1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

° NAT/O

N, NIH Public Access

(o

a2 3 Author Manuscript

P s

Published in final edited form as:
Magn Reson Med. 2011 February ; 65(2): 363-369. doi:10.1002/mrm.22690.

Accelerated Multi-Dimensional RF Pulse Design for Parallel

Transmission Using Concurrent Computation on Multiple

Graphics Processing Units

Weiran Deng*, Cungeng Yang, and V. Andrew Stenger
University of Hawaii John A. Burns School of Medicine, Department of Medicine, Honolulu, Hl

96813, USA

Abstract

Multi-dimensional RF pulses are of current interest due to their promise for improving high field
imaging as well as for optimizing parallel transmission methods. One major drawback is that the
computation time of numerically designed multi-dimensional RF pulses increases rapidly with
their resolution and number of transmitters. This is critical because the construction of multi-
dimensional RF pulses often needs to be in real time. The use of graphics processing units for
computations is a recent approach for accelerating image reconstruction applications. We propose
the use of graphics processing units for the design of multi-dimensional RF pulses including the
utilization of parallel transmitters. Using a desktop computer with four NVIDIA Tesla C1060
computing processors, we found acceleration factors on the order of twenty for standard eight-
transmitter 2D spiral RF pulses with a 64 x 64 excitation resolution and a ten-microsecond dwell
time. We also show that even greater acceleration factors can be achieved for more complex RF

pulses.

INTRODUCTION

Multi-dimensional RF pulses are useful in a wide variety of applications including multi-
dimensional spatial localization (1), simultaneous spectral-spatial excitation (2), B1+ field
inhomogeneity compensation (3), and the mitigation of susceptibility artifacts (4). The use
of multiple transmitters (5,6) has been proposed as means of shortening the duration of the
RF pulses and reducing the Specific Absorption Rate (SAR). Among the techniques for
designing small tip angle multi-dimensional RF pulses (7), the “spatial domain” approach
(8,9) calculates the RF pulses by numerically solving a large set of linear equations. The
scale of these linear equations increases with the spatial and frequency resolution of the
desired magnetization, the k-space sampling, and the number of transmitters. Numerically
solving these large-scale linear equations is computationally intensive; the computation
takes seconds and often minutes even for a computer equipped with a powerful Central
Processing Unit (CPU). This is a major drawback because it is impractical to design pulses
in real time while patients wait in the scanner.

A commodity Graphics Processing Unit (GPU) consists of hundreds or thousands of thread
processors and is capable of concurrently executing large numbers of multiple arithmetic
operations. Using commodity GPUs to accelerate massively parallel applications is a recent

“Corresponding Author: Weiran Deng Ph.D., University of Hawaii, John A. Burns School of Medicine, Department of Medicine,
1356 Lusitana Street, UH Tower, 7" Floor, Honolulu HI 96813-2427, USA, Tel: (+1) 808-585-5158, Fax: (+1) 808-585-5160,
weiran@hawaii.edu .

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Deng et al.

THEORY

Page 2

technology that has been demonstrated to dramatically accelerate parallel imaging
reconstruction applications (10,11). In the spatial domain method, RF pulses are numerically
computed by solving the inverse problem of a linear system using algorithms such as
Singular Value Decomposition (SVD) or Conjugate Gradient Least Squares (CGLS). Both
algorithms are highly parallelizable and are therefore excellent candidates for acceleration
using GPUs. Furthermore, a GPU-based computing platform has two major advantages
compared to a CPU cluster. One advantage is that CPU clusters are expensive to procure and
maintain. A personal computer equipped with four NVIDIA (Santa Clara, CA) Tesla C1060
GPU processors offers four Tera (1012) single-precision Floating Point Operations Per
Second (FLOPS) at a cost twenty times lower than a computer cluster with equivalent
computing power. The second advantage is that the programming interface, NVIDIA
Compute Unified Device Architecture (CUDA) (12), provides a simple and intuitive
programming interface that gives users a low learning curve and allows them to easily adopt
GPUs to accelerate computations.

In this article, we demonstrate that GPUs can be used to accelerate the design of multi-
dimensional RF pulses using the CGLS algorithm and the image domain formulation for
parallel transmission. Specifically, four NVIDIA Tesla C1060 GPUs in a high-performance
workstation were used to design two-dimensional (2D) spiral RF pulses for eight
transmitters. The performance of the CGLS algorithm on the four GPUs was compared to
that of single GPU and a quad-core CPU as well. Simulations were performed to compare
the final results. We found a twenty-fold acceleration for the design of standard eight-
transmitter 2D spiral RF pulses with a 64x64 excitation resolution and a ten us dwell time
going from a single CPU thread to four GPUs. Greater acceleration factors were obtained for
RF pulse designs requiring larger matrices.

