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Lysate microarrays (reverse-phase protein arrays) hold
great promise as a tool for systems-level investigations of
signaling and multiplexed analyses of disease biomark-
ers. To date, however, widespread use of this technology
has been limited by questions concerning data quality and
the specificity of detection reagents. To address these
concerns, we developed a strategy to identify high-quality
reagents for use with lysate microarrays. In total, we
tested 383 antibodies for their ability to quantify changes
in protein abundance or modification in 20 biological con-
texts across 17 cell lines. Antibodies yielding significant
differences in signal were further evaluated by immuno-
blotting and 82 passed our rigorous criteria. The large-
scale data set from our screen revealed that cell fate
decisions are encoded not just by the identities of pro-
teins that are activated, but by differences in their signal-
ing dynamics as well. Overall, our list of validated antibod-
ies and associated protocols establish lysate microarrays
as a robust tool for systems biology. Molecular & Cel-
lular Proteomics 10: 10.1074/mcp.M110.005363, 1–14,
2011.

One of the primary goals of systems biology is to uncover
and model the complex relationships between proteins in
living cells and organisms. Data-driven approaches to ad-
dressing this problem require ways to obtain quantitative
information on protein abundance and post-translational
modifications (PTMs)1 in a systematic and high-throughput
fashion. Several different immunoaffinity-based methods
have been used in systems-level studies to determine the
amounts, subcellular locations, and PTM levels of proteins in
complex biological samples. Antibody-based technologies
that are compatible with multiplexing include flow cytometry
(1), microsphere-based assays (2, 3), immunocytochemistry
coupled with automated microscopy (4), miniaturized Western

blotting (5), and antibody microarray-based methods such as
direct-detection microarrays (6, 7), sandwich-style microar-
rays (8–11), and “reverse-phase” or lysate microarrays (12,
13). Compared with their low-throughput counterparts, high-
throughput technologies are often constrained by smaller
sample sizes, lack of separation steps, and an inability to tailor
the assay to each antibody. To ensure uniformly high data
quality across a large number of analytes and biological sam-
ples, careful characterization of each antibody is critical.
Studies in which the quantitative data are used to train com-
putational models impose an even higher standard.

Among high-throughput approaches, lysate microarray
technology is particularly well suited for systems-level inves-
tigations. Thousands of biological specimens can be arrayed
onto hundreds of membrane-coated slides, each of which can
be queried with a different detection antibody. This format
allows dense sampling of information at a protein level and in
a high-throughput fashion. Although several groups have
used this technology to study biological systems (12, 14) and
although standardized protocols have been published (15),
lysate microarrays have not yet gained wide-spread adoption,
largely owing to questions regarding data quality and the
limited availability of highly validated detection antibodies.
Previous studies have recognized the need for rigorous anti-
body characterization and have used quantitative immuno-
blotting (Western blotting) to validate large collections of an-
tibodies (13, 16). These studies showed that the reactivity of
antibodies on lysate microarrays differs from that on tradi-
tional immunoblots, even when the same antibodies and ly-
sates are used under otherwise identical conditions. In our
own work (13), which focused on a single cell line, we started
with a set of 61 commercial antibodies and found that only 12
of them yielded data on lysate microarrays that matched
those collected by quantitative Western blotting. Whereas our
approach was successful at discovering functional detection
antibodies, it was time-intensive and not easily scaled. It also
resulted in a discouragingly small number of antibodies that
were validated for use with a single cell line. This highlighted
a need to develop a much more efficient strategy to identify
suitable antibodies that could be used across a broad range
of cell types.

Here, we present a novel and efficient way to systematically
identify and validate detection antibodies for use with lysate
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microarrays (see Fig. 1A). A set of relevant candidate antibod-
ies is first chosen within a broad biological area of interest.
These antibodies are then screened against a wide variety of
“biological contexts” using lysate microarrays. Each context
represents a specific combination of cellular background and
treatment conditions. Based on the statistical significance of
the resulting measurements, promising antibody-context
pairs are further evaluated by quantitative Western blotting. If
the two data sets agree, the antibody is considered validated
for use with that cellular background. Using this strategy, we
screened 383 commercial antibodies and successfully vali-
dated 82 of them in one or more biological context. This list of
antibodies and the associated protocols represents a valuable
resource to the scientific community and should facilitate
more widespread use of this technology. Although this study
focused on characterizing antibodies for lysate microarrays,
our overall strategy is general and can be applied to other
high-throughput immunoaffinity assays as well.

EXPERIMENTAL PROCEDURES

Cell Culture—HMEC cells were cultured in HuMEC basal serum-
free medium (Invitrogen) supplemented with HuMEC supplement kit
(Invitrogen, Carlsbad, CA), 100 I.U./ml penicillin and 100 �g/ml strep-
tomycin (Mediatech, Herndon, VA), and 1 ng/ml cholera toxin (Sigma-
Aldrich, St. Louis, MO). Jurkat cells were cultured in RPMI 1640
(Mediatech) supplemented with 10% fetal bovine serum (FBS, Hy-
Clone, Logan, UT), 2 mM glutamine (Mediatech), 100 I.U./ml penicillin,
and 100 �g/ml streptomycin. HT-29 cells were cultured in McCoy’s
5A Medium (ATCC, Manassas, VA) supplemented with 10% FBS, 100
I.U./ml penicillin, and 100 �g/ml streptomycin. All other cell lines were
cultured in Dulbecco’s modification of Eagle’s medium (Mediatech)
supplemented with 10% FBS, 2 mM glutamine, 100 I.U./ml penicillin,
and 100 �g/ml streptomycin. Medium for FlpIn-293 cell lines addi-
tionally contained 150 �g/ml hygromycin B. To generate lysates, cells
were serum-starved for 24 h, stimulated with cytokine or small mol-
ecule for the prescribed period of time, washed with ice-cold phos-
phate-buffered saline (PBS), and lysed in 2% SDS buffer. Cell lysates
were cleared by filtration through 0.2 �m filter plates (Pall Corpora-
tion, East Hills, NY) and stored at �80 °C. Lysate concentrations were
determined using the Micro BCA assay kit (Pierce Biotechnology,
Rockford, IL) and lysates from each time course treatment were
diluted to the same concentration in 2% SDS buffer. To ensure
complete protein denaturation, all lysates were then boiled for 5 min
at 95 °C prior to microarraying or Western blotting. Detailed informa-
tion about all cell lysates generated in this study can be found in
supplemental Table S1.

