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Abstract

Microbes within polymicrobial infections often display synergistic interactions resulting in enhanced pathogenesis;
however, the molecular mechanisms governing these interactions are not well understood. Development of model systems
that allow detailed mechanistic studies of polymicrobial synergy is a critical step towards a comprehensive understanding of
these infections in vivo. In this study, we used a model polymicrobial infection including the opportunistic pathogen
Aggregatibacter actinomycetemcomitans and the commensal Streptococcus gordonii to examine the importance of
metabolite cross-feeding for establishing co-culture infections. Our results reveal that co-culture with S. gordonii enhances
the pathogenesis of A. actinomycetemcomitans in a murine abscess model of infection. Interestingly, the ability of A.
actinomycetemcomitans to utilize L-lactate as an energy source is essential for these co-culture benefits. Surprisingly,
inactivation of L-lactate catabolism had no impact on mono-culture growth in vitro and in vivo suggesting that A.
actinomycetemcomitans L-lactate catabolism is only critical for establishing co-culture infections. These results demonstrate
that metabolite cross-feeding is critical for A. actinomycetemcomitans to persist in a polymicrobial infection with S. gordonii
supporting the idea that the metabolic properties of commensal bacteria alter the course of pathogenesis in polymicrobial
communities.
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Introduction

The survival of pathogens in the human body has been

rigorously studied for well over a century. The ability of bacteria to

colonize, persist and thrive in vivo is due to an array of capabilities

including the ability to attach to host tissues, produce extracellular

virulence factors, and evade the immune system. Invading

pathogens must also obtain carbon and energy from an infection

site, and specific carbon sources are required for several pathogens

to colonize and persist in the host [1]. Although mono-culture

infections provide interesting insight into pathogenesis, many

bacterial infections are not simply the result of colonization with a

single species, but are instead a result of colonization with several

[2,3,4,5]. The mammalian oral cavity is an excellent environment

to study polymicrobial interactions as it is persistently colonized

with diverse commensal bacteria as well as opportunistic

pathogens. Our lab has utilized a two-species model system

composed of the opportunistic pathogen Aggregatibacter actinomyce-

temcomitans and the common commensal Streptococcus gordonii to

provide mechanistic insight into how specific carbon sources

impact disease pathogenesis in polymicrobial infections [6,7].

A. actinomycetemcomitans is a Gram-negative facultative anaerobic

bacterium that inhabits the human oral cavity and is a proposed

causative agent of localized aggressive periodontitis [8]. A.

actinomycetemcomitans is found between the gums and tooth surface

in the subgingival crevice [9,10], an area restricted for O2

depending on tissue depth [11] and irrigated by a serum exudate

called gingival crevicular fluid (GCF). GCF not only contains

serum proteins such as complement and immunoglobulin [12], but

also glucose from 10 to 500 mM in healthy patients [13] and as

high as 3 mM in patients with periodontal infections [14]. L-

lactate is produced by host lactate dehydrogenase in GCF [15,16]

and resident oral streptococci. Together glucose and L-lactate

represent two of the small number of carbon sources that A.

actinomycetemcomitans is able to catabolize [17]. A. actinomycetemcomi-

tans has been proposed to primarily inhabit the aerobic [9]

‘‘moderate’’ pockets (4 to 6 mm in depth) of the gingival crevice as

opposed to deeper anaerobic subgingival pockets [18].

In addition to A. actinomycetemcomitans, the subgingival crevice is

home to a diverse bacterial population, including numerous oral

streptococci [19], that reside in surface-associated biofilm

communities [20]. Oral streptococci, aside from Streptococcus

mutans, are typically non-pathogenic and depending upon the

human subject and method of sampling, comprise approximately

5% [21] to over 60% [22] of the recoverable oral flora. Through

fermentation of carbohydrates to L-lactate and sometimes H2O2,

acetate, and CO2, oral streptococci such as S. gordonii have been

shown to influence the composition of oral biofilms [19,20,23,24].

Additionally, S. gordonii-produced H2O2 influences interactions

between A. actinomycetemcomitans and the host by inducing

production of ApiA, a factor H binding protein that inhibits

complement-mediated lysis [7,25]. Thus, streptococcal metabolites
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are important cues that influence the growth and population

dynamics of oral biofilms and how oral bacteria interact with the

host.

