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Abstract
In this work we develop a theoretical framework of the interaction of microbubbles with bacteria
in the ultrasound field using a shell model of the bacteria, following an approach developed
previously [P. V. Zinin et al., Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion
of the cell in an ultrasonic field is determined by the motion of three components: the internal
viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be
drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a
cell’s oscillations in an ultrasonic field are determined both by the elastic properties of the shell
the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell’s
shell deforms due to a change in the shell area this oscillation depends on the surface area modulus

KA, (c) the relative change in the area has a maximum at frequency , where a is
the cell’s radius and ρ is its density. It was predicted that deformation of the cell wall at the
frequency fK is high enough to rupture small bacteria such as E. coli in which the quality factor of
natural vibrations is less than 1 (Q < 1). For bacteria with high value quality factors (Q > 1), the
area deformation has a strong peak near a resonance frequency fK; however, the value of the
deformation near the resonance frequency is not high enough to produce sufficient mechanical
effect. The theoretical framework developed in this work can be extended for describing the
deformation of a biological cell under any arbitrary, external periodic force including radiation
forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers).

I. INTRODUCTION
The frequencies of the normal modes of vibration for a spherical virus particle were
estimated by Ford in 2003 [1]. Subsequent theoretical studies [2–4] led to the successful
detection of the normal oscillations for low-frequency vibrational modes of bacteriophage
M13 in water by Raman spectroscopy [5]. It was also demonstrated that by using a visible
femtosecond laser, it is feasible to inactivate viruses such as the bacteriophage M13 through
impulsive stimulated Raman scattering [6].

Normal vibrations of bacteria have also been considered recently [7]. Theoretical
calculations indicate that high-quality resonances are possible for several types of bacteria
that have radii greater than 5 µm. The calculations also show that it is more likely that Gram
positive bacteria would have resonances than Gram negative bacteria because the cell wall
(shell) of the Gram positive bacteria is much stiffer than that of Gram negative bacteria [7].
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The frequency of the natural oscillations of bacteria are in the MHz frequency range and
therefore such oscillations cannot be detected by Raman or Brillouin scattering [8]. Despite
the fact that the quality factor for specific types of bacteria are relatively high, these
resonances have not been readily observed in biological cell experiments [7]. Resonance
oscillations of the cells were observed by Miller who imaged standing wave (high-quality
resonance oscillation) in the cell wall of algae in a 1 MHz ultrasonic wave [9]. An
explanation of why mechanical resonances of cells are difficult to excite by a plane acoustic
wave was provided by Ackerman [10,11]. For drops, this problem was addressed by
Marston and Apfel [12,13]. They found that the sound scattering cross section of the cells
and drops at the frequency of the shape resonance was fairly small. For instance, for a D.
carota cell the wavelength, λ, of the sound wave in water at the resonance frequency was
estimated to be 1.67 mm [7]. This is 55 times greater than the radius of the D. carota cell: 30
µm. Since the cross section of the sound scattering by a small particle such as a bacterium is
proportional to the fourth power of the ratio (a/λ)4, the effect of the sound wave on the
bacteria at the frequency of the shape resonance is negligible. Marston and Apfel proposed
to use modulated acoustic radiation pressure for efficient excitation of the quadrupole
resonance of drops [13]. In their experiments, the acoustic radiation force in the field of
standing ultrasonic wave was modulated in a such way that the wavelength of the carrier
wave was close to the radius of the drop and the frequency of modulation was close to the
frequency of the quadrupole surface resonance of the drop. Ackerman predicted that
mechanical resonances of cells could be excited in the presence of microbubbles [14]. His
idea was to excite shape vibrations of the red blood cell by an external force that (a) acts
with frequency close to the resonance frequency of the cell and (b) that is uniform at the
length comparable with the size of the cell [14]. A small stable bubble oscillating near a cell
(at the resonance frequency of cell) may be a source of such excitation. The field generated
by such a microbubble in acoustic wave decays with the distance from the bubble. The aim
of this work is twofold: (a) to investigate possible biological effects in bacteria produced by
microbubbles oscillating in the vicinity of a bacterium in the ultrasonic field and (b) to
investigate the possibility of excitation of the resonance vibration in a bacterium by
vibration microbubble. To achieve these goals, we develop a theoretical model of the
interaction of microbubbles with bacteria in the ultrasound field. The model can be used for
(a) studying effects of the mechanical resonances of bacteria (tension and deformation in the
bacteria shell) in the vicinity of bubbles or ultrasound contrast agents in the surrounding
liquid, (b) investigating the possibility of cell disruption at resonance frequency, and (c)
understanding the effect of resonances on sonoporation in the ultrasound field relating the
area deformation in the ultrasound field and enlarged diameter of pores in the cell’s shells
(membranes).

