x1){Wr1,1(x2)

..

.

Wr1,t(x1){Wr1,t(x2)

Wr2,1(x1){Wr2,1(x2)

..

.

0
BBBBBBBB@

1
CCCCCCCCA
:

Note that Mx1x2
is a block diagonal matrix, and so it has rank
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equal to the sum of the rank of the blocks. Each of the sr blocks

can be rewritten as the product of two matrices, Jr and Hr, where

the entries of Hr are values of a single polynomial h and the entries

of Jr are each one of f1,0,{1g. Note, there are multiple possible

choices for Hr and Jr that give the same Mx1x2
.

Case 1: First consider x1 and x2 that do not both lie in a periodic

orbit of integer period less than max(b). We specify Hr so that the

first nr rows, where nr is the size of the set Cr, correspond to the

hr,i(x1),hr,i(w
brz1 (x1)), . . . ,hr,i(w

brznr (x1)), and the next nr corre-

spond to the hr,i(w
bqr (x2)). Hr is onto, so the rank of Mx1x2

is just

the sum of the ranks of the Jr. For this case, Jr contains a copy of

Inr
, and thus will have rank nr. The entire matrix Mx1x2

will thus

have rank n~
P

r nr, which satisfies the conditions of Lemma 5.

Case 2: Now consider x1 and x2 in separate periodic orbits with

periods p1 and p2 such that 1ƒBp1
ƒBp2

and p1,p2vmax(b). Hr

will have Bp1r fewer rows corresponding to the bq1
~m:p1zbq2

for

some m [ N (there will also be a reduction in the number of rows

associated with Bp2
). In this case, Jr will still contain the column

space of I(nr{Bp1r) and thus rank(J)§
P

r nr{Bp1r~n{Bp1
.

Again the Hr are onto, and so the rank of Mx1x2
is the rank of J.

The dimension of the set S of all pairs x1 and x2 is

dim(S)~dim(Ap1
)zmax(dim(Ap2

)). By the conditions placed

on the size of the Ap, we can conclude that

dim(S)vn{Bp1
ƒdim(Mx1x2

), and thus that Lemma 5 applies

to this case as well.

Case 3: Finally we consider x1 and x2 in the same p-periodic

orbit, pvmax(b). Now the matrix Hr becomes more complicated,

since some of the h(z) pertaining to x2 may be equal to h(z)
pertaining to x2. Consequently, the Jr are no longer guaranteed to

contain the column space of the identity. Each Jr does contain the

column space of an nr{Bpr dimensional matrix with 1 along the

upper diagonal and a single {1 off the diagonal in each column.

Using elementary operations, it is possible to make the first m

columns of Jr upper diagonal for some integer m§(nr{Bpr)=2.

Thus, the rank of each Jr is at least (nr{Bpr)=2 and the entire

matrix has rank(J)§(n{Bp)=2.

The dimension of the set S of all such x1 and x2 is just Ap. By

the imposed conditions, dim(S)v(n{Bp)=2ƒdim(Mx1x2
), and

Lemma 5 applies.

Now we want show that almost every W(w,S�yyrT) is an immersion.

We check that the matrix

(DWr1,1)
x
(v)T , . . . ,(DWr1,t)x(v)T ,(DWr2,1)x(v)T , . . .

� �

has full rank and thus satisfies the conditions of Lemma 6 for each

(x,v) in the tangent bundle S(A). Note that this is a block diagonal

matrix with sr blocks, so it is sufficient to show that the columns of

the ith block span the subspace Rnri for i~1, . . . ,sr. We consider

two cases.

Case 1: Consider first the subset S’ of x that are not periodic with

period pvmax(b). The entries of each block are of the form

+h(wb(x))T (Dwb)x(v). Since w is a diffeomorphism and v=0, we

know that (Dwb)x(v)=0. Furthermore, the wb(x) are distinct

points. Examining Lemma 4, it is clear that the columns span Rnr .

The dimension of S’ is at most 2d{1, so we may apply Lemma 6.

Case 2: Now consider the subset S’ of x that are periodic

with period pvmax(b). By the conditions of the theorem, (Dwb1 )x

has distinct eigenvalues from (Dwb2 )x. Therefore, +h(wb1 (x))T

(Dwb1 )x(v)=+h(wb2 (x))T (Dwb2 )x(v). Furthermore, the relation-

ship depends on h, and again referencing Lemma 4, it is clear that

the columns span Rnr . The dimension of S’ is certainly less than

2d{1, so we can safely apply Lemma 6.

Theorem 7 can be extended to continuous dynamical systems

(smooth vector fields on a manifold) by letting the flow wt of X be

w in the statement of the theorem.

Discussion

Theorem 1 and the more general result presented in Theorem 2

(and its corollary) were given proofs intended to follow those presented

by Takens. The original ‘‘transversality’’ argument, however, has been

replaced with what we reckon is a simpler and more direct argument.

These clarify how perturbations to the observation functions can be

constructed and highlight why 2mz1 dimensions are necessary to

have mappings that are generically embeddings. Theorem 7 is similar

to Theorem 2, but takes advantage of the more powerful framework,

built around the notion of prevalence, established by Sauer et al. [29].

It also provides more specific conditions on the periodic orbits than

Theorem 2 and thus can be applied to certain non-generic situations

that Takens’ original framework would exclude. Namely, the set of

periodic points need not be finite (as required in Takens’ original

theorem and Theorem 2), so long as the dimensionality does not

exceed the bounds stated in Theorem 7. Theorem 7 is an extension of

Remark 2.9 in [29], which we explicitly proved by determining a

sufficient restriction for the periodic orbits when the lags composing W
aren’t necessarily consecutive.

This work also develops a language to describe a wider family of

cases for reconstructing state space manifolds from multiple

observational time series to encourage wider applicability of SSR

in the natural sciences. For example, these results can be extended

to another special case of interest for reconstructions using time

derivatives [40], when multiple observation functions are avail-

able. The argument for this case is analogous to that used by

Takens [12] for the case when all the derivatives are from a single

observation function. Furthermore, these theorems validate

heuristic work using spatial lag reconstructions and mixed spatial

and temporal lag reconstructions to study spatially coupled

dynamics [41].

More importantly, in terms of future applications, Theorems

2 and 7 set the stage for practical reconstruction of state space

manifolds from multiple observation functions. This is signifi-

cant in answering objections to single variable state space

reconstruction (SSR) concerning the excessive phenomenology

of lagged-coordinate embeddings [26]. These two theorems

provide proof of principle for modeling attempts of nonlinear

dynamics in the natural sciences involving multiple time series

(e.g. [20]), and lays bare the rather non-restrictive assumptions

required in such applications for building mechanistic models

from multiple time series variables. Moreover, it gives support to

the notion of using multiple embeddings as a potentially efficient

way of extracting information from time series data of limited

length, but where there are potentially many simultaneous

observations of dynamics on the same attractor manifold. By

reducing correlations in noise between the reconstructed

coordinates, these techniques should allow reconstructions to

exceed the limitations placed on univariate methods [35], as

heuristic examples have already suggested [20]. The potential

information leverage provided by multiple embeddings possible

from novel combinations of variables (and their lags) can pave

the way for a plethora of new applied techniques to exploit the

time-limited, but parallel observations of nature [36]. This

paper is intended to complement the existing literature on SSR

and help promote this potential growth area in the natural

sciences.
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