A. actinomycetemcomitans preferentially catabolizes L-lactate over

high energy carbon sources such as glucose and fructose in

multiple strains, despite the fact that this bacterium grows more

slowly with L-lactate [6]. Given this preference for a presumably

inferior carbon source and the observation that A. actinomycetemco-

mitans resides in close association with oral streptococci [26,27], we

hypothesize an in vivo benefit exists for A. actinomycetemcomitans L-

lactate preference. To test this hypothesis, we investigated the

importance of A. actinomycetemcomitans L-lactate catabolism during

mono-culture and co-culture with S. gordonii in vitro and in a murine

abscess model of infection. Our results reveal that co-culture with

S. gordonii enhances colonization and pathogenesis of A. actinomy-

cetemcomitans, and the ability to utilize L-lactate as an energy source

is essential for these co-culture benefits. Surprisingly, inactivation

of L-lactate catabolism had no impact on mono-culture growth in

vitro and in vivo suggesting that A. actinomycetemcomitans L-lactate

catabolism is only critical for establishing co-culture infections.

Taken together, these results provide compelling mechanistic

evidence that the metabolic properties of human commensals such

as S. gordonii can alter the course of pathogenesis in polymicrobial

communities.

Results

A. actinomycetemcomitans metabolism of glucose and
L-lactate

Within the gingival crevice, host-produced glucose and L-lactate

are present [13,14,15,16,28] and likely serve as in vivo carbon

sources for A. actinomycetemcomitans. However in contrast to glucose,

L-lactate is also produced by the oral microbial flora, primarily

oral streptococci [20]. Indeed, the ability of A. actinomycetemcomitans

to catabolize streptococcal-produced L-lactate has been demon-

strated previously [6], and it was proposed that A. actinomycetemco-

mitans consumes streptococcal-produced L-lactate during co-

culture. To assess the importance of A. actinomycetemcomitans L-

lactate catabolism in polymicrobial communities in vitro, we

examined the metabolic profile during catabolism of L-lactate

and glucose under aerobic and anaerobic conditions. Aerobically,

A. actinomycetemcomitans primarily produced lactate and acetate from

glucose (Fig. 1A) while acetate was the sole metabolite produced

by L-lactate-grown bacteria (Fig. 1C). It was intriguing that lactate

was produced, but not consumed, by A. actinomycetemcomitans during

aerobic catabolism of glucose. We hypothesized that the lactate

produced by A. actinomycetemcomitans was likely D-lactate, which is

not catabolized by A. actinomycetemcomitans [29]. Using an

enzymatic assay [30], we were able to verify that .99% of the

lactate produced by A. actinomycetemcomitans was indeed D-lactate.

Anaerobically from glucose, A. actinomycetemcomitans primarily

produced the mixed acid fermentation products formate and

acetate along with lactate, succinate, and trace amounts of ethanol

(Fig. 1B). Surprisingly, A. actinomycetemcomitans was unable to

Figure 1. Aerobic and anaerobic metabolites produced by A.
actinomycetemcomitans, A. actinomycetemcomitans lctD- and A.
actinomycetemcomitans cydB-. Resting cell suspensions of each
culture were incubated (A )aerobically in glucose; (B), anaerobically in
glucose; (C), aerobically or anaerobically in lactate. Metabolite
concentrations were measured by HPLC. Data in A and B is presented
as moles of metabolite produced/mole of glucose consumed. Only
trace concentrations (,50 mM) of ethanol were observed in anaerobic
suspensions. Error bars represent 1 standard error of the mean, n = 3. *
Acetate concentrations are shown per mM of L-lactate consumed. The
detection limit for acetate was 100 mM.
doi:10.1371/journal.ppat.1002012.g001

Author Summary

Many bacterial infections are not the result of colonization
and persistence of a single pathogenic microbe in an
infection site but instead the result of colonization by
several. Although the importance of polymicrobial inter-
actions and pathogenesis has been noted by many
prominent microbiologists including Louis Pasteur, most
studies of pathogenic microbes have focused on single
organism infections. One of the primary reasons for this
oversight is the lack of robust model systems for studying
bacterial interactions in an infection site. Here, we use a
model co-culture system composed of the opportunistic
oral pathogen Aggregatibacter actinomycetemcomitans
and the common oral commensal Streptococcus gordonii
to assess the impact of polymicrobial growth on patho-
genesis. We found that the abilities of A. actinomycetem-
comitans to persist and cause disease are enhanced during
co-culture with S. gordonii. Remarkably, this enhanced
persistence requires A. actinomycetemcomitans catabolism
of L-lactate, the primary metabolite produced by S.
gordonii. These data demonstrate that during co-culture
growth, S. gordonii provides a carbon source for A.
actinomycetemcomitans that is necessary for establishing
a robust polymicrobial infection. This study also demon-
strates that virulence of an opportunistic pathogen is
impacted by members of the commensal flora.

