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Abstract

Conserved elements of apoptosis are also integral components of cellular differentiation. In this regard, p53 is involved in
neurogenesis, being required for neurite outgrowth in primary neurons and for axonal regeneration in mice. Interestingly,
demethylases regulate p53 activity and its interaction with co-activators by acting on non-histone proteins. In addition, the
histone H3 lysine 27-specific demethylase JMJD3 induces ARF expression, thereby stabilizing p53 in mouse embryonic
fibroblasts. We hypothesized that p53 interacts with key regulators of neurogenesis to redirect stem cells to differentiation,
as an alternative to cell death. Specifically, we investigated the potential cross-talk between p53 and JMJD3 during mouse
neural stem cell (NSC) differentiation. Our results demonstrated that JMJD3 mRNA and protein levels were increased early in
mouse NSC differentiation, when JMJD3 activity was readily detected. Importantly, modulation of JMJD3 in NSCs resulted in
changes of total p53 protein, coincident with increased ARF mRNA and protein expression. ChIP analysis revealed that
JMJD3 was present at the promoter and exon 1 regions of ARF during neural differentiation, although without changes in
H3K27me3. Immunoprecipitation assays demonstrated a direct interaction between p53 and JMJD3, independent of the C-
terminal region of JMJD3, and modulation of p53 methylation by JMJD3-demethylase activity. Finally, transfection of
mutant JMJD3 showed that the demethylase activity of JMJD3 was crucial in regulating p53 cellular distribution and
function. In conclusion, JMJD3 induces p53 stabilization in mouse NSCs through ARF-dependent mechanisms, directly
interacts with p53 and, importantly, causes nuclear accumulation of p53. This suggests that JMJD3 and p53 act in a
common pathway during neurogenesis.
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Introduction

It has been shown that components of the apoptosis process are

pivotal for differentiation [1]. We have recently reported the

involvement of specific apoptosis-related proteins in mouse neural

stem cell (NSC) differentiation [2]. p53 phosphorylation and

transcriptional activation increase throughout differentiation of

mouse NSCs, with no evidence of apoptosis. Notably, p53

knockdown delays mouse NSC differentiation. Others have shown

that inactivation of p53 and phosphatase and tensin homolog

deleted on chromosome ten (PTEN) promotes the undifferentiated

state of neural precursor cells [3], and that p53 is required for

neurite outgrowth in primary neurons and for axonal regeneration

in mice [4]. More recently, several studies have investigated how

disruption of the p53 network enhances cellular pluripotency

[5,6,7,8,9], although without a clear consensus on mechanisms by

which p53 induces differentiation [10]. Indeed, the specific targets

and cofactors of p53 during neurogenesis are still largely unknown.

Once identified, they might be strategically manipulated to

increase neural fate, as an alternative to cell death, and improve

the efficiency of stem cell production. It is possible that p53 may

sense epigenetic changes that accompany reprogramming of cells

to either differentiated or undifferentiated stages. In this respect,

p53 could be upregulated by events that reverse the Polycomb

group (PcG) silencing mechanism and/or interfere with members

of the PcG machinery. Finally, post-translation modifications

(PTMs), including ubiquitination and methylation may allow p53

to lead the specific outcome of neural differentiation [11]. DNA

methylation is a dynamic epigenetic mark that undergoes

extensive changes during cellular differentiation. Analysis of

embryonic stem cells revealed aberrant hypermethylation during

extended proliferation in vitro, in a pattern reminiscent of that

reported in some tumors [12].

JMJD3, identified as H3K27me3 demethylase, controls the

expression of key regulators and markers of neurogenesis, and is

required for commitment to the neural lineage [13,14]. Never-

theless, the precise molecular targets of JMJD3 remain largely

uncharacterized. The regulation of JMJD3 appears to be highly

gene- and context- specific, suggesting interplay with specific

molecules to promote fine-tuning more than the on/off alternation
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of methylation status. It is possible that cellular events responsible

for JMJD3 activity are similar to those observed during cell cycle

arrest at G1/S or G2/M, or senescence.

The INK4a/ARF tumor suppressor locus, a key executioner of

cellular senescence is silenced by several methylases of the PcG of

transcription repressors. JMJD3 acts as a tumor suppressor

molecule by derepressing this specific locus, thus increasing the

expression of INK4a and ARF in human and mouse fibroblasts,

respectively [15,16]. These observations raise the possibility that

JMJD3 may contribute to increased p53 levels and activity during

neuronal differentiation through an ARF-dependent manner,

since ARF inhibits p53 ubiquitination and subsequent degradation

[17]. In fact, the ARF-p53 pathway attenuates self-renewal and

promotes differentiation of NSCs [18], and the PcG gene Bmi1

promotes cell proliferation and neural stem cell self-renewal by

repressing the INK4a/ARF locus [19]. In addition, it has been

suggested that p53 communicates with sensors of cell epigenetic

changes and responds by preventing dedifferentiation. Indeed, p53

influences histone H3 acetylation [20]. Finally, several studies have

established protein methylation as a novel mechanism of p53

regulation [21]. Several histone lysine methyltransferases methyl-

ate p53 at specific C-terminal lysines, preventing or inducing p53

interaction with its co-activators. p53 directly interacts with lysine-

specific demethylase 1 (LSD1) to alter chromatin structure and

confer developmental repression of a specific tumor marker [22].

Thus, it is not surprising that in response to specific cellular

differentiation signals, JMJD3 may directly interact with p53 to

fine-tune its activity, thus influencing the equilibrium between

neuronal differentiation and cell death. In this regard, it is crucial

to understand the apoptosis mechanisms that may overlap with

neuronal differentiation pathways. Here, we elucidate the cross-

talk between p53 and the demethylase JMJD3 during mouse NSC

differentiation. Our data strongly suggest that p53 cellular

distribution and function is modulated by direct JMJD3-depen-

dent demethylation of p53 during neurogenesis. This corroborates

observations that p53 is dynamically regulated by lysine

methylation and demethylation processes, which in turn confer

distinct regulatory characteristics to p53.

Materials and Methods

Ethics
Mouse neural stem cells used in this study were obtained from

Dr. Reynold’s Laboratory at the University of Queensland,

Brisbane, Australia, and provided by Dr. Low’s Laboratory at

the University of Minnesota, Minneapolis, MN, USA. The Animal

Ethical Committee at the Faculty of Pharmacy, University of

Lisbon, Portugal waived the need for approval.