Microarray Fabrication—Custom lysate microarrays were printed
by Aushon Biosystems (Billerica, MA) on 16-pad nitrocellulose-
coated glass slides (Grace Bio-Labs, Bend, OR). Lysates were ar-
rayed at 250 �m spacing using solid 110 �m pins, which resulted in
an average feature diameter of 180 �m when visualizing spot protein
content (data not shown). Lysates from time course treatments and
unstimulated cell lines were arrayed in technical duplicates. In addi-
tion, each array contained six, eight-point, twofold serial dilutions of
control lysates (supplemental Experimental Procedures), as well as
six spots containing lysis buffer only, for a total of 306 microarray
spots per nitrocellulose pad. Following microarray printing, slides
were stored dry, in the dark, and at room temperature until further
processing.

Microarray Probing—To remove the buffer and detergent con-
tained in each microarray spot, slides were washed three times for 5

min each with 1� PBS/0.1% Tween-20 (PBST), incubated in Tris/HCl
(pH 9) for 24 h, washed again with PBST, and centrifuged dry. Silicon
gaskets and bottomless 16-well plates (Grace Bio-Labs) were then
attached and slides were blocked with 5% BSA/PBST for 1 h at 4 °C.
Microarrays were incubated in a mixture of 1:1000 anti-�-actin antibody
and 1:500 pan- or phosphospecific antibody in 5% BSA/PBST at 4 °C
for 24 h. Following washing, slides were incubated in a mixture of
1:1000 anti-rabbit-680 and 1:1000 anti-mouse-800 antibodies (17) in
5% BSA/PBST for 24 h at 4 °C. Silicon gaskets and bottomless plates
were removed, slides were washed again, and centrifuged dry. Microar-
rays were scanned in the 680 nm and 800 nm channels using an
Odyssey imager (LI-COR, Lincoln, NE) at 21-�m resolution. Each slide
was scanned at a range of scanner sensitivities to account for the large
differences in signal intensity between the 16 antibodies tested on each
slide.

Analysis of Microarray Data—All data processing and analysis steps
were carried out using custom-built code for Matlab® 7.4 (The Math-
works, Natick, MA). We first corrected microarray data for nonlinearity
using antibody-specific calibration curves, as described previously (13).
Signal intensities within each microarray were then mean-normalized to
enable statistical comparisons across different arrays. Signal intensities
from target proteins were subsequently normalized using the �-actin
signal intensities from the same microarray spots to account for any
differences in lysate concentration or spotting. Lastly, data from dupli-
cate spots were averaged. Data from each antibody and biological
context were organized into vectors in two separate ways. For the 20
time course treatments, each data vector consisted of six data points,
corresponding to the six different time points of treatment. For compar-
isons across cell lines, each vector consisted of 17 data points, corre-
sponding to the 17 unstimulated cell lines. We calculated two measures
of signal up-regulation for each vector: (1) signal difference (�I) was
defined as the difference between the highest and lowest signal inten-
sity; and (2) fold-up-regulation was calculated as the ratio of the highest
and lowest signal intensities in each data vector.

To derive a statistical threshold for significant signal difference,
�Ithreshold, histograms of differences in signal intensity were prepared
for either biological or analytical replicates in our data set. For bio-
logical noise, we made use of the fact that, in several instances, a
given cell line was subjected to more than one stimulation condition,
but separate “0-min” samples were prepared in each case
(supplemental Table S1). For example, we collected time courses of
HeLa cells treated with anisomycin, EGF, insulin, and TNF�, but the
0-min time points remained untreated in all four sets of lysates. Taking
into account all pairwise combinations within each cell line, our data
set contained a total of 16 sets of biological duplicates. For analytical
replicate noise, we used data from all duplicate microarray spots. We
then plotted the distribution of differences in signal intensity between
duplicates, and fitted these data to an exponential distribution.
�Ithreshold was calculated by solving the cumulative distribution func-
tion of this exponential for the value 1- �single, where �single is the
significance level for individual comparisons and relates to the signif-
icance level for multiple comparison, �multiple, according to the fol-

lowing relationship: �multiple � 1 � �1 � �single��
n
2� (Dunn-Ŝidák cor-

rection; n � 6 for “time courses” data set; n � 17 for “cell lines” data
set). Hits within the time courses data set were defined as those
vectors exceeding �Ithreshold at �multiple � 0.01 and showing greater
than a 1.5-fold change in signal. Because �Ithreshold does not capture
the systematic variation in signal across cell lines, hits within the cell
lines data set were defined as the 50 top-scoring (highest �I) non-
PTM-specific antibodies.

Self-organizing Map Analysis (SOM)—The SOM analysis was per-
formed in Matlab® using the SOM Toolbox (18). The parameters for
the SOM analysis were as follows: topology of the map was chosen
to be sheet, distance metric was cosine correlation, and the number
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of map units was chosen to be 66. We used the batch learning
algorithm, and the neighborhood function was chosen to be Gaussian
with the parameters given by Vesanto et al. (18). We used the U-ma-
trix method to identify a group of map units that represent a cluster
(19). For each cluster, we computed statistical significance using a
permutation test method (20). First, we computed correlation dis-
tances for all combinations of time courses in a cluster. If the two
profiles correlated perfectly, their distance was assigned to be zero,
whereas perfect negative correlation resulted in the distance value of
two. We then computed the mean of these pairwise comparisons.
This procedure was followed by choosing an equal number of time
courses randomly from the entire data set and computing pairwise
correlation distances of all combinations. We repeated this process
5000 times and calculated a p value by counting the number of times
a randomly chosen cluster produced a mean distance less than or
equal to the mean distance of the original cluster, and dividing this
number by 5000. Large p values suggest the original cluster may have
arisen simply by chance.

RESULTS

Design of a High-throughput Screen for Functional Detec-
tion Antibodies—An antibody can be used with lysate mi-
croarrays if it meets two criteria: (1) it produces a significant
difference in signal across the samples of interest, and (2)
these differences correspond to changes in the levels of the
target antigen. We reasoned that an antibody is likely to
satisfy these criteria in some biological contexts, but not in
others, as its antigen may be abundant in some cells or

tissues, but not in others, or its levels may remain unchanged
across the available samples in a given experiment. We there-
fore assumed that antibody validation efforts would ultimately
be context-specific, but that some antibodies might perform
well in many different settings.

To enable rapid and context-dependent assessment of an-
tibody performance, we designed the following high-through-
put screen using lysate microarrays (Fig. 1B). Lysates from
many different “biological contexts” are microarrayed onto
glass-supported nitrocellulose pads and the resulting arrays
are assembled into a microtiter plate format (one array per
well). Each biological context constitutes a set of related
lysates in which a single cell line has been treated for different
lengths of time with a molecular stimulus (growth factor or
pharmacological agent). Each well is probed with a candidate
detection antibody, chosen only on the basis of vendor-sup-
plied information. Following incubating the arrays with an
appropriate dye-labeled secondary antibody, the arrays are
scanned for fluorescence and the intensities of the microarray
spots are quantified. For each combination of detection anti-
body and biological context, the maximum difference in signal
between individual lysates is calculated and this metric is
used to separate “hit” from “nonhit” antibodies.