Cross-Feeding in a Polymicrobial Infection
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catabolize L-lactate anaerobically (Fig. 1C), even if the potential

alternative electron acceptors nitrate or dimethyl sulfoxide were

added, suggesting that L-lactate oxidation was O2 dependent. This

is distinct from other oral bacteria including members of the genus

Veillonella [24,31], in which L-lactate is an important anaerobic

carbon and energy source. If O2 respiration was indeed required

for A. actinomycetemcomitans growth with L-lactate, we hypothesized

that elimination of the terminal respiratory oxidase, which is

required for aerobic respiration, would abolish L-lactate utilization

by A. actinomycetemcomitans aerobically. To test this hypothesis, cydB,

which encodes a component of the sole putative A. actinomyce-

temcomitans respiratory oxidase, was insertionally inactivated. The

cydB mutant was unable to catabolize L-lactate aerobically

supporting the hypothesis that L-lactate oxidation requires O2

respiration (Fig. 1C). Interestingly when grown with glucose

aerobically, the cydB mutant doubled much slower (6.6 hr) than

the wt (1.9 hr) and cell suspensions produced a metabolite profile

that differed from the wt (Fig. 1A) indicating that while not

required for aerobic growth on glucose, O2 respiration is the

primary means by which glucose is catabolized by wt A.

actinomycetemcomitans. As expected, the cydB mutant exhibited

identical growth rates anaerobically on glucose (not shown) and

produced similar metabolites as the wt (Fig. 1B). Collectively, these

data indicate that O2 respiration is required for L-lactate oxidation

in A. actinomycetemcomitans.

As the ultimate goal of this study is to assess the importance of A.

actinomycetemcomitans L-lactate catabolism for establishing co-culture

with oral streptococci, it was important to assess whether

eliminating the ability of A. actinomycetemcomitans to utilize L-lactate

affected growth with glucose. To examine this, we examined

growth and metabolite production in an A. actinomycetemcomitans

strain in which the catabolic L-lactate dehydrogenase LctD, which

is present in all strains sequenced to date [32,33], was insertionally

inactivated [29]. LctD oxidizes L-lactate to pyruvate and is

required for A. actinomycetemcomitans growth with L-lactate as the

sole energy source [29]. As expected, the lctD mutant was unable

to catabolize L-lactate aerobically or anaerobically (Fig. 1C);

however, metabolite production from glucose was not affected

(Fig. 1A&B) nor was the growth rate with glucose (not shown).

These data indicate that L-lactate catabolism can be eliminated in

A. actinomycetemcomitans without affecting growth and metabolite

production with glucose.

Utilization of L-lactate enhances co-culture growth
Because A. actinomycetemcomitans preferentially catabolizes L-

lactate in lieu of hexose sugars [6], we hypothesized that L-lactate

cross-feeding was important for establishing co-culture with oral

streptococci grown on glucose. To test this hypothesis, we

examined growth of glucose-grown A. actinomycetemcomitans and S.

gordonii during in vitro co-culture aerobically and anaerobically.

Aerobically, wt A. actinomycetemcomitans co-culture cell numbers

were similar to those observed in mono-culture while the A.

actinomycetemcomitans lctD mutant exhibited an approximate 25-fold

decrease in cell number during co-culture with S. gordonii (Fig. 2).

Anaerobically, both wt A. actinomycetemcomitans and A. actinomyce-

temcomitans lctD- cell numbers diminished nearly 10-fold in co-

culture compared to mono-culture (Fig. 2), likely due to the

inability to catabolize S. gordonii-produced L-lactate.

Examination of aerobic metabolic end products of the A.

actinomycetemcomitans lctD-/S. gordonii co-culture revealed high levels

of lactate, reminiscent of S. gordonii mono-cultures, indicating that

as expected, the A. actinomycetemcomitans lctD mutant is unable to

catabolize L-lactate in co-culture (Fig. 3A). Additionally, metab-

olite concentrations in anaerobic co-cultures were similar to S.

gordonii mono-culture (Fig. 3B). It should be noted that these

metabolites were measured from growing cells, not cell suspensions

as in Fig. 1. These data provide strong evidence that the inability

Figure 2. Growth of A. actinomycetemcomitans, A. actinomyce-
temcomitans lctD-, and S. gordonii in aerobic and anaerobic co-
cultures. Strains were grown as mono- or co-cultures in 3 mM glucose
aerobically or anaerobically for 10 or 12 h respectively, serially diluted
and plated on selective media to determine colony forming units per ml
(CFU/ml). A. actinomycetemcomitans mono-culture strains are black bars
and co-culture with S. gordonii are white bars. Error bars represent 1
standard error of the mean, n = 3.
doi:10.1371/journal.ppat.1002012.g002