Mouse NSC Culture and Differentiation
Mouse NSCs containing a constitutively expressed marker for

green fluorescence protein (GFP) were used to investigate the

process of neuronal differentiation. Cells were obtained from E14

mouse embryo central nervous system and cultured as previously

described [23,24]. Mouse NSCs were maintained as neurospheres

in undifferentiating conditions, a serum-free, 1:1 mix of DMEM/

F12 (Invitrogen Corp., Grand Island, NY) with 1X N-2

supplement (Invitrogen Corp.), 20 ng/ml EGF, 20 ng/ml b-FGF

(R & D Systems Inc., Minneapolis, MN), and 1% penicillin-

streptomycin (Invitrogen Corp.), at 37uC in humidified atmo-

sphere of 5% CO2. Subculture was at day 7 with mechanical

dissociation of neurospheres. Plating was at 16105 cell/ml density

on T75 flasks, and half of the culture medium was changed after 3

days. The differentiation of mouse NSCs in vitro was induced by

culturing dissociated cells in differentiation medium containing

DMEM/F12 with 1X N-2 supplement, 100 ng/ml b-FGF, 10%

FBS (Invitrogen Corp.), 500 nM all-trans retinoic acid (Sigma

Chemical Co., St. Louis, MO), 50 mM taurine (Sigma Chemical

Co.), 10 ng/ml TGF-b2 (R & D Systems Inc.) and 1% penicillin-

streptomycin, in tissue culture plates pre-coated with poly-D-lysine

(Sigma Chemical Co.). The culture medium was changed every 3

days. Differentiated cells at 16105 cells/ml were fixed at 0, 6, 12,

24 and 48 h and processed for immunostaining and evaluation of

apoptosis. For western blot analysis, cultures at 56105 cells/ml

were processed to assess the role of JMJD3 in modulating p53

during neuron differentiation. All experiments were performed

using adherent cells only to exclude detached apoptotic cells.

Transfections
Mouse NSCs were transfected with Flag-JMJD3 or Flag-

JMJD3mut overexpression plasmids to amplify JMJD3 expression.

The Flag-JMJD3 construct was cloned by inserting full-length

mouse JMJD3 cDNA in frame into p3xFLAG CMV-10 (Sigma

Chemical Co.) vector within HindIII and BamHI sites. The Flag-

JMJD3mut was generated by removing the carboxy-terminus 410

amino acids, which include the jumonji C domain. Three h after

plating, the culture differentiation medium was changed to

medium without 1% penicillin-streptomycin. Mouse NSCs were

transfected using LipofectamineTM Transfection Reagent (Invitro-

gen Corp.), according to the manufacturer’s instructions. For

controls, cells were incubated with transfection agents at the same

concentrations and times, in absence of any plasmid (mock). To

assess transfection efficiency, Flag protein levels were determined

by Western blot. The effect of JMJD3 overexpression throughout

the differentiation process was investigated in attached cells either

harvested for immunolotting and real time RT-PCR, or used for

immunocytochemistry, deoxynucleotidyltransferase-mediated dUTP

nick end labeling (TUNEL) and Hoechst assays after 0, 6, 12, 24 and

48 h of differentiation.

Immunocytochemistry
Mouse NSCs were fixed with 4% paraformaldehyde in

phosphate-buffered saline (PBS) for 30 min during differentiation.

Cells were then blocked for 1 h at room temperature in PBS

containing 0.1% Triton-X-100, 1% FBS, and 10% normal donkey

serum (Jackson Immuno Research Laboratories, Inc., West Grove,

PA). Subsequently, cells were incubated with either polyclonal

antibodies to JMJD3 (1:50) (KDM6B, Abcam plc, Cambridge,

UK), or monoclonal antibodies to p53 (1:50) (Pab 240, Santa Cruz

Biotechnology, Santa Cruz, CA) in blocking solution, overnight at

4uC. After three washes with PBS, cells were incubated with the

Alexa Fluor 594-anti-rabbit (1:200) or the Alexa Fluor 568-anti-

mouse (1:200) conjugated secondary antibodies (Invitrogen Corp.)

for 2 h at room temperature. Negative controls, without primary

antibodies were also performed. Additionally, cells were incubated

with Hoechst dye for nuclear staining. The cellular distribution of

JMJD3 and p53 was visualized using an Axioskop fluorescence

microscope (Carl Zeiss, Jena, Germany). Total GFP-positive cells

were counted on a computer screen grid from at least four random

fields (x400).

Evaluation of Apoptosis
Hoechst labeling and TUNEL staining of mouse NSCs were

used to detect apoptotic nuclei. In brief, for morphologic

evaluation of apoptosis, the medium was gently removed at the

indicated times with minimal detachment of cells. Attached cells

were fixed with 4% paraformaldehyde in PBS, pH 7.4, for 10 min

at room temperature, incubated with Hoechst dye 33258 (Sigma
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PLoS ONE | www.plosone.org 2 March 2011 | Volume 6 | Issue 3 | e18421



Chemical Co.) at 5 mg/ml in PBS for 5 min, washed with PBS and

mounted using PBS:glycerol (3:1, v/v). Fluorescent nuclei were

scored blindly and categorized according to the condensation and

staining characteristics of chromatin. Normal nuclei showed non-

condensed chromatin dispersed over the entire nucleus. Apoptotic

nuclei were identified by condensed chromatin, contiguous to the

nuclear membrane, as well as nuclear fragmentation of condensed

chromatin. Three random microscopic fields per sample were

counted and mean values expressed as the percentage of apoptotic

nuclei. Apoptotic cells were also quantified using the TUNEL

assay. Cells were fixed with 4% formaldehyde and processed using

an ApopTag in situ apoptosis detection kit (Chemicon Int.,

Temecula, CA), according to the manufacturer’s instructions.

The number of TUNEL-positive cells was counted on a computer

screen grid from at least three random fields (x400). Positive

controls were included, which corresponded to mouse NSCs

treated with staurosporine and normal female rodent mammary

gland tissue with extensive apoptosis. The negative control was

performed without active terminal transferase, but including

permeabilization, to control for nonspecific incorporation of

nucleotides or for nonspecific binding of enzyme-conjugate.