To test antibodies for their ability to detect dynamic
changes in antigen levels, we started by generating lysates

FIG. 1. Design of a novel screen for functional detection antibodies for lysate microarrays. A, General strategy for identifying detection
antibodies, combining a primary high-throughput screen of candidate detection reagents with a secondary gold-standard assay. Validation of
antibodies depends on concordance between the measurements from both techniques. B, Schematic of microarray screen. Lysates from many
different biological contexts are arrayed onto nitrocellulose pads, assembled into microtiter plates, and probed with each of a large collection
of primary antibodies. Microarray “hits” are assigned based on the statistical significance of the maximum observed signal spread, �I, across
each lysate set. C, Breakdown of antibodies included in the screen by target epitope class and host species.
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from 20 different biological contexts of interest, each consist-
ing of unstimulated cells (serum-starved) and cells stimulated
for five different lengths of time with either a growth factor or
a small molecule. We focused on cell lines and treatment
conditions that are commonly used in system-level studies of
signal transduction, that are easily reproduced, and that span
the broad cellular processes of growth, migration, stress re-
sponse, and apoptosis. In addition to five commercially avail-
able cell lines, our set included six isogenic lines derived from
HEK 293 cells that each express a different receptor tyrosine
kinase (RTK) (21). These cell lines were included to assess the
ability of antibodies to capture differential activation of the
same signaling proteins within the same genetic background.
Altogether, these 20 biological contexts included 11 distinct
cell lines and provided us with the “time courses” data set
(see below). To identify antibodies that detect variations in
protein abundance across different cell lines, we included
lysates from six additional, untreated lines. Together with the
untreated samples from the first 11 cell lines, this set of
lysates provided us with the “cell lines” data set (see below).
All 21 sets of lysates (representing 126 independent samples)
were printed as technical duplicates on glass-supported ni-
trocellulose pads and assembled into a microtiter plate for-
mat. Additional control spots (lysis buffer and dilution series of
selected lysates) were included in each microarray to ensure
data quality and to enable data processing (see Experimental
Procedures). Detailed information about all lysate sets used in
this study can be found in supplemental Table S1 available
online.

To maximize the likelihood of identifying functional antibod-
ies, we focused on antibodies that recognize proteins in-
volved in the cellular processes induced by our treatment
conditions: cell growth, proliferation, stress response, and
apoptosis. We also used our prior knowledge of network
connectivity to refine our choice of antibodies to screen. For
example, as several sets of lysates were derived from cells
treated with RTK ligands, we included antibodies that report
on the activation of proteins in the canonical Ras/MAPK,
PI3K/Akt, PLC�, and STAT signaling pathways (22). In total,
383 commercially available antibodies were obtained for this
study (Fig. 1C), 254 of which are PTM-specific and 129 of
which recognize both modified and unmodified proteins
(“pan-specific”). Among the PTM-specific antibodies, 90
recognize sites of tyrosine phosphorylation (single or multi-
ple), 157 recognize single or multiple phosphorylation sites
that include at least one serine or threonine residue, and 7
detect proteolytic cleavage events. To test if antibody per-
formance depends on the host of origin, we included mono-
and polyclonal antibodies derived from rabbits, as well as
monoclonal antibodies derived from mice. A complete list of
all the antibodies used in this study can be found in
supplemental Table S2.

Lysate Microarray Screen Provides a Quantitative Measure
of Antibody Performance—To assess antibody performance,

we probed our lysate microarrays in single wells of microtiter
plates with each of the 383 primary antibodies using a single,
standardized set of conditions that had previously been opti-
mized (Experimental Procedures). Although it is possible that
some antibodies requiring specialized conditions would be
missed using this approach, we expect this to be rare as we
have not yet encountered any antibodies that yield high qual-
ity data under specialized conditions but fail under the general
conditions of our optimized protocol.

To correct for variation in lysate concentration or microarray
spotting, we pooled each antibody with an anti-�-actin anti-
body derived from a different host species. This provided a
way to measure the amount of lysate deposited in each spot.
For signal detection, we incubated the microarrays with a
mixture of two infrared dye-labeled secondary antibodies (17)
and scanned the slides in both fluorescent channels (Fig. 2A).
This detection strategy substantially reduces assay nonlinear-
ity that is often introduced by methods that rely on enzyme-
driven signal amplification. Our screening approach is both
economical and scalable: up to 100 antibodies can be tested
in parallel, using only 0.2 �l of a 1 mg/ml stock solution to
probe each microarray (100 �l volume).

Over 200,000 spot intensities were extracted from the mi-
croarray images and all subsequent data processing and
analysis steps were carried out in an automated fashion using
custom-built code (Experimental Procedures). We corrected
the data for nonlinearity using antibody-specific calibration
curves derived from serial dilutions of control lysates, and
normalized all signals relative to their respective �-actin signal
intensities (internal standard). To enable statistical compari-
sons across different arrays, we divided all signal intensities
by the mean intensity of each microarray. Finally, we averaged
biological duplicates. To capture the performance of each of
the 383 antibodies in each of the 21 biological contexts (lysate
sets), we organized the microarray data into vectors that
contain signal intensities from either the six time points (time
courses data set) or 17 cell lines (cell lines data set) for each
antibody and lysate set (supplemental Table S3). Our data
thus encompass 383 � 21 � 8043 vectors of either 6 or 17
elements. Each vector represents a different antibody-context
pair and hence must be evaluated separately for antibody
performance.

We previously showed that the signal ratio between two
samples as measured by lysate microarrays is often smaller
than the actual ratio of antigen levels between the two sam-
ples (13). This is because the lysate microarray signal com-
prises an antigen-specific component and a component aris-
ing from antibody cross-reactivity. If the component arising
from cross-reactivity dominates the overall signal, the anti-
gen-specific component is lost in the noise of the assay. Thus,
as a first step in validating an antibody-context pair, we first
determined the difference, �I, between the highest and lowest
signal intensities within each data vector, and used �I as a
metric to separate hit antibody-context pairs from nonhit
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pairs. Because the microarray data are subject to variation
arising from both analytical and biological noise, we expected
to observe nonzero values of �I for essentially all data vectors.
In addition, we reasoned that microarray signals from different
cell lines might be subject to systematic variation, as the
degree of antibody cross-reactivity likely differs across cell
lines. Indeed, we found that over 80% of vectors (6494/8043)
exhibited a �I that was �10% of the average microarray
intensity, and over 97% of vectors (7831/8043) exhibited a �I
of �1%. In the following analyses, time courses data and cell
lines data are treated separately. We will start by focusing on
the time courses data.