Figure 3. Metabolite production by A. actinomycetemcomitans,
A. actinomycetemcomitans lctD-, and S. gordonii in aerobic or
anaerobic co-cultures. Supernatants of the cultures used for CFU
measurements in Fig. 2 were analyzed by HPLC for metabolite
production from (A), aerobic or (B), anaerobic cultures. Data is
presented as moles of metabolite produced/mole of glucose con-
sumed. Error bars represent 1 standard error of the mean, n = 3. ND =
No Data.
doi:10.1371/journal.ppat.1002012.g003

Cross-Feeding in a Polymicrobial Infection
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to use L-lactate, even when glucose is present, significantly inhibits

A. actinomycetemcomitans growth and survival in co-culture.

Interestingly, an approximate 7-fold increase in S. gordonii cell

numbers were observed in the presence of A. actinomycetemcomitans

aerobically, indicating that A. actinomycetemcomitans enhances S.

gordonii proliferation under these co-culture conditions even when

A. actinomycetemcomitans is unable to utilize L-lactate (Fig. S1 in Text

S1). Importantly, the pH of the medium used in these experiments

remained at neutrality; thus changes in cell numbers were not due

to alterations in pH.

L-lactate consumption is required for co-culture growth
of A. actinomycetemcomitans in vivo

The observation that L-lactate catabolism is critical for A.

actinomycetemcomitans to establish co-culture with S. gordonii in vitro

provides new insight into this model polymicrobial community;

however, whether the requirement for this catabolic pathway

extended to in vivo co-culture was not known. To examine the role

of A. actinomycetemcomitans L-lactate catabolism for in vivo growth in

mono- and co-culture, we used a mouse thigh abscess model. This

model has relevance as A. actinomycetemcomitans causes abscess

infections outside of the oral cavity in close association with other

bacteria [34] and has been used as a model system to examine

pathogenesis of several oral bacteria [35,36]. Using this model,

bacterial survival and abscess formation was assessed for wt A.

actinomycetemcomitans and A. actinomycetemcomitans lctD- during mono-

and co-culture with S. gordonii (Fig. 4).

Unexpectedly, wt A. actinomycetemcomitans and the lctD mutant

established similar infections in terms of cell number (Fig. 4A) and

in abscess weight (Fig. 4B) indicating that host-derived L-lactate is

not an important in vivo nutrient source during mono-culture

infection. Interestingly, wt A. actinomycetemcomitans displayed a 10-

fold increase in cell number when co-cultured with S. gordonii,

while cell number of the lctD mutant declined .100-fold

compared to the wild-type providing evidence that the ability to

catabolize L-lactate is crucial for A. actinomycetemcomitans co-culture

survival in vivo. These data also indicate that while not critical for

mono-culture growth, L-lactate is an important energy source

during co-culture infection. Unlike the in vitro experiments (Fig. S1

in Text S1), S. gordonii numbers were not statistically different in

monoculture or in co-culture abscesses (2.76107 and 1.36107

CFU/ml respectively; p = 0.15 via Mann-Whitney test) indicating

that S. gordonii does not receive a benefit, at least in regard to cell

number, from co-culture with A. actinomycetemcomitans. As a control,

in vivo growth of the A. actinomycetemcomitans apiA mutant, which is

hypersusceptible to killing by innate immunity, was examined. As

expected, the apiA mutant exhibited a .250-fold decrease in

mono-culture in vivo survival, which was unchanged in the

presence of S. gordonii (Fig. 4A).

Discussion

Microbes within polymicrobial infections often display syner-

gistic interactions that result in enhanced colonization and

persistence in the infection site [5,34,36,37,38,39,40]. Such

interactions have been particularly noted in oral polymicrobial

infections, although the molecular processes controlling these

synergistic interactions are not well defined. Detailed mechanistic

studies of the interactions required for enhanced persistence in vivo

is a critical step towards a more comprehensive understanding of

natural polymicrobial infections. In this study, we used a model

polymicrobial infection [6,7] to determine the importance of

metabolic cross-feeding for establishing co-culture infections.

Cross-feeding in polymicrobial populations has been reported in

numerous studies [24,41,42], but its importance for establishing

co-culture infections has not been investigated in depth. The

methodology used in this study began with detailed studies of the

metabolic pathways required for growth with the in vivo carbon

sources glucose and L-lactate, followed by examination of the

importance of specific catabolic pathways for establishing co-

culture infections.