Total, Cytosolic, and Nuclear Protein Extraction
For total protein extracts, adherent mouse NSCs were lysed in

ice-cold buffer (10 mM Tris-HCl, pH 7.6, 5 mM MgCl2, 1.5 mM

KAc, 1% Nonidet P-40, 2 mM DTT, and protease inhibitor

cocktail tablets Complete (Roche Applied Science, Mannheim,

Germany)) for 30 min, and then homogenized with 20 strokes in a

loose fitting Dounce. The lysate was centrifuged at 3200 g for

10 min at 4uC, and the supernatant recovered. For nuclear and

cytosolic extracts, cells were lysed with hypotonic buffer (10 mM

Tris-HCl, pH 7.6, 5 mM MgCl2, 1.5 mM KAc, 2 mM DTT, and

protease inhibitors), homogenized with 20 strokes in a loose fitting

Dounce, and centrifuged at 500 g for 10 min at 4uC. The cytosolic

proteins were recovered in the supernatant, while the nuclear

pellet was washed in buffer containing 10 mM Tris-HCl, pH 7.6,

5 mM MgCl2, 0.25 M sucrose, 0.5% Triton X-100, and protease

inhibitors, then resuspended and sonicated in buffer containing

10 mM Tris-HCl, pH 7.6, 0.25 M sucrose with protease inhibi-

tors. Finally, the suspension was centrifuged through 0.88 M

sucrose at 2000 g for 20 min at 4uC, and nuclear proteins were

recovered in the supernatant.

Histone Purification
Histone purification was performed using the acid extraction

protocol. Briefly, cells were collected and washed in PBS and lysed

with hypotonic lysis buffer (10 mM Tris-HCl, pH 8, 1 mM KCl,

1.5 mM MgCl2, 1 mM DTT and protease inhibitors) for 30 min

at 4uC. Intact nuclei were recovered by centrifuging at 10000 g for

10 min at 4uC, and the supernatant discarded. Nuclei were

resuspended in 0.4 N H2SO4, and incubated on rotator at 4uC
overnight. Nuclear debris were removed by centrifuging at

16000 g for 10 min at 4uC, and the supernatant containing

histones was transferred into a fresh tube. 100% TCA was added

drop by drop to histone solution, mixed and incubated on ice for

30 min. Histones were recovered after centrifugation at 16000 g

for 10 min at 4uC. The histone pellet was washed twice with ice-

cold acetone and air-dried for 20 min at room temperature.

Histones were finally dissolved in water and transferred into a new

tube.

Immunoblotting
Protein levels of JMJD3-Flag, H3K27me3, p53, b-III tubulin,

ARF and JMJD3 were determined by Western blot, using either

primary polyclonal antibody reactive to H3K27me3 (Abcam plc,

Cambridge, UK) and JMJD3 (RB10082, Abgent Inc, San Diego,

CA) or primary mouse monoclonal antibodies to Flag (M2, Sigma

Chemical Co.), p53 (Pab 240, Santa Cruz Biotechnology), ARF

(CDKN2A, Abcam plc) and b-III tubulin (Tuj1, Covance,

Princeton, New Jersey) as well as secondary antibodies conjugated

with horseradish peroxidase (Bio-Rad Laboratories, Hercules, CA,

USA). The specificity of p53 antibody was assessed by Western

blot in p53 silenced cells (Fig. S1). Membranes were processed for

protein detection using Super SignalTM substrate (Pierce, Rock-

ford, IL). GAPDH was used to control for lane loading, while total

histone H3 was used as a marker for nuclear protein extraction.

Protein concentrations were determined using the Bio-Rad protein

assay kit according to the manufactur’s specifications.

Immnunoprecipitation
The physical association of JMJD3 and p53 was detected by

immunoprecipitation analysis. In brief, wholecell extracts were

prepared by lysing cells by means of sonication in lysis buffer

(50 mM Tris-HCl pH 7.4, 180 mM NaCl, 1 mM EDTA, 0,5%

Triton X-100, and protease inhibitors). Immunoprecipitation

experiments were carried out using the monoclonal antibody to

p53 (Pab 240, Santa Cruz Biotechnology) and the Ezview Red

Protein G Affinity Gel (Sigma Chemical Co.). Typically, 500 g of

lysate was incubated with 1 mg of primary mouse monoclonal

antibody to p53 overnight at 4uC. Immunoblots were then probed

with the rabbit polyclonal Flag (M2, Sigma Chemical Co.) or

JMJD3 (KDM6B, Abcam plc) antibodies. p53 expression was

determined in the same membrane after stripping off the immune

complex for the detection of Flag-JMJD3 or JMJD3. Finally,

immunoprecipitation assays using mouse monoclonal antibodies

reactive to IgG showed no detectable association with either

JMJD3 or p53. Methylated levels of p53 after JMJD3 or

JMJD3mut transfections were detected by immunoprecipitation

analysis in denaturing conditions. In brief, whole cell extracts were

prepared, and immunoprecipitation experiments were carried out

using the monoclonal antibody to p53 and the Ezview Red Protein

G Affinity Gel as above Immunoblots were then probed with the

rabbit polyclonal methylated lysine (MeK) (Abcam plc) antibody.

p53 expression was determined in the same membrane after

stripping off the immune complex for the detection of MeK.

Finally, the results of MeK after p53 immunoprecipitation were

normalized with those obtained using mouse monoclonal

antibodies reactive to IgG immunoprecipitation assays as well as

with p53 total levels.

RNA Isolation and RT-PCR
Total RNA was extracted from mouse NSCs using the TRIZOL

reagent (Invitrogen Corp.). Transcript expression of JMJD3 and Pax6

were determined by RT-PCR. For RT-PCR, 5 mg of total RNA was

reverse-transcribed using oligo(dT) (Integrated DNA Technologies

Inc., Coralville, IA) and SuperScript II reverse transcriptase

(Invitrogen Corp.). Specific oligonucleotide primer pairs were

incubated with cDNA template for PCR amplification using the

Expand High FidelityPLUS PCR System (Roche Applied Science).