Identification of Antibodies That Report on Time-dependent
Changes in Antigen Levels—To separate vectors with signif-
icant changes in signal from those for which the nonzero value

of �I can be accounted for by analytical or biological noise, we
analyzed the overall distribution of noise inherent in our mea-
surements to derive a threshold for statistical significance.
Because different samples within each vector are biologically
distinct (having been prepared in separate tissue culture ves-
sels), any random variation between them must reflect both
biological and analytical noise. We therefore prepared a his-
togram that shows the distribution in signal spread between
biological duplicates contained within our time courses data
set (see Experimental Procedures). As each microarray was
mean-normalized, we were able to compare signal intensities
across different antibodies. The resulting histogram of total
assay noise was then fit to an exponential distribution (Fig. 2B).

To focus our antibody validation efforts on the strongest
hits, and to minimize the number of follow-up experiments

0 1000 2000 3000 4000 5000 6000 7000

-5

-4

-3

-2

-1

0

1

2

3

4

5

Antibodies X
(rank-ordered)

Lysate sets

N
or

m
al

iz
ed

 s
ig

na
l s

pr
ea

d 
(∆
I)

0

0.5

1

1.5
anti-p-p38MAPK (T180/Y182)

HeLa + anisomycin

S
ig

na
l i

nt
en

si
ty

0 1 5 153060 min

+ ∆Ithreshold
- ∆Ithresholdanti-p-S6RP (S240/S244)

A431 + staurosporine

S
ig

na
l i

nt
en

si
ty

0 1 5 153060 min
0
1
2
3
4

CB
15

10

5

0
0 10.50.25 0.75

Normalized signal spread
between biological duplicates

exponential fit
function

ΔIthreshold at
αmultiple = 0.01

R
el

at
iv

e 
fre

qu
en

cy

p-BAD (S112) p-mTOR (S2448)p-AKT1/2/3 (S473) p-p38MAPK (T180/Y182)p-EGFR (Y845)

MEKCAMKII α PAK1Caspase 6 SHP-1

A

FIG. 2. Identification of microarray hits based on observed assay variability. A, Sample of ten representative lysate microarrays
generated in our screen. Each array was probed with a different primary antibody (red arrays), pooled with a �-actin-detecting antibody of a
different species (green arrays) to normalize for protein concentration. Top row: five antibodies detecting post-translational modifications.
Bottom row: five antibodies detecting total levels of target proteins (pan-specific antibodies). B, Distribution of biological noise in the screen.
The vertical green line marks the threshold for statistical significance of signal spread at a significance level of � � 0.01, corrected for multiple
testing. C, Plot of rank-ordered, normalized signal spread, �I, for all antibody-context pairs. Positive values indicate primarily up-regulation of
antigen levels and negative values indicate primarily down-regulation. Red: significant down-regulation of signal. Blue: statistically insignificant
change in signal. Green: significant up-regulation of signal. Insets show two examples of signal up- and down-regulation across time course
treatments.

Lysate Microarrays Enable Systems Biology

Molecular & Cellular Proteomics 10.4 10.1074/mcp.M110.005363–5



performed on false-positive hits, we chose a stringent signif-
icance level of � � 0.01. For the six-element vectors of the
time courses data set, this corresponds to a statistical cutoff
of �Ithreshold � 0.593. In other words, a vector with a signal
difference �59.3% of the average microarray intensity was
considered a hit with p � 0.01. Using this statistical criterion,
we identified 1084 microarray hits (antibody-context pairs).
Upon closer inspection, we noticed that, in a small number of
cases, all of the elements in a vector had very high signal
intensities, even though they displayed only a small relative
change in signal. These vectors exceeded our statistical
threshold but are not likely to reflect biologically meaningful
changes in antigen levels. We therefore removed from our set
of microarray hits 59 vectors that showed �1.5-fold change in
signal intensity. Altogether, 1025 out of 7660 vectors (13%)
passed our stringent selection process.

Importantly, if we had neglected biological noise and iden-
tified microarray hits based solely on analytical assay noise,
our statistical cutoff would have been set at �Ithreshold � 0.195
and the majority of vectors in our data set would have scored
as hits (4103 out of 7660 or 54%). Thus, both analytical and
biological variability must be accounted for in order to obtain
a meaningful statistical threshold to evaluate antibody per-
formance.

To visualize the results of our microarray screen, we rank-
ordered all of the vectors by their �I values (Fig. 2C). We then
classified vectors into those showing primarily up-regulation
of antigen levels and those showing primarily down-regula-
tion. If the maximum log2 fold-increase in signal relative to the
“0 min” time point exceeded the maximum log2 fold-decrease
in signal, �I was assigned a positive sign (up-regulation);
otherwise, it was assigned a negative sign (down-regulation).
Overall, we observed more vectors with positive �I than neg-
ative �I. Upon closer inspection, we noticed that the over-
whelming majority of vectors at both extremes of the distri-
bution represent PTM events (primarily phosphorylation). The
skewed shape of our distribution reflects the fact that most of
the treatments used in our study induce protein phosphory-
lation, and only a few (such as staurosporine) lower phos-
phorylation levels.

Our analysis of the time courses data set revealed numer-
ous microarray hits in all cell lines and stimulation conditions
that we tested, with between 23 and 93 hits per lysate set
(biological context). For a given antibody, between 0 and 18
lysate sets scored positive on the microarrays. Taking into
account only the 219 antibodies that scored positive in at
least one biological context, a median of four lysate sets
scored positive per antibody (supplemental Fig. S1A). Impor-
tantly, no single antibody scored positive across all 20 bio-
logical contexts. To determine if this is because of differential
antibody cross-reactivity or differential pathway activation, we
analyzed microarray hits within the set of six isogenic RTK-
expressing cell lines and found that only a small number of
antibodies scored positive in all six sets of lysates

(supplemental Fig. S1B). Because the six cell lines are ex-
pected to elicit nearly identical cross-reactive signal for a
given antibody, these results indicate that the majority of
signaling events are specific to a subset of biological con-
texts. This highlights the need to validate antibodies within the
biological context of interest and not simply rely on previous
validation efforts carried out under different experimental
conditions.