It is relevant to discuss the rationale for two in vivo experimental

parameters: using a ‘smooth’ strain of A. actinomycetemcomitans in

lieu of a ‘rough’ strain; and using a murine abscess model in lieu of

a rat periodontal infection model [43,44]. A ‘‘smooth’’ strain of A.

actinomycetemcomitans, which displays impaired surface attachment,

was used in this study [45,46]. As we were not investigating

attachment or biofilm development, we opted to utilize a smooth

strain that had undergone robust metabolic characterization, and

feel this decision is justified as this bacterium clearly causes abscess

infections in this model (Fig. 4). The murine abscess model was

used for several reasons. First, in addition to periodontal infections,

A. actinomycetemcomitans causes abscess infections outside of the oral

cavity that resemble, from a gross morphological standpoint, the

abscess model infection [34]; thus the abscess model has clinical

relevance. Second, the abscess model avoids complications arising

from the normal flora, which are not completely eradicated in the

periodontal rat infection models, and whose presence would make

Figure 4. Persistence of A. actinomycetemcomitans, A. actinomy-
cetemcomitans lctD-, and A. actinomycetemcomitans apiA- in
mono- or co-culture in a murine abscess model. A. Bacterial
colony forming units per abscess. Wilcoxon signed-rank test values are:
* p,0.02, ** p,0.01, *** p,0.008. B. Abscess weights 6 days post-
inoculation. Error bars represent 1 standard error of the mean, n = 9.
p,0.05 for wt A. actinomycetemcomitans in mono- and co-culture via
Student’s t-test.
doi:10.1371/journal.ppat.1002012.g004

Cross-Feeding in a Polymicrobial Infection
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interpretation of metabolic interactions extraordinarily complex.

Third, the abscess model allows direct, controlled inoculation with

a finite number of cells that can be quantified throughout the

infection by assessing colony forming units after removal of the

entire abscess [37,47,48]. Finally, although the abscess model has

primarily been used to study anaerobic pathogens [35,36], it is also

relevant for studying aerobic pathogens, demonstrated by the large

abscesses [48] formed by the strict aerobe Acinetobacter baumanii

[17,49]. The presence of aerobic microenvironments in the abscess

is also supported by our observations that the S. gordonii spxB

mutant is significantly impaired for abscess formation (Fig. S2 in

Text S1). The spxB gene encodes pyruvate oxidase which utilizes

O2 for biosynthesis of the virulence factor H2O2 [50]; thus its

importance is limited to aerobic infections.

The observation that A. actinomycetemcomitans requires O2 to

catabolize L-lactate was surprising, as many oral bacteria grow on

L-lactate anaerobically [24,31]. These results also solve an

apparent contradiction in the literature. It was reported by

multiple sources [17,51] that A. actinomycetemcomitans does not

catabolize L-lactate, yet we recently provided evidence that several

strains of A. actinomycetemcomitans grow aerobically with L-lactate as

the sole energy source [6,29]. Interrogation of the previous growth

environments revealed that A. actinomycetemcomitans was grown

under very low or O2 free conditions; thus it is not surprising that

significant growth was not observed in these studies. The O2

dependency of L-lactate oxidation also highlights another facet of

our in vivo data. In the murine abscess model, the A.

actinomycetemcomitans wt and lctD mutant grew equally well in

mono-culture (Fig 4). However, in co-culture only the survival of

the lctD mutant was impaired. This result is reminiscent of our in

vitro data (Fig. 2) suggesting that O2 dependent metabolism occurs

in our model polymicrobial infection.

The observation that the terminal oxidase CydB is required for

aerobic growth with L-lactate allows development of a new model

for L-lactate consumption in A. actinomycetemcomitans (Fig. 5). Since

L-lactate dehydrogenase (LctD) is necessary for lactate oxidation

and does not use NAD+ as an electron acceptor [29], anaerobic

fermentation pathways that regenerate NAD+ cannot act as

electron acceptors for L-lactate oxidation. The model predicts that

A. actinomycetemcomitans instead donates electrons directly to the

quinone pool which in turn is re-oxidized by CydAB [52]. It

should be noted that this does not rule out an unknown electron

carrier between LctD and the membrane associated quinone.

The most exciting observation from these studies is that L-

lactate catabolism is likely an important factor for A. actinomyce-

temcomitans to establish a polymicrobial, but not mono-culture,

infection in a murine abscess model (Fig. 4). These data indicate

that host-produced L-lactate is not a vital energy source for A.

actinomycetemcomitans in mono-culture abscesses, but when S. gordonii

is present, L-lactate catabolism becomes critical. We speculate that

in the absence of S. gordonii, carbohydrates such as glucose are

present in the infection site for A. actinomycetemcomitans growth.

When S. gordonii is introduced, competition for these carbohydrates

increases, and A. actinomycetemcomitans is likely at a disadvantage due

to its relatively slow growth and catabolic rates compared to S.

gordonii [6]. Thus, the ability to preferentially utilize L-lactate, the

primary metabolite produced by S. gordonii, allows A. actinomyce-

temcomitans to avoid competition with S. gordonii for carbohydrates

and consequently enhance its survival in the abscess. This model

(Fig. 6) suggests that the importance of individual carbon catabolic

pathways is dependent on the context of the infection, specifically

if oral streptococci are present.