II. MODEL
Modeling of the sound interaction with biological cells includes four theoretical approaches:
(a) theory of sound scattering by liquid viscous drops [15,16], (b) theory of natural
oscillations of viscous drops [17], (c) theory of shells and plates [18,19], and (d) theory of
elasticity of biological membranes [20,21]. To describe the viscoelastic response of the cell
to the sound field generated by a vibrating microbubble we will use the “shell model” of a
cell (Fig. 1) described in detail elsewhere [7,22]. The shell model of the cell was
successfully applied to analyze mechanisms of sound attenuation in blood and in erythrocyte
suspensions [22]. A similar model was used for description of shape oscillations of drops in
the presence of surfactants [23,24] and for modeling the recovery of nonadherent cells after
micropipette extension [25]. Within the shell model, a bacterium is assumed to have a
spherical shape of radius a (Fig. 2). A spherical shape of the cell is assumed for two reasons.
First, it is possible to obtain an analytical solution for spherical objects [26]. Second, many
bacteria indeed have a spherical shape (cocci). The cellular shell does not have uniform
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thickness [21], it is a stratified system which is composed of at least three layers differing in
mechanical properties: bilipid membrane, external shell, and internal polymer network. Each
layer makes a unique contribution to the resistance of the shell undergoing different types of
deformation. However, for the cells considered in this study, the thickness of the shell h is
much less than the characteristic size of the cell a: h ≪ a. For thin shells the equations of
motion include the total values of the internal forces distributed over the thickness of the
shell [19]. Within such an approximation the flexural moments and the intersecting stresses
in the membrane may be neglected [19]. Within the shell model, the motion of the cell is
composed of three components: the motions of the internal fluid, and the surrounding fluid,
and the deformation of cell shell [22].

A. Wave equations
The fluid within and outside the cell is characterized by a density ρ, a velocity of sound c, a
compressional or bulk viscosity ς, and a shear viscosity η. The values corresponding to the
internal fluid will be designated by the subscript i and the values associated with the external
fluid by o. The motion of the fluids is described by the particle velocity fields Vi and Vo and
the pressures pi and po, which are determined by a standard system of equations consisting
of the equation of continuity, the Navier-Stokes equation and the linearized equation of state
[27]. Following linear acoustic assumptions, we assume that perturbation of the fluid density
ρ′ and pressure p′ caused by cell vibrations are small in comparison with static values of the
density ρ and pressure p: ptotal = p+p′; ρtotal=ρ+ρ′; p′ ≪ p; ρ′ ≪ ρ. In this approach, the
equation of continuity can be written as [15]

(1)

the Navier-Stokes equation as

(2)

where Δ is the Laplacian, t is the time and the linearized equation of state is

(3)

The velocity field in the fluid may be represented as a superposition of two parts: potential
part described by a scalar field Φ, and vortical part described by a vector field A⃗ [15,16,27]

(4)

Solutions for the potentials Φi and Φo are sought in the form of the diverging and standing
spherical waves and for A⃗i and A⃗o in the form of viscous shear waves, which exponentially
attenuate on both sides of the shell due to viscous dissipation. Substituting Eq. (4) into Eqs.
(1)–(3), the wave equations can be expressed as

(5)
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(6)

where k = ω/c, , and ω is the angular frequency.

We introduce a system of spherical coordinates r, θ and φ; with the origin at the center of the
shell (Fig. 1). The analysis of a shell of an arbitrary shape poses considerable mathematical
difficulties; therefore, we limit the work in this initial study to the vibrations of a spherical
shell. The Vr and Vθ components of the vector velocity V⃗ can be written in the spherical
coordinate system as

(7)

(8)

where

(9)

B. Boundary value problem
In the thin shell approximation, the cell wall is considered as an infinitely thin elastic layer.
The boundary conditions evaluated at r = a include the kinematic conditions, the continuity
of the velocities and the total stress balance [17,22,24]. It is assumed that both surfaces of
the shell move at the same velocity, which is the velocity of the shell itself:

(10)

or

(11)

where W is the shell displacement. The radii of curvature of the cell’s shell are much larger
than the thickness of the membrane structure (h / a ≪ 1). Due to the small thickness of the
shell, the equation of motion of the shell can be replaced by the equilibrium equations (Fig.
1). The equations of mechanical equilibrium for an element for this spherical shell may be
expressed in the following form [19]:

(12)
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(13)

where Tθ, Tϕ are the normal tensions in the shell and Rθ, Rφ are the local radii of curvature.
The components of the tensor of viscous stress acting on the shell on part of the fluid

 have the following forms [15]:

(14)

(15)

Equations (12) and (13) must be supplemented by relationships between the deformations
and the internal forces in the shell. The equations of motion are written in an instantaneous,
local system of coordinates associated with the perturbed surface; therefore, its radii of
curvature R depends on the relative movement of the shell W (V = ∂W/∂t). Primarily two
forces resist deformation of the shell of the cell: constant tension To and the force of surface
elasticity. The resistance to the change in the surface area is characterized by the area
compression modulus KA and the resistance to the shear deformation by modulus μ [20,21].
The relationship between the tensions Tθ, Tφ and the strains eθθ and eφφ for a thin spherical
shell have the following form [21,28]:

(16)

(17)

Here (eθθ+eφφ) = eS is the relative change in the area of the element of the surface. For
bacteria, the moduli μ and KA are similar in magnitude [20,29]. For cells without walls, the
surface shear modulus is smaller than KA: μ ≪ KA, by many orders [21]. The strains are
expressed in terms of the displacement Wr and Wθ:

(18)

(19)

The radii of curvature of a perturbed spherical shell are expressed as
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(20)

(21)

Using Eqs. (14)–(21), we can write the equations of motion of the shell in the following
form:

(22)

(23)

where

The above equations determine the dynamic conditions between the motion of the shell and
that of interior and surrounding fluids.