The following sequences were used as primers: JMJD3 sense 59-

CCCCCATTTCAGCTGACTAA-39; JMJD3 antisense 59-CTGG-

ACCAAGGGGTGTGTT-39; Pax6 sense 59-AACACCAACTC-

CATCAGTTC-39; Pax6 antisense 59-ATCTGGATAATGGGTC-

CTCT-39; GAPDH sense 59- ATTCAACGGCACAGTCAAGG-

39; and GAPDH antisense 59- TGGATGCAGGGATGATGTTC-

39. The product of the GAPDH RNA was used for endogenous

normalization after testing several housekeeping genes for appropri-

ate control normalization.

JMJD3 and p53 Cross-Talk in Neurogenesis
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Chromatin Immunoprecipitation (ChIP)
Mouse NSCs were fixed at 0, 6, 24 and 48 h after differentiation

with 0.8% formaldehyde for 10 min at room temperature. After

cross-linking, the reaction was quenched with 0.125 M of glycine

for 10 min at room temperature. Cells were washed twice with ice-

cold PBS, pelleted by centrifugation, resuspended in 1 mL of cell

lysis buffer (5 mM PIPES pH 8.0, 85 mM KCl, 0.5% Igepal and

1X protease inhibitor cocktail), and incubated 30 min at 4uC.

After centrifugation the nuclei were resuspended in nuclei lysis

buffer (50 mM Tris-HCl pH 8.1, 10 mM EDTA, 1% SDS and

1X protease inhibitor cocktail) and incubated for 10 min on ice.

The soluble chromatin with a size range of 0.5 kb to 0.9 kb was

prepared by sonication using a Bioruptor (Diagenode, Liège,

Belgium) After centrifugation to remove cell debris, chromatin was

pre-cleared (1 h at 4uC with a 50% gel slurry of protein A/G –

agarose beads saturated with salmon sperm DNA and bovine

serum albumin (Upstate, Billerica, MA), diluted in immunopre-

cipitation dilution buffer (0.01% SDS, 0.5% Triton X-100, 2 mM

EDTA, 16.7 mM Tris-HCl pH 8.1, 100 mM NaCl and 1x

protease inhibitor cocktail), and 10% of the supernatant was used

as input. The diluted chromatin was incubated overnight at 4uC
with the 2-5 mg of IgG, JMJD3 and H3K27me3, antibodies and

the immune complexes were recovered by 1 h incubation at 4uC
with a 50% gel slurry of protein A/G – agarose beads (Upstate).

The precipitated complexes were washed sequentially with low salt

buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-

HCl pH 8.1, 150 mM NaCl and 1X protease inhibitor cocktail),

high salt buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA,

20 mM Tris-HCl pH 8.1, 500 mM NaCl and 1X protease

inhibitor cocktail), LiCl buffer (1 mM EDTA, 10 mM Tris-HCl

pH 8.1, 250 mM LiCl, 1% Igepal, 1% deoxycholic acid and 1X

protease inhibitor cocktail) and twice with Tris-EDTA buffer

(1 mM EDTA and 20 mM Tris-HCl pH 8.1), and extracted twice

with freshly prepared elution buffer (100 mM NaHCO3 and 1%

SDS) with mild vortexing. The cross-linking between DNA and

proteins was reversed by incubation with 0.3 M NaCl, overnight

at 67uC, in the presence of RNase A. Samples were then digested

with proteinase K at 45uC for 1 h. DNA was purified using

QIAquick PCR purification kit (Qiagen Inc.) and analyzed by

real-time PCR.

Real-time PCR
Real-time PCRs were performed using SYBR green Master Mix

in an ABI 7300 (Applied Biosystems, Carlsbad, CA) sequence

detection system. The transcript expression of ARF and p53 were

investigated using the following set of primers: ARF sense 59-

GCCGCACCGGAATCCT- 39; ARF antisense 59-TTGAGCA-

GAAGAACTGCTGCTACGT-39; p53 sense 59-GTGAAGCC-

CTCCGAGTGTCAGGAGC-39; p53 antisense 59-GGTGGGC-

AGCGCTCTCTTTGCGC-39; GAPDH sense 59- ATTCAAC-

GGCACAGTCAAGG-39; and GAPDH antisense 59-TGGATG-

CAGGGATGATGTTC-39. The product of the GAPDH RNA

was used for endogenous normalization.

For ChIP experiments, real-time PCR was performed using

primers that covered different regions of Arf gene, and the Hoxc8

promoter. The primers used were: 59 GAC CGT GAA GCC

GAC CCC TTC AGC 39 (forward) and 59 GGG GTC GCT

TTC CCC TTC GG 39 (reverse) for the Arf promoter, 59 TGT

GAC AAG CGA GGT GAG AAG C-39 (forward) and 59 ATG

GGC GTG GAG CAA AGA TG 39 (reverse) for the Arf exon1,

and 59 CCG GGA GTC TGA GGA ATT CGC 39 (forward) and

59 GGA CCG AAC CCC AAG CTG GC 39 (reverse) for the

Hoxc8 promoter. All PCR signals from immunoprecipitated DNA

were normalized to PCR signals from non-immunoprecipitated

input DNA. Results are first expressed as percentage of total input

and converted to fold-change over IgG. Calculations take into

account the values of at least six independent experiments.

Densitometry and Statistical Analysis
The relative intensities of protein and nucleic acid bands were

analyzed using the Quantity One Version 4.6 densitometric

analysis program (Bio-Rad Laboratories). Results from different

groups were compared using the Student’s T-test, or one-way

ANOVA. Kruskal-Wallis or the Mann-Whitney U tests were also

used whenever the assumptions of the parametric test were not

satisfied. Values of p,0.05 were considered statistically significant.

All statistical analysis was performed with GraphPad InStat

software (GraphPad Software, Inc, San Diego, CA).

Results

Modulation of p53 by JMJD3 during Differentiation of
Mouse NSCs

JMJD3 controls the expression of key regulators and markers of

neurogenesis, and is required for commitment to the neural

lineage [13]. In addition, p53 has been described as a limiting

factor of stem cell proliferative competence, playing a crucial role

during neurogenesis [25]. In fact, p53 suppresses pluripotency and

cellular dedifferentiation [26]. Although both JMJD3 and p53

have been implicated in neurogenesis of stem cells, the possible

molecular interaction between the two has not yet been explored.