Our work demonstrates that metabolic pathways required for A.

actinomycetemcomitans proliferation during mono-culture infection

are distinct from those required for co-culture infection with a

common commensal. This study provides strong evidence that

simply because elimination of a catabolic pathway does not elicit a

virulence defect in mono-species infection does not preclude it

from being important in polymicrobial infections. Since metabolic

interactions can potentially occur in virtually any polymicrobial

infection, our results suggest that in some cases, the ability to cause

infection will be as dependent on metabolic interactions as it is on

known immune defense mechanisms and classical virulence

factors. Our observations also have therapeutic implications, as

development of small molecule inhibitors of metabolic pathways,

particularly pathways restricted to prokaryotic pathogens, have

promise as new therapeutic targets. Based on this study, efforts to

develop such therapeutics will require a detailed understanding of

how polymicrobial cross-feeding affects colonization and persis-

tence in an infection site.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use

Committee of Texas Tech University Health Sciences Center

(Protocol Number: 09039).

Strains and media
A. actinomycetemcomitans strains VT1169 [53], Streptococcus gordonii

strain Challis DL1.1 (ATCC 49818), S. gordonii spxB- [50],

Escherichia coli DH5a-lpir, and E. coli SM10-lpir were used in

this study. A. actinomycetemcomitans and S. gordonii were routinely

cultured using Tryptic Soy Broth + 0.5% Yeast Extract (TSBYE).

For resting cell suspension A. actinomycetemcomitans metabolite

analysis, a Chemically Defined Medium (CDM) [6] lacking

nucleotides, amino acids, pimelate and thioctic acid (to eliminate

further cell growth) containing either 20 mM glucose or 40 mM

L-lactate was used. For co-culture experiments, complete CDM

with 3 mM glucose was used. Aerobic culture conditions were

37uC in a 5% CO2 atmosphere shaking at 165 RPM, and

anaerobic culture conditions were static growth at 37uC in an

anaerobic chamber (Coy, USA) with a 5% H2, 10% CO2 and

85% N2 atmosphere. E. coli strains were grown on Luria-Bertani

(LB) medium at 37uC. Where applicable, antibiotics were used at

the following concentrations: chloramphenicol, 2 mg/ml for A.

actinomycetemcomitans and 20 mg/ml for E. coli; spectinomycin,

Figure 5. Model for electron transport during L-lactate
oxidation in A. actinomycetemcomitans. A. actinomycetemcomitans
requires O2 for oxidation of L-lactate. LctD may donate electrons from L-
lactate directly to the quinone pool or utilize an unknown intermediate
electron carrier represented by the dotted arrow. The cytochrome
oxidase CydAD ultimately donates the electrons to O2.
doi:10.1371/journal.ppat.1002012.g005

Cross-Feeding in a Polymicrobial Infection
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50 mg/ml for selection and 10 mg/ml for maintenance for A.

actinomycetemcomitans and E. coli and 100 mg/ml for selection and

maintenance for S. gordonii spxB-; kanamycin, 40 mg/ml for

selection and 10 mg/ml for maintenance; naladixic acid, 25 mg/

ml; streptomycin, 50 mg/ml for selection and 20 mg/ml for

maintenance. For quantifying CFU/ml in co-culture assays,

vancomycin (5 mg/ml) was added to agar plates to enumerate A.

actinomycetemcomitans and streptomycin (100 mg/ml) was added to

agar plates to enumerate S. gordonii.

DNA and plasmid manipulations
DNA and plasmid isolations were performed using standard

methods [54]. Restriction endonucleases and DNA modification

enzymes were purchased from New England Biolabs. Chromo-

somal DNA from A. actinomycetemcomitans was isolated using

DNeasy tissue kits (Qiagen), and plasmid isolations were

performed using QIAprep spin miniprep kits (Qiagen). DNA

fragments were purified using QIAquick mini-elute PCR purifi-

cation kits (Qiagen), and PCR was performed using the Expand

Long Template PCR system (Roche). DNA sequencing was

performed by automated sequencing technology using the

University of Texas Institute for Cell and Molecular Biology

sequencing core facility.

A. actinomycetemcomitans apiA mutant construction
Allelic replacement of apiA (AA2485) was carried out by double

homologous recombination. For construction of the knockout

construct, 856 bp and 842 bp DNA fragments flanking apiA were

amplified and combined with the aphA gene (encoding kanamycin

resistance) from pBBR1-MCS2 [55] by overlap extension PCR [56].