C. Scattering of the sound waves by a cell
To find the acoustic field scattered by the bacteria, we represent the incident wave as a
solution of the wave equation in spherical coordinates with its origin at the particle center.
For simplicity, we consider only oscillations possessing axial symmetry. For the case of
axial symmetry, equations (5) and (6) are solved in terms of series expansions of spherical
wave functions. The acoustic field outside of the cell is a superposition of the incident field
and the scattered field [15]

(24)

where the incident wave can be represented as a spherical wave decomposition

(25)

where Pn(cos θ) are the Legendre polynomials [30] and jn(kr) are the spherical Bessel
functions [30]. In this study, we only consider the excitation of the cell vibration by acoustic
field. However, vibrations of cell can also be effectively excited by other means such as
acoustic radiation force [13,31] or an optical radiation force in the focus of the laser beam
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[32]. Coefficient En is determined from the equation for spherical wave decomposition of
the incident wave. For a plane sound wave the coefficient En has the form [33]

where I is the sound intensity. The expression for En in the modulated acoustical filed can be
found elsewhere [12,13]. The response of the cell to an external force is determined by a set
of four undetermined coefficients An, Bn, Cn, Dn. We may write these for the surrounding
fluid as follows [15,16]:

(26)

(27)

and for internal liquid

(28)

(29)

where hn(kr) are the spherical Hankel function of the first kind [30] and A is the φ

component of vector potential 

According to Eqs. (25)–(29), the movement of the cells in an ultrasonic field is described by
the superposition of oscillations with different angular symmetry Pn(cos θ). For each value
of n, the unknown amplitudes are linked by four linear algebraic equations arising from the
boundary conditions (10), (11), (22), and (23).

With this linear approach, it is possible to consider the response of the cell to ultrasound at
each mode of oscillation n. At the zeroth harmonic, the contribution of the shell to the
scattering is insignificant [KA/(ρac) ≪ 1]. Therefore, the spherical symmetrical scattering for
biological cell is not very different from scattering for a simple drop (see Appendix A). The
presence of the shell begins to be significant for dipole oscillations.

Substituting solutions for scalar and vector potentials into Eqs. (7) and (8) and using
boundary conditions (10), (11), (22), and (23) we obtain a system of four equations for four
undetermined coefficients An, Bn, Cn, Dn:
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(30)

(31)

(32)

(33)

where zi=kia, zo=koa, ξi = χia, ξo = χoa. The mechanical response of the cell to the external
stimulus depends on the relation between the frequency of sound ω and characteristic
frequencies ωμ, ωT, ωRωK:

(34)

characterizing the restoring forces in the shell and normalized liquid density

(35)

The parameter

(36)

expresses the process of mechanical relaxation due to the viscous forces in the fluid.

As indicated by Ackerman [34], the wavelength of the sound waves in water, λ at the
frequency of mechanical resonances of cell is much longer than the radius of cell (long-
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wave approximation): a / λ ≪ 1. In the long-wave approximation (kia ≪ 1, koa ≪ 1) we can
use the following relationship for spherical functions for n ≥ 1:

(37)

Then, the system (30)–(33) becomes (for n ≥ 1)

(38)

(39)

(40)

(41)

where we introduce the following notation:

(42)

(43)

(44)

and nondimensional frequencies and densities

(45)
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(46)

For n = 0, boundary conditions are written in Appendix A. To express deformation of the
shell, we use the solution for  and  (n ≥ 0)

(47)

(48)

The expression for the determinant dn(ω) was derived elsewhere [7]:

(49)

where

(50)

(51)

where

(52)

Every partial term describing the nth mode of oscillations contains, except for the Legendre
polynomials, the product of two terms; one of which (En) describes the structure of the
incident ultrasonic field, and the other which determines the frequency dependence of the
mechanical response of the cell to an external stimulus. The derivation of the analytical
solutions for , Eq. (47), and , Eq. (48), is lengthy, and is omitted for brevity. However,

 and  can be obtained by solving the system of linear equations (38)–(41) numerically.

D. Bubble cells interaction
We limit the investigation to bacteria interaction with stable microbubbles (“stable
cavitation” [35]) oscillating in the ultrasonic field. Deformation of the cell wall in the plane
wave is negligible for most biological cells. It is in part due to the fact that characteristic
frequencies ωμ, ωT, ωR, ωK of biological cells are smaller that the frequency of the
geometrical resonance ωa = a / c. At frequencies lower than geometrical resonance, the
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scattering cross section is described by Rayleigh scattering and is proportional to the (a / λ)4.
Therefore, the efficiency of the sound plane wave interaction with the cell is small if (a / λ)
≪ 1 and the effect of the sound wave on the bacteria at frequency of the shape resonance is
negligible. That was a reason why Marston and Apfel suggested to use modulated
ultrasound for studying quadrupole surface resonance behavior of drops [12,13]. For an
effective interaction of ultrasound fields with a cell it is necessary to create a field with
nonuniformity of the same order as a cell dimension. A powerful nonuniform ultrasound
field can be created by a small-volume radiator radiating spherical waves in the close
vicinity of the cell. Nyborg and his colleagues used an ultrasound needle in biological
experiments to generate powerful spherical acoustic waves in the close vicinity of cells
[36,37]. In biological media and liquids, the source of such spherical waves are cavitation
bubbles, oscillating in the ultrasound field [14,38] so we consider deformation of the cell
wall in the field of an oscillating bubble with negligible effect of the plane wave on the cell.
The sound wave excites the radial oscillation of a bubble at a frequency close to the
resonance oscillation of the bubble. If the bubble is located near the cell, then the spherical
wave irradiated by the bubble is not uniform and may excite shape oscillations of the cell. A
plane sound wave excites radial vibrations of the gas bubble and subsequently an acoustic
field generated by the gas bubble is scattered by a cell which effects deformation of the
cell’s membrane or wall.