Identification of Antibodies That Report on Differences in
Protein Levels Across Diverse Cell Lines—In addition to dis-
covering antibodies that report on dynamic signaling events,
we also wanted to identify antibodies that detect differences
in protein levels across the 17 cell lines used in our experi-
ments. Because cell lines differ not only in their levels of a
given target protein, but also in the levels of most other
proteins, they are expected to elicit different degrees of cross-
reactive signal on lysate microarrays in addition to different
target protein signals. As �Ithreshold is calculated solely from
biological replicate data, systematic variations of cross-reac-
tive binding are not taken into account. Consistent with this
reasoning, when we attempted to identify hit antibodies within
the cell lines data set based on biological noise (�Ithreshold �

0.772 at � � 0.01 for 17-element cell lines vectors; see
Experimental Procedures), almost all antibodies (321/383,
84%) scored as hits. Notably, this included most of the phos-
phospecific antibodies, which were not expected to produce
strong signals in unstimulated cells. Thus, it is likely that the
observed variation in signal largely reflects differences in
cross-reactive binding, rather than specific binding. Despite
our inability to derive a statistical metric for antibody perform-
ance in the cell lines data set, we nevertheless wished to
select a subset of antibodies for validation experiments. We
therefore rank-ordered antibodies according to their �I values
in the cell lines data set, removed all PTM-specific antibodies,
and selected the 50 highest-scoring antibodies. All 50 anti-
bodies showed large spreads in signal intensity (�I � 1.50) as
well as strong fold-differences between the highest and low-
est signal (�3.59-fold).

Secondary Validation by Immunoblotting Reveals Determi-
nants of Antibody Performance—Although the antibodies we
identified as hits in our microarray screen all elicited signifi-
cant changes in signal across lysates, they may still exhibit
prohibitively high levels of cross-reactivity. Depending on the
relative abundances of target and off-target antigens, the sum
of these signals may or may not provide biologically interpret-
able information. We therefore set out to evaluate the primary
hits from our microarray screen using a secondary quantitative
assay. Quantitative immunoblotting is generally regarded as the
gold standard for assessing the specificity of antibody recogni-
tion in the context of cellular lysates. Western blots, however,
are more time-consuming, require larger sample volumes for
each measurement, and incur a high cost in consumables. For
these reasons, we deemed it impractical to evaluate all 1025 	

50 � 1075 microarray hits by immunoblotting.
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To extensively validate antibodies while minimizing the
overall number of Western blots, we focused our efforts on an
informed subset of microarray hits. First, to obtain an unbi-
ased overview of antibody performance, we chose four di-
verse biological contexts from the time courses data set:
A431 	 EGF (90 hits), HT-29 	 insulin (23 hits), HeLa 	

anisomycin (33 hits), and HeLa 	 TNF� (26 hits). We then
re-tested each of these 172 microarray-positive antibody-
context pairs by quantitative Western blotting. The perform-
ance of each antibody was considered satisfactory if: (1) it
produced a band of the correct molecular weight; and (2) the
sum of all off-target bands did not exceed the intensity of the
target band (Fig. 3A, supplemental Experimental Procedures).
For immunoblots that passed both of these criteria, the target
bands were quantified and compared with the corresponding
microarray data (Fig. 3B) by calculating the Pearson correla-
tion coefficient (�) of the two vectors (Fig. 3C). Based on the
overall distribution of correlation coefficients, we considered
an antibody to be fully validated for the biological context in
question if and only if the microarray and Western blotting
data agreed with � � 0.75 (supplemental Fig. S2). This thresh-
old ensures concordance between the two assays while ac-
counting for the inherent variability of the immunoblotting step.
Of the 172 Western blots that we produced, 89 (52%) exhibited
a dominant band of the correct molecular weight. Of these, 68
(76%) had sufficient correlation between microarray and West-
ern blotting data, for an overall validation rate of 40%.

To identify potential predictors of antibody performance,
we divided the antibodies into different categories based on
their species of origin, method of preparation, or type of
antigen (Fig. 3D). For each category, we determined the frac-
tion of Western blots that were deemed acceptable by our
criteria. Our results show that rabbit monoclonal antibodies
generally perform better than rabbit polyclonal antibodies,
which in turn outperform mouse monoclonal antibodies; that
PTM-specific antibodies perform better than pan-specific an-
tibodies; and that phosphospecific antibodies directed at
sites of serine or threonine phosphorylation perform better
than ones directed at sites of tyrosine phosphorylation. Our
low success rate with pan-specific antibodies can likely be
explained by the fact that the time courses represented in our
data set were short in duration (0 to 60 min) and that the
stimuli we used have less of an effect on protein synthesis or
degradation during this time period than they do on PTM
events. Visual inspection of the Western blots revealed that
antibodies targeting pTyr epitopes (as opposed to pSer or
pThr epitopes) mostly suffered from cross-reactivity with ac-
tivated RTKs (as assessed by the molecular weight of the
cross-reactive band), which are highly expressed in many of
the cell lines and which feature numerous pTyr sites. The
reason for the poor performance of mouse antibodies in our
assay is unclear at this point, but is consistent with a growing
trend to develop phosphospecific monoclonal antibodies us-
ing rabbits, rather than mice.

FIG. 3. Secondary validation by quantitative immunoblotting re-
veals key determinants of antibody performance. A, Representative
Western blot, showing moderate cross-reactivity. Lysates of HeLa cells
treated with anisomycin, simultaneously probed with an antiphospho-
ATF-2 (T71) antibody (red) and an anti-�-actin antibody (green). �-actin
intensity was used to normalize signals for differences in gel loading. B,
Lysate microarray images using the same lysates and antibodies as in
(A). C, Scatter plot of signal intensities from (A) and (B) reveals degree of
correlation between microarray and Western blotting data. D, Determi-
nants of antibody reactivity, derived from an exhaustive Western blot-
ting validation of microarray hits across four time course treatments
(A431 	 EGF, HT-29 	 insulin, HeLa 	 anisomycin, and HeLa 	 TNF�).
Blue: mouse antibodies, pan-specific antibodies, and pTyr-detecting
antibodies generally exhibited lower validation rates. Green: rabbit,
PTM-specific, and pSer/pThr-specific antibodies generally showed
higher rates of validation. E, Determinants of antibody reactivity, derived
from Western blotting validation of a subset of microarray hits across all
time course treatments. Results were similar to (D). F, Validation rate of
pan-specific antibodies across untreated cell lines. G, Prior validation of
an antibody in one or more biological contexts increases the probability
that it will perform well in additional biological contexts.
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Given these results we concluded that the success rate of
our immunoblotting validation step could be increased by
focusing only on the subset of microarray hits elicited by
rabbit antibodies that target post-translational modifications
other than tyrosine phosphorylation. This subset comprises
47% of microarray-positive antibodies (103/219) and 53% of
microarray hits within the time courses data set (545/1025).
Using this information, we performed Western blot validations
for each of these 103 antibodies in at least one biological
context (231 additional blots). We also assayed 72 antibodies
outside of this subset that were of particular biological interest
to us, in either one or more lysate sets. For example, we
tested several phospho-RTK-detecting antibodies in growth
factor-stimulated cell lines. Overall, we observed very similar
determinants of antibody reactivity from this larger set of
immunoblotting data, with antibodies directed against rabbit,
PTM and pSer/pThr epitopes outperforming mouse, pan and
pTyr-detecting antibodies (Fig. 3E). In addition, rabbit mono-
clonal antibodies and multiple-phosphorylation site-specific
antibodies performed particularly well, although both catego-
ries comprised only a small number of antibodies. It is possi-
ble that the precise physicochemical properties of epitopes,
such as amino acid content or net charge, may provide ad-
ditional predictors of antibody performance. In most cases,
however, the identities of the antigenic epitopes of the anti-
bodies that we evaluated were proprietary. As a result, we
were unable to test this hypothesis. It would likewise be of
interest to analyze the microarray performance of antibodies
in relation to the specific applications they were recom-
mended for by their manufacturers, such as Western blotting,
immunoprecipitation or immunocytochemistry. Most antibod-
ies in our study, however, were not extensively tested for all
applications of interest by their respective manufacturers,
making it difficult to reach reliable conclusions from such
sparse data.