The construct was prepared so that aphA was positioned between the

upstream and downstream regions. Primers used were: Kan-59

(ATGTCAGCTACTGGGCTATCTG) and Kan-39 (ATTTC-

GAACCCCAGAGTCCCGC) for the 1074 bp aphA-containing

fragment; ApiA-UF (CCGATAACAGTAAGATCTTCTAC) and

ApiA-UR (CAGATAGCCCAGTAGCTGACATCCTTTTCGG-

CTTGAATTTATACC) for the upstream apiA fragment; and ApiA-

DF (GCGGGACTCTGGGGTTCGAAATGCGGTCAGAATTT-

TAGGTGTTTT) and ApiA-DR (CGAAACCAACGAACTCTT-

TATTC) for the downstream apiA fragment. Underlined sequences

indicate overlapping DNA sequences between the apiA fragments and

aphA. The overlap extension product was TA-cloned into the pGEM-T

Easy vector (Promega, USA) and excised by EcoRI digest. The EcoRI

fragment containing the overlap extension product was ligated into the

unique EcoRI site within the lpir-dependent suicide vector pVT1461

[57]. The cloned construct, pVT1461-apiA-KO, was first transformed

into E. coli DH5a-lpir then into E. coli SM10-lpir for conjugation into

A. actinomycetemcomitans. Conjugation was performed as described [53]

and potential mutants were plated onto TSBYE agar plates containing

kanamycin to select for recombinant A. actinomycetemcomitans and

nalidixic acid to kill the E. coli donors. Kanamycin resistant,

spectinomycin sensitive double recombinants were selected and verified

by PCR. Enhanced susceptibility of the apiA mutant to serum was

verified as described previously [7].

A. actinomycetemcomitans cydB mutant construction
Insertional mutagenesis of the cydB gene was performed by single

homologous recombination using a 543 bp internal piece of the cydB

(AA2840) gene amplified using the primers cydB-KO59 (GAA-

GATCTTTATGATTAATACTATCGCGCCG) and cydB-KO39

(GAAGATCTCAAAACCATCTTTGAAAGATAACCA). Under-

lined sequences represent BglII restriction sites. The internal cydB

fragment was digested with BglII and ligated into the A.

actinomycetemcomitans suicide vector pMRKO-1 (see below) to generate

pMRKO-cydB. pMRKO-cydB was transformed into E. coli SM10-

lpir and conjugated into A. actinomycetemcomitans. A. actinomycetemcomi-

tans recombinants were grown anaerobically on TSBYE agar

containing spectinomycin and naladixic acid. Colonies were

Figure 6. Model for enhanced persistence of A. actinomycetemcomitans during aerobic co-culture with S. gordonii. During co-culture
aerobic growth with glucose, S. gordonii produces L-lactate and H2O2 which inhibit A. actinomycetemcomitans glucose uptake (red line) and induce
apiA expression (dotted line) respectively. The production of L-lactate provides A. actinomycetemcomitans with a preferred carbon source for growth
and reduces the need to compete with S. gordonii for glucose during aerobic co-culture. During anaerobic co-culture, S. gordonii also produces L-
lactate but A. actinomycetemcomitans is unable to catabolize this carbon source due to the absence of O2; thus requiring A. actinomycetemcomitans
to compete directly with S. gordonii for glucose (dashed line).
doi:10.1371/journal.ppat.1002012.g006
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subcultured anaerobically on liquid medium at the same antibiotic

concentrations and insertion into cydB was verified by PCR.

pMRKO-1 suicide vector construction
The spectinomycin resistance gene from pDMG4 [58] was

amplified by PCR using the primers: 59Spec-cass-NotI (ATAA-

GAATGCGGCCGCCGATTTTCGTTCGTGAATACATG)

and 39 Spec-cass-EcoRI (CGGAATTCCATATGCAAGGGTT-

TATTGTTT), digested with NotI-EcoRI and ligated into NotI-

EcoRI digested pmCherry (Clontech) underlined sequences

indicate NotI and EcoRI restriction sites. The 3105 bp region

containing the pUC origin of replication, plac:mCherry and the

spectinomycin resistance gene were PCR amplified using the

primers: 59pMcher-trunc (GAAGATCTGACCAAGTTTACT-

CATATATACT) and 39 Spec-cass-EcoRI (CGGAATTCCA-

TATGCAAGGGTTTATTGTTT). Underlined sequences indi-

cate BglII and EcoRI restriction sites. This fragment was digested

with BglII and EcoRI and ligated into the 2780 bp fragment from

BglII-EcoRI digested pVT1461. The resulting plasmid (pMRKO-

1, submitted to Genbank) is a suicide vector for A. actinomycetemco-

mitans and contains oriT, mob, and tra genes from pVT1461 along

with the pUC origin of replication, mCherry expressed from plac,

and a spectinomycin resistance cassette.