We have previously characterized neural differentiation of mouse

NSCs, where neurogenesis and gliogenesis occur at ,3 and 8 days

of differentiation, respectively [2,27]. In the present study, we first

evaluated the endogenous levels of JMJD3 throughout neural

differentiation by RT-PCR, Western blot and immunocytochem-

istry. Our results showed that JMJD3 mRNA and protein levels

significantly increased at 1 day of mouse NSC differentiation

(p,0.05). In addition, JMJD3 activity was increased as detected by

a significant decrease in trimethylation state of H3K27me3,

visualized by Western blot (Fig. 1A).

Immunocytochemistry analysis confirmed RT-PCR and West-

ern blot data, revealing that JMJD3 expression is already present

in undifferentiated cells, and markedly increased at early stages of

neural differentiation (Fig. 1B). Since it has been demonstrated

that H3K27 demethylase activity of UTX and JMJD3 act at Hox

gene promoters to derepress Hox gene transcription [28,29,30],

we analyzed whether JMJD3 was present on the Hoxc8 promoter

region during first stages of mouse NSC differentiation. ChIP

experiments revealed that JMJD3 was present on Hoxc8 promoter

region. Notably, immediately after differentiation, a significant loss

of H3K27me3 was observed at Hoxc8 region (p,0.05) (Fig. 1C).

These results corroborate JMJD3 activation throughout mouse

NSC differentiation and confirm previous evidence showing that

JMJD3 functions as a transcriptional activator by removing the

H3K27me3/me2 marks [28,29,30].

To clarify whether JMJD3 regulates p53 expression during

neurogenesis, we overexpressed JMJD3 by transfecting mouse

NSCs with a Flag-JMJD3 plasmid and evaluated both mRNA and

protein levels of p53 after 48 h of differentiation. To determine the

cellular effects of JMJD3 overexpression, H3K27me3 was also

measured by Western blot 24 h after transfection (Fig. 2A). Flag-

JMJD3 overexpression decreased H3K27 trimethylation by

,50%, when compared with control (mock) cells (p,0.05). More

importantly, overexpression of JMJD3 significantly increased p53

protein levels during differentiation of mouse NSCs (p,0.01)

(Fig. 2B). Nevertheless, real-time RT-PCR showed that p53

mRNA was significantly reduced in these conditions (p,0.001),

JMJD3 and p53 Cross-Talk in Neurogenesis
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indicating that JMJD3 does not directly increase p53 transcription

(data not shown). JMJD3-induced downregulation of p53 mRNA

might result from negative feedback mechanisms of p53

autoregulation [31]. Therefore, these data suggest that JMJD3

induces p53 stabilization during differentiation of NSCs. A

potential interaction between p53 and JMJD3 has been demon-

strated in mouse embryonic fibroblasts, where JMJD3 regulates

p53 levels through ARF [15,16]. This mechanism was reported

during senescence of differentiated cells, but has not been

described during neural differentiation. To clarify the role of

JMJD3 in p53 stabilization and the potential involvement of ARF,

we measured ARF mRNA and protein levels during mouse NSC

differentiation. Western blot and real-time RT-PCR analysis

showed that JMJD3 overexpression resulted in ,2-fold increased

ARF mRNA and protein levels (p,0.01) (Fig. 2C and D),

coinciding with p53 protein accumulation (Fig. 2B).

Presence of JMJD3 Binding at the ARF Locus during
Mouse NSC Differentiation

To further investigate the role of ARF in JMJD3-induced p53

protein stabilization, we used ChIP assays and evaluate the

occupancy of JMJD3 on the ARF promoter during differentiation

of mouse NSCs (Fig. 3). Following immunoprecipitation with

JMJD3 or control (IgG) antibodies, real-time PCR was performed

using primers for different regions of ARF, such as ARF promoter

and ARF exon 1, as well as primers for the Hoxc8 promoter

region, as a positive control. Interestingly, our results showed a

time-dependent increase in the occupancy of JMJD3 at the ARF

locus during neural differentiation (Fig. 3A). In fact, association of

JMJD3 with the ARF promoter was strong at 6 h of neural

differentiation (p,0.01), and still observed at 24 and 48 h of

Figure 1. Endogenous JMJD3 expression is increased in early
stage neural differentiation. Undifferentiated and differentiated
mouse NSCs were collected for RT-PCR, Western blot, immunostaining
and ChIP experiments at indicated times. A, JMJD3 mRNA expression
(top), JMJD3 protein abundance (middle), and H3K27me3 histone
modification (bottom) representative of at least 3 independent
experiments. GAPDH and H3 were used as loading controls. B,
Fluorescence staining of JMJD3 representative of at least 3 independent
experiments. Scale, 10 mm. C, Presence of JMJD3 and the histone mark
H3K27me3 at Hoxc8 promoter region in mouse NSCs under differen-
tiation. The results were calculated by assigning the arbitrary value 1 to
the DNA binding of IgG results, and expressed as mean 6 SEM arbitrary
units of 6 independent experiments. *p,0.05 and {p,0.01 from IgG
controls.
doi:10.1371/journal.pone.0018421.g001

Figure 2. JMJD3 induces p53 stabilization during neural
differentiation. Mouse NSCs were transfected with Flag-JMJD3
overexpression plasmid 3 h after induction of differentiation, and
collected for Western blot analysis as described under ‘‘Material and
Methods’’. A, Representative immunoblots of Flag levels and
H3K27me3, in control (mock) and JMJD3 overexpressing cells at 24 h
of differentiation. H3 was used as loading control. B, Representative
immunoblots of p53 total levels in control (mock) and JMJD3
overexpressing cells (top) and corresponding histograms (bottom) at
48 h of differentiation. GAPDH was used as loading control. C,
Representative immunoblot of ARF total levels in control (mock) and
JMJD3 overexpressing cells at 48 h of differentiation. H3 was used as
loading control. D, Histogram of ARF mRNA total levels in JMJD3
overexpressing cells. The results are expressed as mean 6 SEM arbitrary
units of at least 4 independent experiments. {p,0.01 and {p,0.001
from controls.
doi:10.1371/journal.pone.0018421.g002
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differentiation (p,0.001). Nevertheless, after 6 h of neural

induction, JMJD3 occupancy was greater at ARF exon 1, as

compared with ARF promoter.