NUMERICAL DESIGN OF PARALLEL TRANSMISSION RF PULSES

The spatial domain method for parallel transmission uses the small-tip-angle approximation
to formulate that the desired transverse magnetization m(r) is a linear combination of the
magnetization excited by each RF pulse bn(t) on N transmitters weighted by their
transmission sensitivity s,(r):

N,

m(r) =iymOZsc (r) f(l)-b,, (1) €"8 gy,
n=1 [1]

Here y is the gyromagnetic ratio, mg is the initial magnetization, T is the length of the RF
pulses, and k(t) is the k-space trajectory. Discretizing Eq. [1] and solving the inverse
problem of the following linear equation solves for the pulses by:

m:Zdiag {sn} ED,
n=1 1

The desired magnetization m is sampled over Ny spatial points and the by, is discretized into
N; temporal points. The transmission sensitivity for each spatial point is arranged along the
diagonal line of the diagonal matrix diag{s,(r)}. Consequently the complex encoding matrix
E has Ng rows and N; columns. By concatenating diag{sy(r)}E horizontally and by,
vertically, Eq. [2] can be simplified into the classic form of a linear equation

Magn Reson Med. Author manuscript; available in PMC 2012 February 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Deng et al.

Page 3
Ab=m [3]

Here the “coefficient matrix” A = [diag{s1}E, diag{s,}E, ...] and the pulse b = [by, by, ...]",
where H represents the Hermitian transpose. Eq. [3] is generally an ill-posed inverse
problem. A soft constraint on the total energy of the RF pulse can be applied using Tikhonov
regularization. With a linear regularization term A included, the optimal RF pulse is the
solution to the inverse linear problem

(3)(5)

where I is an NcN; XNcN; identity matrix.

A linear equation such as Eqg. [4] can be solved using numerical methods such as SVD or
CGLS. The SVD algorithm solves Eqg. [4] by inverting the coefficient matrix. Not only is the
matrix inversion a computationally intensive O(m3) algorithm, but also the RF pulses
designed using this method produce a less accurate profile with more artifacts than those
designed using iterative methods such as the CGLS method (13). The CGLS technique finds
an approximate solution for the optimization problem

argll)nin {”(AHA+1121) b- AHm”2} ‘ [5]

Although the CGLS method is a less computationally intensive O(m?) algorithm, it can
require several seconds and even minutes to design multi-dimensional RF pulses for parallel
transmission depending on the coefficient matrix size.

GPU ARCHITECTURE

Minimizing the computation time and maximizing the memory access rate can optimize a
computing task. A GPU is designed with a massive number of thread processors and high
memory bandwidth for intense and highly parallel computations such as 3D graphics
rendering. For general-purpose computing, a GPU functions as a coprocessor to accelerate
computing tasks by dividing the tasks into sub-tasks, and these sub-tasks are concurrently
solved on the multiple thread processors. The NVIDIA CUDA programming model
provides an intuitive programming interface that allows a programmer to parallelize a
computing task by partitioning the task into multiple computational blocks, and each block
consists of multiple threads, the basic elements of the computing task. To use a GPU for
general-purpose computations, the data have to be transferred from the system memory to
the GPU device memory.

An efficient program should maximize the usage of the GPU memory. The five types of
GPU memory are global, register, shared, constant, and texture memories. The GPU global
memory provides a high capacity (up to gigabytes) but a bandwidth of hundreds times lower
than the registers and shared memory. Registers and shared memory are fast but have a
limited capacity (64 kilobytes on NVIDIA Tesla C1060), and on the threads in the same
thread block can share variables stored in the shared memory. The constant and texture
memory, cached and mostly used for graphics applications, can be utilized to increase the
memory bandwidth. In the Methods section, we elaborate on the implementation of RF pulse
design and the optimization of the CGLS algorithm on the GPU.

Magn Reson Med. Author manuscript; available in PMC 2012 February 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Page 4

CGLS ALGORITHM WITH REGULARIZATION

The CGLS algorithm is listed below for reference. The implementation on multiple GPUs is
described in Appendix.

Initialization:

d=A" s« m, r=m, p=d™ % d, b=0

Iterate until the number of iterations or the convergence tolerance is met:
[A'd
p_ /l*ll
a=p/p™* p,b=b+a’*d, r=r+a’ p,

s=A" x r (1:N5) =1 = r (Ng+1:N;+N, % N;)

s=s+ * d,pst % 5,d=s
s

The notation 1:Ng represents a segment of a vector starting from the first element and ending
at the Ng element. The most computationally intensive parts in this algorithm are the matrix-
vector products: AH *m, A*d and AH *r. The upper half of the coefficient matrix in Eqn. [6]
has Ng rows and NgxN; columns and is dense; therefore the vector products need to be
explicitly calculated. For operations involved the sparse lower half, only scaling of vectors
by A is needed.