In addition to the time courses data set, we performed
Western blot validations for the 50 top scoring antibodies
within the cell lines data set. This provided an opportunity to
assess antibody cross-reactivity across multiple cell lines.
Thirteen antibodies (26%) produced acceptable blots and
sufficient correlation with microarray data (Fig. 3F), with most
unsuccessful validations attributable to off-target reactivity in
a subset of cell lines. Across both the time courses and cell
lines data sets, we validated a total of 198 antibody-context
pairs, corresponding to 82 distinct antibodies. A summary of
the validation status of all antibodies against all lysate sets is
provided in supplemental Fig. S3. Our complete microarray
and Western blotting data sets are provided in supple-
mental Table S3 and S4, respectively.

Next, we asked if prior validation of a given antibody in one
or more biological contexts increases the probability that it
will perform well in other biological contexts as well. Using our
lysate microarray and Western blotting data sets, we calcu-
lated the percentage of successful validations for a given

antibody-context pair as a function of the number of prior
validations of the same antibody in other contexts (Fig. 3G).
We found a strong increase in the likelihood of antibodies to
perform well in additional contexts given prior validations.
Overall, one or two prior validations were sufficient to ensure
that an antibody would perform well in 60–70% of new bio-
logical contexts. This means that our list of 82 validated
antibodies provides a valuable resource for future investiga-
tions using lysate microarray technology. It nevertheless re-
mains necessary to carefully evaluate each detection anti-
body in each new setting to guarantee that meaningful
information is obtained.

As a further test of antibody specificity and to obtain abso-
lute rather than relative measures of protein abundance, it is
possible to use purified protein standards on the arrays (data
not shown). This approach has been used successfully in
bead-based assays (23). It is usually limited to non-PTM an-
tigens, however, because full-length, correctly modified pro-
tein standards are not generally available. In addition, be-
cause every antibody exhibits some degree of off-target
reactivity, a direct comparison between signal intensities from
lysates and purified antigens does not provide a reliable
measure of the absolute amount of antigen present in each
sample. Purified standards must be added to lysates that
have been immunodepleted of each antigen, and this is not
practical in the context of high-throughput experiments.

Antibody Reactivity is Independent of Batch, but Varies
Substantially Among Different Antibodies Directed at the
Same Antigen—Although our screen successfully identified
numerous detection reagents, it remained unclear how
broadly lysate microarrays could be used to gain quantita-
tive information at the protein level. Having established
quantitative criteria for antibody performance, we next
wished to address the question of assay generality. Our
overall microarray data set, comprising both hit and nonhit
antibodies, provides a relatively unbiased base set of suffi-
cient size to extract assay characteristics that should ex-
tend beyond the set of antibodies and biological contexts
chosen for this study.

A key aspect of assay generality is whether, once a suitable
detection antibody has been found, its reactivity remains ro-
bust and reliable. We previously showed that lysate microar-
rays exhibit extremely low coefficients of variation (�5%)
across technical replicates (13). We further asked whether
separately manufactured batches of the same antibody per-
form consistently on lysate microarrays. We first selected 14
phosphospecific antibodies from our screening set (eight
polyclonal and six monoclonal). We then obtained from the
same manufacturer a second batch, prepared on a different
date, of all 14 antibodies and probed an additional 14 microar-
rays under conditions otherwise identical to the first set of
antibodies. We compared �I values from the two data sets in
the form of a scatter plot (Fig. 4A), and found strong overlap
(� � 0.85). Notably, even nonhit antibodies in both data sets
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showed substantial correlation (bottom left quadrant, � �

0.47), indicating that antibody reactivity across batches is
consistent, even when the signal is close to noise levels. A
comparison of microarray hits likewise shows a high degree of
concordance between the two data sets: 78 and 91 positive
antibody-context pairs were identified, respectively, with an
overlap of 73. Upon closer inspection, we found that the 23
combinations of antibodies and lysate sets that tested posi-
tive for only one of the two batches had substantially lower
signal spreads (�I � 1.01 
 0.10; mean 
 S.E.; n � 23) than
those antibodies that tested positive in both batches (�I �

2.26 
 0.25 for first batch; �I � 2.20 
 0.26 for second batch;
n � 73). These data indicate that our screen identified a
consistent set of hit antibodies within the margin of error
imposed by data thresholding, and that antibody performance
on lysate microarrays is highly robust across experiments and
across different lots of the same antibody.

In the context of antibody-based detection methods, a
second important aspect of their general applicability is
whether or not a suitable antibody can, in principle, be found
for each antigen of interest, or if certain intrinsic characteris-
tics of an antigen precludes its detection. To determine
whether the identity of the antigen or the antibody determines
performance on lysate microarrays, we identified in our
screening set 141 pairwise combinations of different antibod-
ies that detect the same antigen. We then compared �I values
for the two antibodies in the time courses data set in the form
of a scatter plot (Fig. 4B). Strikingly, we observed a very weak
correlation between the two sets of antibodies (� � 0.14), only
marginally exceeding the correlation between the same num-
ber of randomly chosen pairs of antibodies (� � 0.03 
 0.03,
n � 1000). When we focused only on the microarray data that
surpassed �Ithreshold, we again found comparatively little
overlap; whereas each set of antibodies contained over 500
individual hits, only 204 hits were common to both sets. This
shows that there is very little concordance between different
antibodies that target the same antigen.

Taken together, our data demonstrate that reactivity on
lysate microarrays is very consistent across different experi-
ments and different batches of antibodies, but is highly anti-
body-specific. Because the differences in reactivity between
antibodies likely reflect different cross-reactive properties, we
submit that extensive screening should, in most cases, iden-
tify functional detection reagents for almost any antigen of
interest, and that success is limited only by the number of
available antibodies.