To clarify whether the presence of JMJD3 was associated with

demethylation of H3K27me3 in ARF locus during neural

differentiation, we analyzed the levels of trimethylated state

H3K27 in both ARF promoter and exon 1 regions throughout

mouse NSC differentiation (Fig. 3B). Although increased levels of

H3K27me3 were detected at Hoxc8 promoter region in

undifferentiated NSCs (Fig. 1C), H3K27me3 was not detected

on either ARF promoter or exon 1 regions, and levels of

H3K27me3 were unchanged throughout differentiation. These

data directly implicate JMJD3 in the induction of ARF expression

during neural differentiation, although independently of histone

demethylation.

JMJD3 Directly Interacts with p53 during Mouse NSC
Differentiation

Based on previous results and the available literature on the

effects of JMJD3 in a H3K27 demethylation-independent manner

[32], we evaluated specific neural markers in mouse NSCs

overexpressing Flag-JMJD3 or Flag-JMJD3mut, which does not

contain the C-terminal region associated with demethylase activity

(Fig. 4). While levels of H3K27me3 in control (mock) cells and in

cells transfected with Flag-JMJD3mut overexpression plasmid

were similar, H3K27me3 levels in cells transfected with Flag-

JMJD3 were dramatically reduced, consistent with a role for

JMJD3 as H3K27 demethylase (Fig. 4A). Interestingly, our results

revealed that JMJD3 overexpression significantly increased several

neural markers, including the neural precursor Pax6 (p,0.05) and

the neuronal progenitor b-III tubulin (p,0.01) (Fig. 4B). In fact, 2

days after induction of neural differentiation, Pax6 mRNA

expression was higher in cells transfected with wild-type JMJD3,

when compared with mock and JMJD3mut-transfected cells. The

expression of b-III tubulin was also higher in cells transfected with

wild-type JMJD3. These results are consistent with a role of

JMJD3-dependent demethylation in neurogenesis progression.

Since p53 is a non-histone target for several histone demethy-

lases [21,22], we hypothesized that JMJD3 may directly interact

with p53 in addition to regulating ARF and thus p53 protein

levels, influencing the pro-neurogenic function of p53. To

investigate the potential JMJD3/p53 physical association, we

performed immunoprecipitation assays in mouse NSCs overex-

pressing Flag-JMJD3 or Flag-JMJD3mut, at 2 days of neural

differentiation. After immunoprecipitation of p53 or IgG, Western

blot analysis revealed a significant increase in p53/JMJD3

association in cells transfected with Flag-JMJD3 overexpression

plasmids (p,0.05), suggesting a direct interaction between these

two proteins (Fig. 5A). There was also a slight, but not significant,

increase in the association between p53 and JMJD3 in cells

transfected with Flag-JMJD3mut relative to control (mock),

suggesting that the interaction between p53 and JMJD3 does

not depend on the catalytic JmjC domain of JMJD3. Importantly,

immunoprecipitation assays demonstrated an association between

p53 and endogenous JMJD3, in non-transfected cells, relative to

control (IgG) (p,0.001) (Fig. 5B).

To better characterize the molecular interaction between

JMJD3 and p53, lysates from cells overexpressing Flag-JMJD3

or Flag-JMJD3mut were immunoprecipitated with anti-p53

antibodies and subjected to Western blotting with anti-methylated

lysine antibodies (Fig. 5C). p53 was significantly less methylated in

cells expressing wild-type JMJD3, as compared to cells transfected

with the C-terminal mutant form of JMJD3 or control (mock) cells

(p,0.01). This suggests that the proneural effects of p53 may be

associated with a direct JMJD3-dependent demethylation.

JMJD3 Induces p53 Nuclear Distribution in a
Demethylase-dependent Manner

p53 controls cell fate through trafficking among organelles,

which is modulated by PTMs [33]. The catalytic JmjC domain

may directly demethylate p53 and control its trafficking and

subcellular distribution, thus influencing its retention or translo-

cation to the nucleus. In vitro experiments in models of neural

maturation, and in vivo analysis of axonal injury and regeneration

suggest that some ‘‘atypical’’ p53-dependent cellular functions

could depend on specific patterns of p53 post-translation

modifications. These modifications directly affect p53 subcellular

localization, transcriptional activity, and affinity to diverse

cofactors [34]. Therefore, we investigated the effect of JMJD3

demethylase activity on p53 subcellular localization (Fig. 6).

Overexpression of wild-type JMJD3 resulted in ,65% increased

nuclear p53 during NSC differentiation (p,0.001), while overex-

pression of Flag-JMJD3mut, which lacks demethylase activity,

caused cytoplasmatic accumulation of p53 (.40%; p,0.05)

(Fig. 6A). To confirm these results, we performed immunocyto-

chemistry assays on differentiated mouse NSCs transfected with

wild-type and mutant JMJD3 (Fig. 6B). Indeed, p53 immunoflu-

orescence also revealed an accumulation of nuclear p53, in the

Figure 3. Enhanced recruitment of JMJD3 to the ARF locus
during neural differentiation. Mouse NSCs were subjected to ChIP
analysis at 0, 6, 24 and 48 h after differentiation, using antibodies and
primer sets as described under ‘‘Material and Methods’’. A, Presence of
JMJD3 at both promoter and exon 1 regions of ARF locus in mouse
NSCs under differentiation. Relative levels of JMJD3 immune complex
were calculated by assigning the arbitrary value 1 to IgG levels. B,
Absence of the histone mark H3K27me3 at promoter and exon 1
regions of ARF locus in mouse NSCs under differentiation. Hoxc8 was
used as positive control. The results are expressed as mean 6 SEM fold
change of 6 independent experiments. *p,0.05, {p,0.01 and
{p,0.001 from IgG controls.
doi:10.1371/journal.pone.0018421.g003
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presence of wild-type JMJD3, while p53 in cells overexpressing

Flag-JMJD3mut was largely cytosolic. Thus, JMJD3 modulates

cellular distribution of p53 in a demethylase activity-dependent

manner. Importantly, these results were not associated with an

increase in cell death, as visualized by Hoechst staining and

confirmed by the TUNEL assay (Fig. 6C).