In the CGLS program using the four CPU threads, the computing load was evenly split
among the four threads. In the program using the four GPU devices, the four CPU threads
were also used with each thread controlling one GPU device, however, the computational
load was shifted to the four GPUs. While the coefficient matrix was being computed, the
upper half of the coefficient matrix in Eq. [6] was divided into four partitions: Ag, A}, —Ay,
and Ag, and stored separately in the global memory of the four GPUs. Following the matrix-
vector multiplications described above, a thread barrier was placed such that the
computation on all four GPUs could be synchronized. The results from the four separate
matrix-vector multiplication, dq, d», d3, and d4 were copied back to the host memory and
combined to one vector d = (d;+d3 do+d4)T. The real component, d;+ds, was copied back to
GPU #1 and #2, and the imaginary component, d,+d,4, was copied back to GPU #3 and #4
for the next computation.

It is important to note that using GPUs to accelerate a program introduces overhead, such as
creating GPU contexts, allocating memory on GPUs, and transferring data between the host
and the GPUs. If the overhead becomes too time-consuming, the benefits of using GPUs for
optimization will diminish. On average the overhead time is 300 ms for one GPU and 800
ms for four GPUs. Therefore, the total design time includes the computation of the
coefficient matrix, the time to find the solution to the equation using the CGLS algorithm,

Magn Reson Med. Author manuscript; available in PMC 2012 February 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Deng et al.

METHODS

Page 5

and the overhead. Even though using multiple threads increased overhead, splitting the
computation load among multiple devices still accelerates the arithmetic operations in the
CGLS algorithm.

Lastly, the floating-point operations used in this study were in single-precision (SP) format.
Current generation GPUs support both SP and double-precision (DP) floating point
operations, however SP operations are approximately eight times faster than DP operations
on NVIDIA GPUs because in each multiprocessor there are eight SP floating-point
arithmetic logic units but only one DP ALU. The storage format of SP floating points on
NVDIA graphics hardware is compliant to the IEEE-754 standard, however the arithmetic
operations produce slightly different results compared to ones generated on the CPU. In
certain instances such as adding a small number to a large one, the results produced on the
GPU could deviate from results on the CPU.

EXPERIMENT SETUP

The computing platform was a Linux PC running a 2.66 GHz quad-core Intel Xeon
processor. Four NVIDIA Tesla C1060 GPU processors were installed in the PCI express 2.0
16-lane slots with a bandwidth of 16 GB/s for each slot. Each GPU had 240 thread
processors running at 1.3 GHz. Benchmarks were established for four different CGLS
programs written for the computational load allocated to one CPU thread, four CPU threads,
one GPU, and four GPUs. A Bloch equation simulator was used to inspect the magnetization
patterns excited by the RF pulses to ensure consistency between algorithms. The speed of
the computation was determined for six different sized coefficient matrices. The CPU CGLS
program used libraries from Basic Linear Algebra Subprograms (BLAS), and the GPU
CGLS routine was programmed using the NVIDIA CUDA and CUBLAS libraries.

The pulses used a 2D spiral k-space trajectory generated with a 4 gauss/cm peak gradient
amplitude, a 12500 gauss/cm/s maximum slew rate, a 22 cm field of excitation (FOX), and a
64x64 matrix resolution. The trajectories and gradients were designed using a custom
MATLAB (The MathWorks Inc., Natick, MA) script and stored on the PC. The k-space
trajectory is shown in Fig. 1a and the corresponding gradient waveforms are shown in Fig.
1b. The waveform was 11.14 ms long with a dwell time At = 10 ps. Figure 2a shows
simulated sensitivity maps that were generated to vary linearly across the FOX (rotated 45
degrees for each transmitter). Pulses were then designed using the spatial domain method
and a reduction factor of two using all four CGLS programs and six values of At equal to 10,
8, 6,4, 2, and 1.5 pus. The number of CGLS iterations in all calculations was 40, enough to
guarantee a good convergence, and the linear regularization constant A was ten from the
inspection of the L-curve. Figure 2b shows the magnitude and phase of the first 200 points
of the RF pulse for the first transmitter for At = 10 us designed using a single CPU. The
University of Hawaii logo, sampled at a 64x64 resolution and shown in Fig. 2c, was chosen
as the desired excitation pattern. Figure 2d shows the simulated magnetization produced by
the RF pulse.