Let P(a, θ, 0) be the point of observation and Q(L, 0, 0) be the source point of a spherical
wave excited by a bubble (Fig. 2). The coordinates (a, θ, 0) and (L, 0, 0) refer to a fixed
coordinate system whose origin is O. Let R be the distance between points Q and P. In the
long wavelength limit koRo ≪ 1, the acoustical field irradiated by a bubble has a simple
analytical expression [27]

(53)

where Vp is the oscillation velocity of the surface of bubble. The distance R can be expressed
with the distances L and a using the cosine theorem

(54)

Using addition theorem [33] (Chap. 7) we get for eikoR/R

(55)

Inserting Eq. (55) into Eq. (53) we obtain the field generated by a bubble

(56)

An expression for the oscillation velocity of the surface of bubble Vp can be approximated
from the following considerations. We represent displacement of the bubble surface, as in
the monochromatic field, as R = Ro + ΔRoe−iωt, where Ro is the equilibrium radius of the
bubble and ΔRo is the amplitude of the bubble oscillation in the incident sound wave. Since
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Vp = ∂R/∂t, then Vp = −iωΔRo. An expression for the incident field (59) has the following
form:

(57)

The oscillation of a bubble in ultrasound fields has an nonlinear character, but at low sound
intensity it may be linear and stable [39]. In this paper, we investigate the limiting case of
stationary, linearly oscillating bubbles. The oscillation of such bubbles in ultrasound fields is
given by the well-known linear resonance curves [39,38]:

(58)

where δR is a damping constant, pm is the amplitude of pressure in incident plane wave, ωbub

is the resonance frequency of bubble. For the incident plane wave, we use .

For the frequency range up to 10 MHz, the linear resonance radius of the bubble Ro can be
determined from the Minnaert’s formula [39] corrected for surface tension σST:

(59)

where γb ∼ 1.4 is the ratio of specific heats (air) and Po = 105 Pa is the pressure in liquid
under normal conditions. Calculations conducted using Eq. (62) of the resonance radius of
the bubble as a function of frequency are shown in Fig. 3. The surface tension value (σST =
0.0725 N/cm) is from Ref. [40]. For a range of frequencies from 20 KHz to several MHz,
the damping of the resonance oscillation of bubble is only slightly dependent on the
frequency, thus it is possible to approximate it as a constant. The ultrasound intensity
determines the magnitude of the bubble displacement in the frequency range from 20 KHz
to 10 MHz.

Using Eqs. ((57) and (58) we can determine the coefficient En for a spherical wave
irradiated by an oscillating bubble

(60)

The most significant interaction of the secondary radiation force of the bubble on the cells is
the dilatation of the shell, because this kind of deformation may lead to cell disruption and
the formation of pores in the cell membrane. Using expressions (48) and (49), an analytical
expression can de derived for the local area deformation of the bacterium shell in the
ultrasound field:

(61)

The expression for the 2Vr + ΔθVθ has a compact form
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Thus, the analytical expression for the area deformation of the cell wall is

(62)

where

(63)

Replacing En in Eq. (64) we have

(64)

III. RESULTS AND DISCUSSION
Equation (64) can be simplified using expressions for spherical Bessel and Hankel functions
for small koa and koL: jn(koa) ≈ (koa)n/[1 × 3 × ···(2n + 1)]; hn(koLa) ≈ −i[1 × 3 × ···(2n −
1)]/(koL)n+1. Thus an expression for the area deformation of a cell in the field of the
resonance gas bubble has a concise form

(65)

The elastic properties of the bacteria are given in Table I. Results of the numerical
calculations of the area deformation of different types of bacteria are given in Table II.
These results are derived under the assumption that the cell moves and is deformed by the
field of an oscillating bubble of resonance size. The intensity of the incident plane wave was
assumed to be constant, and the relative displacement of the bubble was choosen as 0.5: ΔR/
Ro = 0.5. To achieve such an amplitude of the microbubble osclillation at the resonance
frequency, a low sound intensity (∼10 mW/cm2) is required. We also assume that the bubble
is in contact with the cell: L = Ro + a. With increasing n, the deformation decreases as (a/
L)n. However, if the difference in the density between the inner and outer liquids is small
then the deformations on the dipole and quadrupole modes may be of the same order.
Therefore, we restrict our investigation to only the dipole and quadrupole modes. For
numerical calculations, the radius of the resonance of the bubble at a given frequency was
derived from Eq. (59).