Discussion

H3K27 demethylase JMJD3 controls the expression of key

regulators and markers of neurogenesis, and is required for

commitment to the neural lineage [13,35,36]. Nevertheless, the

precise mechanisms by which JMJD3 triggers signaling pathways

involved in the control of neurogenesis are not fully understood. In

addition, JMJD3 has recently been shown to act as a tumor

suppressor by activating ARF and eliciting p53-dependent arrest

in oncogene-induced senescence using mouse and human

fibroblasts [15]. The present study identifies a new molecular link

between proapoptotic p53 and JMJD3 demethylase, in the context

of neural differentiation. JMJD3-induced p53 stabilization appears

to be mediated by ARF and, more importantly, p53 demethylation

by JMJD3 results in its nuclear accumulation.

p53 is a tumor suppressor protein that induces cell cycle arrest

or apoptosis in response to cellular stresses [37]. p53 plays a crucial

role in eliciting neuronal cell death during development, and in

adult organisms after exposure to a range of stressors and/or DNA

damage. However, non-apoptotic roles of p53 have emerged

during the past few years, describing p53 as an important player of

cell fate decisions. Following cell stress, p53 may undergo

numerous PTMs that result in different cellular outcomes, such

as neural survival and regeneration. Indeed, p53 PTMs might

promote neuronal maturation, as well as axon outgrowth and

regeneration, after neuronal injury [11]. This leading role of p53

contributes to directing neurons toward a specific phenotype in

critical conditions, such as during development and following

cellular damage [38].

Recently, p53 has been shown to be key in suppressing

pluripotency and cellular dedifferentiation [26]. p53 and Pten

inactivation cooperate to increase Myc expression, thus inducing

high-grade malignant gliomas. Attenuated Myc expression, in

turn, appears to restore neural differentiation and reduce

tumorigenic potential [3]. Others have shown that p53 is a

limiting factor of stem cell proliferative competence, playing a

crucial role during neurogenesis [25,39]. Nevertheless, the

proneural effect of p53 is still a controversial issue. In NSCs

obtained from the olfactory bulb of embryonic mice, it has been

shown that lack of p53 favors neural differentiation. However, a

positive correlation between cell density and neuron percentage

was found, and an enrichment of neurosphere-forming cells in

p53KO mice embryos was described [39]. Moreover, it has been

suggested that although loss of p53 by itself is not sufficient for

Figure 4. JMJD3-induced demethylation accelerates neurogen-
esis. Mouse NSCs were transfected with either Flag-JMJD3 or Flag-
JMJD3mut overexpression plasmids 3 h after induction of differentia-
tion, and total proteins were extracted for Western blot and RT-PCR
assays, as described under ‘‘Material and Methods’’. A, Representative
immunoblots with Flag- and H3K27me3-specific antibodies in control
(mock), JMJD3mut and JMJD3 overexpressed cells. B, Representative
RT-PCR and immunoblot and corresponding histograms of total levels
of Pax6 (top) and b-III tubulin (bottom) during mouse NSC differenti-
ation. All densitometry values were normalized to GAPDH expression,
and the results expressed as mean 6 SEM arbitrary units of at least 3
independent experiments. *p,0.05 and {p,0.01 from controls.
doi:10.1371/journal.pone.0018421.g004
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tumor formation, it can provide a proliferative advantage to the

slow- and fast-proliferating subventricular zone stem cell popula-

tions associated with their rapid differentiation [40]. In this regard,

loss of p53 is also associated with an increased number of adult

NSCs and neuroblasts. Thus, the precise role of p53 during

neurogenesis, namely whether neurogenesis induced by the

absence of p53 is only the ultimate result of increased number of

neural progenitors remains to be further investigated. Finally,

other studies have reported that activation of p53 blocks epigenetic

Figure 6. JMJD3 induces p53 nuclear trafficking in a demethy-
lase-dependent manner. Mouse NSCs were transfected with either
JMJD3 or JMJD3mut overexpression plasmids 3 h after induction of
differentiation, and collected for Western blot, immunocytochemistry
and apoptosis assays, as described under ‘‘Material and Methods’’. A,
Representative immunoblots of nuclear and cytosolic levels of p53 (top)
and corresponding histograms (bottom) in control (mock), JMJD3mut
and JMJD3 overexpressing cells. GAPDH and H3 were used as loading
controls. Results are expressed as mean 6 SEM arbitrary units of at least
4 independent experiments. *p,0.05 and {p,0.001 from controls. B,
Subcellular localization of p53 in mouse NSCs transfected with either
JMJD3 or JMJD3mut overexpression plasmids. C, Evaluation of
apoptosis by Hoechst staining and TUNEL assay. Representative images
from at least 3 independent experiments. Scale, 10 mm.
doi:10.1371/journal.pone.0018421.g006

Figure 5. JMJD3 directly associates with p53 during neural
differentiation. Mouse NSCs were transfected with either Flag-JMJD3
or Flag-JMJD3mut overexpression plasmids 3 h after induction of
differentiation. Total proteins were collected for immunoprecipitation
assays as described under ‘‘Material and Methods’’. A, Representative
immunoblots with Flag- and p53-specific antibodies (top) and
histogram of p53/Flag-JMJD3 association (bottom). B, Representative
immunoblots with JMJD3- and p53-specific antibodies (top) and
histogram of endogenous JMJD3/p53 association (bottom). C, Repre-
sentative immunoblots with methylated lysine- and p53-specific
antibodies (top), and histogram of methylated levels of p53 (bottom).
All densitometry values for Flag and methylated lysines were
normalized to the respective p53 expression, and the results expressed
as mean 6 SEM arbitrary units of at least 3 independent experiments.
*p,0.05 and {p,0.01 from controls. IP, Immunoprecipitation; WB,
Western blot; MeK, Methyl K pan.
doi:10.1371/journal.pone.0018421.g005
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reprogramming [41]. In fact, ablation of different senescence

effectors, such as p53, p16INK4a and p21CIP1 improves the

efficiency of reprogramming somatic cells into induced-pluripotent

stem (iPS) cells [42]. Reducing p53 expression markedly enhances

reprogramming efficiency and prevents chromatin condensation.

These evidences corroborate the crucial role of p53 in regulating

differentiation and development.