Origin of Nonequivalence Between Microarray and Western
Blotting Data—Based on the data collected in this study, we
propose a simple model to explain the nonequivalence of
microarray and Western blotting data. In our model, the ob-
served signal intensity on lysate microarrays is simply the sum
of the signal arising from binding the target antigen and an
additional cross-reactive term (supplemental Fig. S4). This
off-target signal is either undetectable on Western blots or, if
visible, can be ignored because of the size separation step. In
either case, this off-target signal remains relatively constant
over a series of related lysates (e.g. time-courses of cell
stimulation). Depending on the relative magnitudes of both
terms, microarray data may appear compressed or even con-
stant in comparison with true target protein levels. Consistent
with this model, the Western blotting and microarray data
collected in this study generally exhibited strong linear corre-
lations (supplemental Fig. S2A), with offsets from the origin
indicating cross-reactivity on the microarrays in the majority
of cases (162/198, 82%) (supplemental Fig. S2B).

Our understanding of the origin of the cross-reactive signal
remains incomplete. In experiments focusing on individual
antibodies, we found that cross-reactive binding was unaf-
fected when nonprotein components were removed from
whole-cell lysates prior to microarraying (data not shown). In
addition, when microarrays were enzymatically dephos-
phorylated, phosphospecific antibodies retained their cross-
reactive signal intensities but lost all specific signal (data not
shown). We therefore propose that antibody-dependent

FIG. 4. Microarray reactivity is anti-
body-dependent, but not batch- or
antigen-dependent. A, Comparison of
microarray data using different batches
of the same antibodies. Top: Venn dia-
gram showing substantial overlap be-
tween microarray hits. Bottom: Scatter
plot of signal spreads (�I) across all time
course microarray data, showing high
degree of correlation. Data are repre-
sented on a double-logarithmic scale for
ease of visualization. B, Comparison of
microarray data from different antibod-
ies directed at the same antigens, show-
ing minimal overlap of hits and low de-
gree of correlation. Top and bottom as in
(A).
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binding to off-target pan-epitopes is the primary cause of
signal compression on lysate microarrays. Consistent with
this hypothesis, we found that the variability of cross-reac-
tive terms within isogenic but differently stimulated cell lines
is significantly smaller than across unrelated cell lines
(supplemental Analysis 1), indicating that the pan-protein
complement of cell lines is the primary source of differential
cross-reactivity. We further speculate that the stochastic ar-
rangement of protein molecules in close proximity on the
microarray surface may present chimeric epitopes, compris-
ing two or more separate but spatially adjacent polypeptides,
to which an antibody can bind in a cross-reactive manner. In
comparison, Western blots may not suffer from this limitation,
as size separation presents antibodies with a less complex
mixture of proteins at any given location. Conceivably, the
high density of identical target epitopes within a Western blot
band may even favor specific binding through avidity effects.
It will be of great interest in future studies to determine if other
assays that do not include a size separation step, such as
quantitative immunocytochemistry or flow cytometry, share
similar determinants of antibody performance.

Time Courses Fall into Distinct Classes that Match Their
Functional Role in Signaling—To demonstrate how the ex-
panded set of detection reagents that we identified in our
screen can be used to gain biological insight at a systems
level, we used self-organizing maps (SOMs) (24) to analyze
our rigorously validated time-course data. This subset of our
data consists almost exclusively of PTM events, the vast ma-
jority of which were phosphorylation events. The SOM algorithm
allows us to cluster the temporal profiles of signaling into groups
of similar shapes, thereby identifying signaling patterns con-
served across proteins and biological contexts (25).

We began our analysis by converting our data to a z-score
scale to enable direct comparisons across measurements.
Based on the heuristic principle that the ideal number of map
units in a SOM is close to 5�n (where n is the number of
vectors to be clustered) (26), we built a map comprising 66
units in 11 rows and 6 columns. Each unit initially contained
one naïve reference vector. In the training phase, our SOM
algorithm computed distances between each input pattern
(data vector) and all reference vectors. The map unit contain-
ing the reference vector that correlated most closely with the
input pattern was replaced with the arithmetic average of both
vectors, whereas topologically close map units were aver-
aged with the input pattern with gradually decreasing weight
according to their distance in the map. This process was
executed using all 179 complete six-point time courses and
repeated 1000 times, leading to self-organization. In the clus-
tering phase, the final map was constructed by assigning
each phosphorylation time course to the map unit to whose
reference vector it was most similar. We used the correla-
tion distance metric in conjunction with the unified-distance
matrix approach to allow robust identification of clusters
and component planes. To provide a graphical representa-

tion of SOM time course profiles, heat maps of component
planes, which represent individual time points, are shown in
supplemental Fig. S5A online. Finally, we visualized the result
of our SOM analysis in the form of a U-matrix, which de-
scribes the mean distances between neighboring map units
following the SOM training phase (Fig. 5). Individual distances
are shown in supplemental Fig. S5B online. These distances
are color-coded: close proximity of two map units is indicated
with blue color tones, whereas shades of yellow and red
denote dissimilarity. Clusters can be identified in the heat map
as blue “valleys” surrounded by yellow or red “mountains.”

Visual inspection of the U-matrix revealed three regions of
particularly dense clustering. Based on the shapes of the
constituent time courses (supplemental Fig. S5C), we identi-
fied these regions as early, sustained, and late signaling
events. By grouping neighboring map units that contain time
courses of similar shape, we defined boundaries around each
region (supplemental Fig. S5D) and confirmed that each clus-
ter was highly significant (p � 2 � 10�4, random permutation
test). Upon closer inspection, we observed that the early and
sustained clusters were connected by a transition region,
which showed a moderate degree of clustering (p � 0.002).
When the union of early, sustained, and transition clusters
was considered, we likewise observed very significant clus-
tering (p � 2 � 10�4), indicating that there is no fundamental
division between early and sustained signals in our data set.
Indeed, because these two classes of time courses share the
characteristic of rapid onset of signaling, the apparent con-
tinuum of signaling dynamics indicates that they are differen-
tially regulated at the level of signal attenuation. In contrast,
the late cluster of time courses was strongly separated from
both early and sustained signals. This suggests that cells use
different mechanisms for the activation of early/sustained and
late signaling events, which act over short (�5 min) or long
(�60 min), but not intermediate time scales. Signal attenua-
tion, on the other hand, appears to follow a continuum of
variable levels that serve to fine-tune the dynamics of individ-
ual signaling proteins.