Resting cell suspensions
A. actinomycetemcomitans was grown in CDM overnight either

aerobically or anaerobically in the presence of 20 mM glucose or

40 mM L-lactate. Bacteria were then subcultured in 30 ml of

medium and exponential phase cells (OD600 = 0.4) were collected

by centrifugation (5,000 x g for 15 min) at 25uC. Cell pellets were

resuspended in an equal volume of CDM lacking nucleotides,

amino acids and any carbon source. Cells were incubated at 37uC
aerobically or anaerobically depending on the test conditions for

1 hr. Cells were collected again by centrifugation as described

above and resuspended to an OD600 of 2 in 3 ml of CDM without

nucleotides, amino acids, pimelate and thioctic acid containing

either 20 mM glucose or 40 mM lactate. Cells were incubated for

4 h at 37uC either aerobically or anaerobically. After incubation

samples were stored at 220uC for HPLC analysis.

D-Lactate assay
D-lactate assays were performed as described [30] with

modifications. Glycylglycine buffer was replaced with an equal

concentration of Bicine (Fisher, USA) buffer and enzymatic assays

were monitored by spectrophotometry at 340 nm for 4 hours.

Co-culture experiments
A. actinomycetemcomitans and S. gordonii were grown overnight in

CDM containing 3 mM glucose. 3 mM glucose was used to

ensure that the medium was limited for catabolizable carbon. Cells

were diluted 1:50 in the same medium and allowed to grow to

exponential phase (OD600 of 0.2). Cells were then diluted 1:100

(26106 S. gordonii/ml and 16107 A. actinomycetemcomitans/ml) as

mono-cultures or co-cultures in 3 ml CDM containing 3 mM

glucose. Cultures were allowed to grow for 10 h aerobically or

12 h anaerobically, after which cells were serially diluted, plated

on either TSBYE agar + vancomycin for A. actinomycetemcomitans

enumeration or TSBYE agar + streptomycin for S. gordonii

enumeration. Colonies were counted after incubation at 37uC
for 48 h. An aliquot of the culture was also stored at 220uC for

HPLC metabolite analysis.

HPLC analysis
Metabolite levels were quantified using a Varian HPLC with

a Varian Metacarb 87H 30066.5 mm column at 35uC.

Samples were eluted using isocratic conditions with 0.025 N

H2SO4 elution buffer and a flow rate of 0.5 ml/minute. A

Varian refractive index (RI) detector at 35uC was used for

metabolite enumeration by comparison with acetate, ethanol,

formate, glucose, L-lactate, D-lactate, pyruvate and succinate

standards.

In vivo murine abscess growth
Murine abscesses were generated essentially as described

previously [37]. Briefly, 6–8 week-old, female, Swiss Webster

mice were anesthetized with an intraperitoneal injection of

Nembutal (50 mg/kg). The hair on the left inner thigh of each

mouse was shaved, and the skin was disinfected with 70% alcohol.

Mice were injected subcutaneously in the inner thigh with 107

CFU A. actinomycetemcomitans, S. gordonii or both. At 6 days post-

infection, mice were euthanized and intact abscesses were

harvested, weighed and placed into 2 ml of sterile PBS (or water

for pH measurements). Tissues were homogenized, serially diluted

and plated on Brain Heart Infusion (BHI) agar + 20 mg/ml

Na2CO3 + vancomycin for A. actinomycetemcomitans enumeration or

BHI agar + 20 mg/ml Na2CO3 + streptomycin for S. gordonii

enumeration, to determine bacterial CFU/abscess. Experimental

protocols involving mice were examined and approved by the

Texas Tech University HSC Institutional Animal Care and Use

Committee.

Supporting Information

Text S1 Figure S1: Growth of S. gordonii in mono- or co-culture

with A. actinomycetemcomitans or A. actinomycetemcomitans lctD- in

aerobic and anaerobic co-cultures. Strains were grown as mono-

or co-cultures in 3 mM glucose aerobically or anaerobically for 10

or 12 h respectively, serially diluted, and plated on selective media

to determine colony forming units per ml (CFU/ml). S. gordonii

mono-cultures numbers are represented by black bars, co-culture

numbers with A. actinomycetemcomitans are represented by white

bars, and co-culture numbers with A. actinomycetemcomitans lctD- are

represented by grey bars. Error bars represent 1 standard error of

the mean, n = 3. Figure S2: Survival of S. gordonii and S. gordonii

spxB- in a murine abscess model. A. Number of bacteria recovered

from each abscess expressed as colony forming units per abscess

(CFU/abscess). Wilcoxon signed-rank test value, p,0.03. B.

Abscess weights 6 days post-inoculation. Error bars represent 1

standard error of the mean, n = 4.
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