We have recently explored the role of p53 during neural

differentiation, and demonstrated that p53 interferes with the Akt/

p-FOXO3A/Id1 survival pathway in mouse NSCs , while

silencing of p53 leads to a delay in neurogenesis, but not in

gliogenesis [2]. Although we did not find a significant modulation

of total p53 total protein levels from 1 to 8 days of differentiation

in our previous study, p53 may still need to be stabilized during

this process. In fact, p53 activity is increased at 3 days of

differentiation and this is not associated with increased cell death,

adding differentiation to the spectrum of p53-based cell fate

decisions. Based on the role of p53 and JMJD3 during neural

differentiation as well as on the above evidence, we investigated a

possible molecular mechanism of interaction between p53 and

JMJD3 in the context of neurogenesis.

In this study, we first demonstrated that expression of active

JMJD3 is increased and activated at early stages of differentiation

in mouse NSCs, inducing ARF transcriptional activation and p53

protein stabilization. ChIP analysis revealed that JMJD3 occupied

the ARF promoter region at 6 h following neural differentiation,

which was consistent with immunocytochemistry analysis showing

induction of JMJD3 as early as 6 h. Indeed, a role for ARF in

PcG-mediated stem cell cycle control has been suggested by

others. In a neurosphere population, Bmi1-mediated ARF/p53

repression plays a general role in curtailing proliferation,

implicating PcG proteins not only in embryonic developmental

fate decisions, but also in discriminative processes between cell

cycle control of stem- and more differentiated cells [19]. In this

example, repression of ARF is required for neurosphere self-

renewal. Others have proposed that methylation in the promoter

region of the ARF gene may be used as a biomarker for the

diagnosis of gliomas [43]. Interestingly, in contrast with what

happens in mouse embryonic fibroblasts, we found that JMJD3

does not primarily induce demethylation of the ARF gene during

neurogenesis. Nevertheless, it is possible that JMJD3 erases

H3K27me3, the histone mark associated with transcriptional

repression, on the ARF gene at later time-points, not totally

excluding the role of JMJD3 demethylase function in ARF

transcriptional activation in this cellular context. In fact, others

have shown that the recruitment of JMJD3 during neural

development induces an increase in Pax6 transcription, a

homeodomain transcription factor that controls the differentiation

of the radial glia, before exerting its function of H3K27

demethylase on its promoter [13]. This suggests that JMJD3 first

contributes to Pax6 activation through mechanisms that are

independent of its H3K27me3 demethylase activity, or that are

mediated by indirect mechanisms. Moreover, JMJD3 fine-tunes

the transcriptional output of lipopolysaccharide-activated macro-

phages in an H3K27 demethylation-independent manner [32].

Therefore, it is possible that JMJD3 modulates ARF expression in

the context of neural differentiation primarily as a transcription

factor. We have also found that the C-terminal mutant form of

JMJD3 induced ARF expression in mouse NSCs (data not shown),

supporting the idea that demethylase activity of JMJD3 is not a

prerequisite for ARF transcriptional activation in neural differen-

tiation. Our data also revealed that overexpression of JMJD3

accelerates neurogenesis, enhancing efficient expression of neuron-

specific markers, including bIII-tubulin. These data validate the

role of JMJD3 in modulating neural differentiation through a

demethylase activity-dependent mechanism. In fact, it has been

shown that the inactivation of PcG by knockout of Ring1B or

Ezh2 gene, or knockdown of Eed prolonged the neurogenic phase

of neural precursor cells and delayed the onset of the astrogenic

phase. Moreover, PcG repress the promoter of the proneural gene

neurogenin1 in a developmental-stage-dependent manner. These

results demonstrated the role of PcG as temporal regulator of

neural fate [44]. To further investigate a possible molecular link

between JMJD3 and p53 in the context of neurogenesis, we

evaluated their psychical interaction and the effect of JMJD3

demethylase function on p53 methylation levels in mouse NSCs

undergoing differentiation. Our data showed that p53 and JMJD3

directly interact after neural differentiation, and the presence or

absence of JMJD3 demethylase function appears to differentially

modulate the levels of p53 lysine methylation. Curiously, JmjC

proteins can also demethylate arginine residues and, at least in

theory, other protein substrates or nucleotides. In fact, JmjC

proteins are also found in bacteria that do not contain histones,

suggesting that these proteins have other functions besides histone

demethylation [45].

p53 plays a heterogeneity of functions promoted by the diversity

of molecular targets of p53 itself, which in turn are determined by

different PTMs that p53 may suffer [21,46]. Accordingly, the

complex mechanism through which p53 decides between cell

death or differentiation molecular targets could be justified by

PTMs. In the present study, we evaluated whether the JMJD3-

induced p53 demethylation regulates the cellular localization of

p53 during differentiation of mouse NSCs. Notably, our results

showed a regulation of p53 nuclear and cytosolic levels by JMJD3

through a demethylase-dependent mechanism. Our findings,

coupled with others showing that regulation of p53 through lysine

methylation affects p53 cellular function and distribution [47] are

interesting, as they identify a new lysine demethylase protein as a

direct regulator of p53 function during neural differentiation. Here

we show that although the apoptotic functions of p53 are also

associated with p53 nuclear localization, JMJD3-induced p53

demethylation and nuclear translocation during neural differen-

tiation did not result in higher levels of cell death. However, it

remains to be determined which specific residue(s) within p53 is

modified by JMJD3 in this particular cellular context. Finally, it

would be interesting to investigate the specific direct targets of

JMJD3-dependent demethylation of p53 during neurogenesis, to

clarify whether they include ARF itself.

Collectively, our results provide an extended mechanism of

action for JMJD3, in which this demethylase binds to and

regulates p53 methylation status, inducing significant accumula-

tion of p53 in the nucleus of NSCs undergoing differentiation.

This is not associated with apoptotic cell death, but may influence

the neurogenic process in mouse NSCs. Finally, a further insight

into JMJD3-dependent p53 modulation of these different mech-

anisms is necessary to elucidate the decision-making processes

between neuronal cell death and differentiation.

Supporting Information

Figure S1 p53 expression in p53-silenced (siRNA)
mouse NSCs. Cells were incubated with either control or p53

siRNA and collected after 2 days in differentiation medium. Total

proteins were extracted for immunoblot analysis. Representative

immunoblots of p53 and b-actin in cells transfected with either

control or p53 siRNA.

(TIF)
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