Biological insight also emerged from direct comparisons of
individual signaling proteins across different biological con-
texts. For example, phosphorylated epidermal growth factor
receptor (p-epidermal growth factor receptor) was observed
as a sustained signal in seven of nine time courses, whereas
none of the six time courses of fibroblast growth factor re-
ceptor 1, insulin-like growth factor receptor 1, or PDGFR-�

maintained high phosphorylation levels over the course of our
60-min treatments. This may indicate differences in receptor
localization dynamics among RTKs, such as endocytic impair-
ment or preferential recycling of epidermal growth factor re-
ceptor to the cell surface. We also observed that several
signaling proteins were strongly associated with the late clus-
ter. These “constitutive late” signals included phosphorylated
ribosomal protein S6 (RPS6) (12 of 15 “late”), heat shock
protein 27 (HSP27) (four of six late), cytosolic phospholipase
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FIG. 5. Self-organizing map analysis reveals three primary classes of time courses. Shown in the center is a visual representation of the
average distances between neighboring map units in a self-organizing map of the time course profiles (U-matrix). Dark blue regions represent
clusters of similar dynamic profiles, and regions of early, sustained, and late signaling dynamics (clusters 1, 2, and 3) are highlighted. Early and
sustained signals are connected by a transition region of moderately clustered time courses (blue). Shown in panels on the sides are the
identities, temporal profiles (dashed lines) and average temporal profiles (solid line) of time courses within each cluster.
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A2 (cPLA2) (three of three late) and the transcription factor
ATF-2 (two of two late). The dynamics of these signaling
proteins likely reflects the fact that they act mainly as effectors
of earlier signals in upstream layers of signal transduction
networks. For example, p-RPS6, through its activity on the
ribosome, influences protein synthesis (27) and is a key reg-
ulator of cell size (28).

Proteins that are not linked to a single cell fate generally
showed context-specific signaling dynamics. For example,
the phosphorylated MAP kinases MEK1/2, Erk1/2, p90RSK,
p38MAPK, and SEK1 were virtually always early signals (24
out of 34 combined time courses), and never late signals (0
out of 34 time courses) under conditions of growth factor
stimulation. This is consistent with our current understanding
that MAPK phosphorylation is an initial and mostly transient
response to ligand stimulation and lies upstream of several
different pathways (29). Under conditions of stress, however,
we observed a striking reversal of this pattern: 14 of 16 time
courses fell into the late cluster and none fell into the early
cluster. Importantly, the identity of the cell line played no role
in determining signaling dynamics under either set of condi-
tions. These results suggest that phosphorylation of MAP
kinases is independent of cell type, but that the dynamics of
this pathway encode its dual physiological role as a response
to conditions of growth or stress (30).

Whereas phosphorylation of AKT was observed only under
the relatively narrow set of conditions that favor cell growth
and proliferation, AKT time courses showed a surprisingly
broad spectrum of shapes: two of 17 time courses followed
early activation, three were intermediate between early and
sustained signals, seven showed late activation, and the re-
maining five fell into noncategorical clusters. Differential acti-
vation was observed even in closely related cellular contexts.
For example, the time courses of AKT pS473 in response to
EGF stimulation of A431, HMEC, and HT-29 cells lay in map
units that are topologically distant from each other, with no
significant clustering (p � 0.51). A similarly broad spectrum of
profiles was observed for the AKT substrate GSK3; its time
courses were distributed among late (five time courses), sus-
tained (four time courses), transition region (three time
courses) and noncategorical clusters (four time courses). Sig-
naling dynamics within the AKT pathway thus appear to en-
code cell type-specific responses.

DISCUSSION

Quantitative, data-rich technologies are needed to study
how information is transferred and processed in cells, and
how defects in signaling networks lead to human disease.
Lysate microarray technology provides a powerful tool for
systems-level investigations, but has so far been limited by
questions regarding data quality and by a scarcity of highly
validated detection reagents. Here, we addressed both of
these issues by developing a general and efficient way to
identify antibodies that are functional on microarrays of cell

lysates. Altogether, we screened 383 primary antibodies
in each of 21 diverse biological contexts, capturing both
changes in protein abundance and signaling dynamics. Based
on the observed assay variability, we established stringent
statistical criteria for assessing antibody performance, and
further characterized microarray hits using a secondary vali-
dation step. Our analysis identified 82 unique antibodies, each
one of which allows quantitative protein-level measurements
in one or more of the biological contexts that we tested
(supplemental Fig. S3).

In addition to identifying a large set of high-quality detection
reagents that will facilitate future research, an analysis of our
screening and validation efforts allowed us to identify specific
characteristics of this assay that can be extended beyond the
particular set of antibodies, cell lines and treatment conditions
that we used in this study. For example, we identified several
determinants of antibody quality: the best reagents were
monoclonal antibodies derived from rabbits, were PTM-spe-
cific, and were directed at sites of serine or threonine phos-
phorylation. Other antibodies were less likely to perform well
on lysate microarrays, although functional reagents were
identified in every category that we tested. In addition, anti-
bodies that had been rigorously validated in one or more
biological context were much more likely to perform well in
other contexts. This means that the 82 commercial antibodies
that we validated in this study (supplemental Fig. S3) consti-
tute a highly enriched set of reagents that should prove gen-
erally useful in a wide variety of other biological contexts.
Finally, we established robust protocols that exhibit minimal
variation across replicate experiments and different batches
of the same antibodies. Importantly, we found that assay
performance was highly dependent on the identity of the
antibody, but not on the antigen itself. Overall, we did not find
any constraints on the number of antibodies that can be
validated or the type of protein that could be detected. Our
study can therefore be used as a blueprint for future screening
efforts to identify suitable detection reagents for this and other
high-throughput immunoassays. We envision that the re-
source provided by this study could serve as the nucleus of an
ever-expanding repository to which researchers contribute
antibody validation information.

Above all, the value of any proteomic technology lies in
the biology that can be uncovered using it. By performing a
self-organizing map analysis of our time course data, we
showed how a large set of highly validated detection re-
agents can be used to generate reliable information, and
how this information can then be mined to gain insight into
the logic and organization of signaling dynamics on a sys-
tems level. Our unbiased analysis identified a core set of
time-dependent profiles, corresponding to early, sustained,
and late signaling events. We found that, in addition to the
identity of signaling proteins that are activated, the precise
dynamics of post-translational modification events play an im-
portant role in conferring specificity to signaling in different
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biological contexts. Our results thus expand on previous studies
showing that cellular decisions are encoded in the precise tim-
ing of signaling events (31). This principle may allow cells not
only to sense environmental changes and respond accordingly,
but may also enable cells to deconvolve mixtures of different
and even opposing signals to effect an appropriate and uniform
outcome.

In summary, the screening and analysis strategies out-
lined in this study are general and can easily be applied to
other high-throughput, antibody-based assay technologies
such as immunocytochemistry and flow cytometry. Our re-
sults show that lysate microarrays are broadly useful in a
variety of cellular contexts, and we find no intrinsic limita-
tions in extending these studies to other areas of cell biol-
ogy. These characteristics, coupled with the high-through-
put nature of this technology, suggest that lysate
microarrays will play an important role in systems-level
investigations of the cell.
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