Zinin and Allen Page 13

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4 shows the area deformation of the B. emersonii cell in the vicinity of an oscillating
bubble as a function of frequency for quadrupole mode (n = 2). For the quadrupole mode the
deformation of the surface area decays as (1/L)3 for distance between the cell and bubble L.
The dependence on the angle θ is given by Legendre polynomial P2(cos θ) = 0.25 × (3 cos
2θ+1). The maximum of the deformation occurs at θ = π/4, at which P2(cos π/4) = 1. Our
numerical calculations show that the magnitude of the deformation on the dipole oscillations
(n = 1) is smaller than the one for the quadrupole mode.

The curve in Fig. 4 has a resonancelike shape with a strong peak at frequency fmax which is
close to the frequency ωK/2π (see Table II). At low frequencies (ω≪ωK), the cell does not
change its area during oscillations. At these frequencies the shell is subjected to only shear
deformations. At high frequencies (ω≫ωK), the influence of the surface elasticity is
negligible, such that it behaves as a liquid viscous drop. According to the results presented
in Table II, B. emersonii cells have a high quality factor (around 15) thus the shape of the
frequency response curve (Fig. 4) is not surprising. Despite the fact that these cells might
have high quality factors, the interaction with bubble at the resonance frequency should not
result in visible mechanical or biological effects. At the maximum, the area deformation
does not exceed 2%. Even red blood cells are able to sustain area deformations up to about
5% [21]. For the B. emersonii cell, the modulus KA is approximately 64 N/m (Table I) and it
was estimated that the maximum surface tension that the cell wall can sustain is 8 N/m [41].
For bacteria, the magnitude of the area deformation they can sustain is about 9%. It has been
shown recently, that some bacteria can survive a 260 MPa pressure in a shock wave for a
duration of 800 ns [42]. The main reason for such a weak effect of the vibrating bubble on
the area deformation of the cell is that at the resonance frequency the radius of the bubble is
not great enough to create a strongly inhomogeneous ultrasonic field in the vicinity of cell
(Table I). For excitation of the natural vibrations of such cells, modulated radiation
acoustical or optical force should be employed instead. Acoustic radiation force was used
for excitation resonance oscillation of drops [12,13] and radiation force of the light was used
for dynamic excitations of the bilayer vesicles [43].

Consider behavior of a small cell, such as E. coli, in the field of a vibrating bubble. Behavior
of E. coli in the sound wave should not have resonancelike behavior, since the quality of the
natural vibrations of the E. coli cell is lower than 1 (see Table II). Figure 5 shows the
relative area deformation of E. coli cell with the parameters taken from Table I. The relative
area deformation of E. coli has a maximum at the frequency fmax which is close to the ωK/
2π. At the maximum, the area deformation of the 0.5 µm E. coli calculated to be 17%.
Deformation of B. emersonii, which has a relatively high quality factor, is 17 times lower
than that of E. coli. A similar tendency exists for yeasts cells which have a higher quality
factor and a lower area deformation than those of E. coli. The explanation can be drawn
from Table II. The last column in Table II shows the ratio between the radius of the
oscillating bubble Ro and the radius of the cell a at the frequency of the mechanical
resonance of the cell ωK/2π. It can be seen that the value of the area deformation of the cell
wall correlates to the ratio between the bubble radius and cell radius Ro/a. The higher this
ratio, the higher the area deformation. Figure 5 shows the area deformation of E. coli with
two radii: 0.5 and 1.0 µm. The deformation of the 1.0 µm cell at maximum is twice as high
as for E. coli of 0.5 µm radius. It is in line with correlation discussed above: the ratio Ro/a
for a 1.0 µm cell is higher than that of 0.5 cell: 2.29 and 1.94, respectively. Results for
different values of the internal and external viscosity values are shown in Fig. 6. The
increase of the internal viscosity causes a decrease of the deformation of the cell wall. With
increases in the internal viscosity, the cell behaves more like a solid particle. Increase of the
external viscosity has a different effect on the cell wall deformation: fivefold increases of
the viscosity of the external fluid lead to the increase of the deformation by a factor of 2.
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High amplitude thermal vibration of cells has been observed previously: vibration of the red
blood cells (flicker) visible by an optical microscope has been detected by Brochard and
Lennon [44]. The difference between flicker and the natural vibration of a bacteria cell is
that in case of flicker no area deformation occurs. Flicker of a red blood cell is determined
by the bending deformation of the membrane. In the case of a spherical bacterial cell, any
variation of the cell shape leads to an area deformation. The effect of the area deformation
on cell activity is not fully understood. In this report, we considered only the most obvious
that of cell rupture. Relatively high area deformation may also influence transport processes
within the cell and across the membrane. It was found recently that some cells with a strong
wall, such as bakery yeast cells, had internal vibrations of the membrane at 1 KHz [45].

A direct experimental verification of the proposed theory might be conducted in the future;
however, qualitative results have been obtained already. Some experimental studies on the
mechanical effects of oscillating microbubbles on nearby cells have been conducted [46]. A
recent study was done using a customized high-speed camera capable of recording 128
frames with a frame rate between 1 to 25 MHz visualizing the interaction between
oscillating microbubbles and cells over a finite exposure period. It was reported that “a
microbubble expansion of 100% resulted in a 2.3-µm displacement of the cell membrane,”
sufficient to observe resonances of bacterial cells. Further experiments together with
complementary theory such as that outlined in this paper are needed to more fully
understand these complex interactions.

Rigorous modeling of the interaction of sound and cavitation with cells may establish the
missing scientific foundations for bacteria death by ultrasound. Current research suggests
that ultrasound is effective in killing bacteria [47–50], although the exact mechanisms are
not well understood. At sufficiently high acoustic power inputs, ultrasound is capable of
rupturing cells; moreover, ultrasonication is a well-established laboratory technique of cell
disruption [51]. The calculations conducted for E. coli bacteria show that area deformation
can reach 20%. This is sufficient deformation to rupture the cell wall.

Our simulations show that the area deformation of relatively large bacteria is not high
enough (several percent) to rupture a cell wall; however, area deformation can be
responsible for changing the transport processes of molecule across the cell wall. Other
acoustically mediated effects are possible, which do not involve the immediate death of the
cells. Ultrasound can enhance metabolic productivity of microbial cells in bioreactors [52]
or membrane permeation (sonoporation) [53]. Under specific conditions, cavitational
bubbles may cause the reversible disruption of the cell membranes facilitating the entry of
molecules into cells [54,55], allowing for the enhanced drug delivery and other applications
[56,57]. Ultrasound has successfully induced transfer of genetic material into living animals
[58] and plant cells [59]. Further development of the theory of sound interaction with cells
could eventually foster further development and optimization of these techniques.

The following setup allows verification of our theoretical approach. The theory fits the case
of a microbubble attached to the bacteria or to any cell with spherical shape. Microbubbles
or ultrasound contrast agents should bind to bacterial biofilms grown on a solid substrate. It
is possible if microbubbles are targeted with ligands that bind specific receptors to the
bacteria surface surface [60,61]. Ultrasound waves can be generated by a transducer
attached to the solid substrate. Microbubbles several microns in size and possible rupture of
a cell can also be detected by optical microscope. The imaging of vibration of the cell wall
and acoustic quantification of a single bubble near an isolated cell is possible with high-
speed CCD camera [46,62,63]. Since the bacteria’s cell wall is rigid, it may be difficult to
visualize movement of the membrane in the vicinity of oscillating bubble. Other cells can be
used for visualizing cell wall movements in the field of an oscillating microbubble. The
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HeLa cell is a good candidate for such experiments. HeLa cells become spherical during
division [64] and their acoustical properties have been characterized [65]. Moreover, the
HeLa celle were derived from cervical cancer cells, and cancer cells express a specific set of
receptors, mainly receptors that encourage angiogenesis. Use of an appropriate ligand should
allow binding of a microbubble to the HeLa surface. The movement of the cell wall in the
vicinity of the microbubble can be detected with a high-speed CCD camera either with a
transmission optical microscope or using the emulated transmission configuration described
elsewhere [66].

IV. CONCLUSIONS
In this work, we investigate the oscillations of biological cells in a sound field generated by
pulsating bubble using a shell model of the cell following an approach outlined previously
[22]. Several conclusions can be drawn from the modeling of sound interaction with a
biological cell: (a) the characteristics of a cell’s oscillations in an ultrasonic field are
determined both by the elastic properties of the shell and the viscosities of all components of
the system, (b) for dipole and quadrupole oscillations the cell’s shell deforms due to a
change in the shell area and this oscillation depends on the surface area modulus KA, (c) the

relative change in the area has a maximum a frequency .

Using this shell model the stress and tension in the bacterial shells within the close vicinity
of a vibrating bubble are calculated. For bacteria with high value quality factors, the area
deformation has a strong peak near a resonance frequency ωK; however, the value of the
deformation near the resonance frequency is not high enough to produce sufficient
mechanical effect. Deformation of the cell wall is higher for smaller bacteria such as E. coli.
At the frequency ωK, the area deformation of E. coli with is high enough for cell rupture in
the vicinity of an oscillating microbubble.

The model described can be used for (a) studying effects of the mechanical resonances of
bacteria (tension and deformation in the bacteria shell) in the vicinity of bubbles or contrast
agents in the surrounding liquid, (b) investigating the possibility of cell disruption at
resonance frequency, and (c) understanding the effect of resonances on sonoporation in the
ultrasound field, relating the area deformation in the ultrasound field and enlarged diameter
of pores in the cell’s shells (membranes). However, the formulation can be extended to
describe the deformation of a biological cell under any arbitrary, external periodic force
including radiation forces induced by acoustical (acoustical levitation) or optical waves
(optical tweezers).

APPENDIX A
For n = 0, only two boundary conditions are left (ρ* = ρi):

(A1)

(A2)

since  and 
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(A3)

(A4)

since zij1(zi) ≈ (zi)2/3 and j0(zi) ≈ 1, then

. The last term is small (≪ 1) and
does not depend on the frequency. Therefore, cell’s shell does not signficantly affect the
monopole oscillations of the cell in the acoustic field:

(A5)

(A5′)

APPENDIX B
The functions n(ξi) and ℋn(ξi) are defined as follows:

(B1)

(B2)

These functions can be calculated using the following iterative relations:

(B3)

(B4)

where

(B5)
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(B6)

References
1. Ford LH. Phys. Rev. E. 2003; 67:051924.
2. Talati M, Jha PK. Phys. Rev. E. 2006; 73:011901.
3. Fonoberov VA, Balandin AA. Phys. Status Solidi B. 2004; 241:R67.
4. van Vlijmen HWT, Karplus M. J. Mol. Biol. 2005; 350:528. [PubMed: 15922356]
5. Tsen KT, et al. J. Biomed. Opt. 2007; 12:024009. [PubMed: 17477724]
6. Tsen KT, et al. J. Virol. 2007; 4:50.
7. Zinin PV, Allen JS III, Levin VM. Phys. Rev. E. 2005; 72:061907.
8. Beghi, MG.; Every, AG.; Zinin, PV. Ultrasonic Non-destructive Evaluation: Engineering and

Biological Material Characterization. Kundu, T., editor. Boca Raton: CRC Press; 2004. p. 581
9. Miller DL. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1986; 33:165. [PubMed: 18291767]
10. Ackerman E. Bull. Math. Biophys. 1955; 17:35.
11. Ackerman, E. Biophysical Science. Englewood Cliffs, NJ: Prentice-Hall; 1962.
12. Marston PL. J. Acoust. Soc. Am. 1980; 67:15.
13. Marston PL, Apfel RE. J. Acoust. Soc. Am. 1980; 67:27.
14. Ackerman E. Bull. Math. Biophys. 1957; 19:1.
15. Allegra JR, Hawley SA. J. Acoust. Soc. Am. 1972; 51:1545.
16. Epstein PS, Carhart RR. J. Acoust. Soc. Am. 1953; 25:553.
17. Miller CA, Scriven LE. J. Fluid Mech. 1968; 32:417.
18. Ambartsumyan, SA. Theory of Anisotropic Plates: Strength, Stability, and Vibrations. New York:

Hemisphere; 1991.
19. Novozhilov, VV. The Theory of Thin Shells. Groningen: P. Noordhoff; 1959.
20. Boal, D. Mechanics of the cell. Cambridge: Cambridge University Press; 2002.
21. Evans, EA.; Skalak, R. Mechanics and Thermodynamics of Biomembranes. Boca Raton: CRC

Press; 1980.
22. Zinin PV. Ultrasonics. 1992; 30:26. [PubMed: 1729772]
23. Lu H, Apfel RE. J. Colloid Interface Sci. 1990; 134:245.
24. Lu H, Apfel RE. J. Fluid Mech. 1991; 222:351.
25. Evans EA. Methods Enzymol. 1989; 173:3. [PubMed: 2674613]
26. Bownam, SI.; Senior, TBA.; Uslenghi, PLE. Electro-magnetic and Acoustic Scattering by Simple

Shapes. Amsterdam: North-Holland; 1969.
27. Landau, LD.; Lifshits, EM. Fluid Mechanics. Vol. Vol. 6. Oxford: Pergamon Press; 1959. p. 536
28. Asaki TJ, Marston PL. J. Acoust. Soc. Am. 1997; 102:3372.
29. Hamill OP, Martinac B. Physiol. Rev. 2001; 81:685. [PubMed: 11274342]
30. Abramovitz, M.; Stegun, I. Handbook of Mathematical Functions. New York: Dover; 1970.
31. Yarin AL, et al. Int. J. Multiphase Flow. 2002; 28:887.
32. Lock JA. Appl. Opt. 2004; 43:2545. [PubMed: 15119624]
33. Stratton, JA. Electromagnetic Theory. New York: McGraw-Hill; 1941. p. xv
34. Ackerman E. Bull. Math. Biophys. 1954; 16:141.
35. Miller DL, Nyborg WL. J. Acoust. Soc. Am. 1983; 73:1537.
36. Hughes DE, Nyborg WL. Science. 1962; 138:108. [PubMed: 14449790]
37. Niborg WL. Br. J. Cancer. 1982; 45:156.
38. Levin PA, Bjorno L. J. Acoust. Soc. Am. 1982; 71:728.
39. Nepirras EA. Phys. Rep. 1980; 61:159.

Zinin and Allen Page 18

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



40. Mettin R, Akhatov I, Parlitz U, Ohl CD, Lauterborn W. Phys. Rev. E. 1997; 56:2924.
41. Kleinig AR, Middelberg APJ. Chem. Eng. Sci. 1998; 53:891.
42. Willis MJ, et al. Earth Planet. Sci. Lett. 2006; 247:185.
43. Bar-Ziv R, Moses E, Nelson P. Biophys. J. 1998; 75:294. [PubMed: 9649388]
44. Brochard F, Lennon JF. J. Phys. (France). 1975; 36:1035.
45. Pelling AE, et al. Science. 2004; 305:1147. [PubMed: 15326353]
46. van Wamel A, et al. Ultrasound Med. Biol. 2004; 30:1255. [PubMed: 15550330]
47. Barnett S. Ultrasound Med. Biol. 1998; 24:S11. [PubMed: 9841460]
48. Borthwick KAJ, et al. J. Microbiol. Methods. 2005; 60:207. [PubMed: 15590095]
49. Di Gennaro P, et al. Ann. Microbiol. (Paris). 2004; 54:233.
50. Turai LL, et al. Tappi J. 1980; 63:81.
51. Chisti Y, Moo-Young M. Enzyme Microb. Technol. 1986; 8:194.
52. Chisti Y. Trends Biotechnol. 2003; 21:89. [PubMed: 12573858]
53. Williams, AR. Ultrasound: Biological Effects and Potential Hazards. New York: Academic Press;

1983.
54. Tachibana K, et al. Lancet. 1997; 349:325. [PubMed: 9024378]
55. Tachibana K. Lancet. 1999; 353:1409. [PubMed: 10227224]
56. Ng KY, Liu Y. Med. Res. Rev. 2002; 22:204. [PubMed: 11857639]
57. Mehier-Humbert S, et al. J. Controlled Release. 2005; 104:213.
58. Miura SI, et al. Biochem. Biophys. Res. Commun. 2002; 298:587. [PubMed: 12408992]
59. Joersbo M, Brunstedt J. Physiol. Plant. 1992; 85:230.
60. Takalkar AM, et al. J. Controlled Release. 2004; 96:473.
61. Liu Y, Miyoshi H, Nakamura M. J. Controlled Release. 2006; 114:89.
62. van Wamel A, et al. J. Controlled Release. 2006; 112:149.
63. Postema M, et al. Ultrasound Med. Biol. 2004; 30:827. [PubMed: 15219962]
64. Zinin, PV., et al. 2007 IEEE Ultrasonic Symposium. Yuhas, DE., editor. New York: IEEE; 2008.

p. 813
65. Weiss EC, et al. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2007; 54:2257. [PubMed:

18051160]
66. Zinin PV, et al. J. Opt. Soc. Am. B. 2007; 24:2779.
67. Yao X, et al. J. Bacteriol. 1999; 181:6865. [PubMed: 10559150]
68. Carpita NC. Plant Physiol. 1985; 79:485. [PubMed: 16664436]
69. Touhami A, Nysten B, Dufrene YF. Langmuir. 2003; 19:4539.
70. Smith AE, et al. Proc. Natl. Acad. Sci. U.S.A. 2000; 97:9871. [PubMed: 10963659]

Zinin and Allen Page 19

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 1.
Stresses on the element of the spherical shell in the spherical coordinates (r, θ, φ).
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FIG. 2.
(Color online) Diagram of the interaction of a vibrating bubble with bacteria in ultrasound
field. Following notations were introduced in the text and shown in the figure: xyz are
Cartesian coordinates; θ is the zenith angle in the spherical coordinate system; a is the radius
of the cell; Ro is the equilibrium radius of the bubble; L is the distance between center of the
cell (O) and center of the bubble (Q); P is a point on the cell surface; R is the distance
between center of the bubble and point P; ko is the wave vector of the incident plane sound
wave; c and η are sound velocity and viscosity of the corresponding liquids.
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FIG. 3.
(Color online) Radius of a bubble at its linear resonance as a function of the frequency from
Minnaert’s Eq. (67).
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FIG. 4.
(Color online) Frequency dependence of the area deformation (n = 2) of the B. emersonii in
the vicinity of an oscillating bubble calculated with the parameters from Table I.

Zinin and Allen Page 23

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 5.
(Color online) Frequency dependence of area deformation of the E. coli in the vicinity of
oscillating bubble calculated for two radii of the cell with the parameters taken from Table I.
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FIG. 6.
(Color online) Frequency dependence of the area deformation (n = 2) of the E. coli in the
vicinity of oscillating bubble calculated for different internal and external viscosities.
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TABLE I

Elastic shell properties of specific bacteria yeast cells: E is the Young’s modulus

Cell
E

(MPa)
Poisson’s

ratio
Radius
(µm)

Thickness
(nm) T (N/m)

Turgor pressure
(MPa)

E. colib 25 0.16 0.50 6 7.5 × 10−3 0.3

C. eugametosb 8 60 38 9.5

B. emersoniib 10 450 32 6.5

Yeastc 0.6 0.5 1.5–8

Yeastc KA=12.9
(N/m)

0.5 90

a
Reference [67]. Method: AFM.

b
Reference [68]. Method: gas decompression

c
Reference [69]. Method: AFM

d
Reference [70]. Method: micromanipulation.
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TABLE II

Natural frequencies Ω2, qualities of the quadrupole vibrations Q2, maximal area deformation ΔS/Smax (n = 2),
and the correspondent frequency fmax calculated for different types of bacteria.

Cell type a (µm)
Ω2/2π
(MHz) Q2 fmax (MHz) ΔS/Smax Ro/a

E. coli 0.5 4.58 0.8 4.91 0.17 1.94

B. emersonii 10 2.24 15.8 2.17 0.01 0.19

B. yeast
(AFM)

4.5 0.16 1.2 0.14 0.24 5.2

B. yeast
(micromanipulation)

4.5 2.06 6.6 1.98 0.05 0.37

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2011 April 1.