The dwell time At was used as a convenient method to increase the coefficient matrix A size
without changing the pulse features. In practice, the size of A is determined by many
application dependent parameters including the excitation resolution, the number of k-space
points, the number of the transmitters, the number of slices, and the number of frequency
points (14). The design of a set of pulses using a single CPU and At = 10 ps took
approximately fifteen seconds with the size of A equal to 3.6x107. Although this design time
is relatively short in duration, this represents a baseline parallel transmission RF pulse
design and the computation time increases approximately linearly with the size of the

Magn Reson Med. Author manuscript; available in PMC 2012 February 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

RESULTS

Page 6

coefficient matrix A. For example, the computation time of the same set of pulses using a
single CPU and At = 10 ps would be approximately ten minutes in an application that
requires ten slices and four frequency points.

IMPLEMENTATION ON GPUs

The complex elements in Eq. [4] were first separated such that the real and imaginary
components were grouped into blocks:

AR _A[myg

A, A by \ | m,

Al 0 (b,)_ 0o |

0 AU 0 [6]

where R and | are the real and imaginary components. This equation incorporates the linear
regularization therefore the magnetization profile vector m was extended with zeros from the
length of Ng to the length of NyxN;. The coefficient matrix in Eq. [6] is large (around 600
MB for the At = 10 us pulse) and is time consuming to populate in memory. On a CPU it
can take 100 times longer to populate the coefficient matrix than on a GPU. Therefore, it is
crucial to populate the coefficient matrix on the GPU and store it in GPU memory.

The lower half of the coefficient matrix in Eq. [6] was a diagonal matrix and was not stored
on the GPU memory. However, the upper half of the matrix was dense and needed to be
stored on the GPU global memory. The matrix was computed by multiplying the encoding
matrix and the diagonal matrix of the sensitivity map. The encoding matrix in turn was the
outer product of the k-space trajectory vector and the vector that contained locations of
spatial sampling points within FOX. This arithmetic process was computationally intense,
approximately equivalent to five iterations of the CGLS routine. Therefore the k-space
trajectory and transmission sensitivities were copied into the texture GPU memory as inputs
for the computation of the coefficient matrix. Elements along the same column in the
encoding matrix read the same value of the k-space trajectory, and the texture memory was
optimized for the case when all the threads were reading variables from the same location.
The transmission sensitivity was mapped into the spatial location and also stored on the
texture memory, which was cached and optimized for repeated access.

Figure 3a is a logarithmic plot of time used to populate the coefficient matrix, averaged from
ten runs, using one CPU thread (stars), four CPU threads (triangles), one GPU (squares), and
four GPUs (circles) as a function of the size of the coefficient matrix. Four CPU threads
showed no improvement in time over one CPU due to the fact that both use the same host
memory. Using visual inspection of the plots, one GPU was able to accelerate this process
by a factor on the order of 100 and four GPUs produced a further acceleration by another
factor of two. Figure 3b shows the CGLS computation time as a function of the coefficient
matrix size. Distributing the computational load to four CPU threads accelerated the
algorithm by a factor of approximately three. One GPU was able to accelerate the CGLS
routine over that on the single CPU thread by a factor of ten and distributing the
computation to four GPUs further accelerated the algorithm by a factor of two to three.

Figure 4 shows the overall computation time as a function of the coefficient matrix size. The
overall acceleration was approximately two for the four CPUs threads and ten for one GPU
over the single CPU thread. Implementation on four GPUs gained an acceleration factor of
twenty over the single CPU thread, however this was only observed for larger encoding

Magn Reson Med. Author manuscript; available in PMC 2012 February 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Deng et al.

Page 7

matrices and the acceleration diminished as the size of encoding matrix decreased. For
smaller encoding matrices, one GPU actually had a higher acceleration factor than four
GPUs due to the increased relative overhead.

Figure 5a shows the first 100 points of the RF pulse for one of the transmitters. The crosses
are data computed by a single CPU thread using DP floating point and the circles are from a
single GPU using SP floating point. Figure 5b shows the simulated magnetization generated
by the pulse from the single GPU. Figure 5¢ plots the magnitudes of the magnetization from
both the single CPU and GPU evaluated along the line in Fig. 5b. The solid line is the
desired magnetization and the crosses are the simulated magnetization from the CPU pulses
and circles are from the GPU pulses. The normalized root mean square error (NRMSE)
between the desired and simulated magnetizations for the CPU pulses was 0.2720 and for
the GPU pulses was 0.2714. Figure 6 shows the mean values and the standard deviations of
the differences between the transversal magnetization magnitude obtained from Bloch
equation simulations using RF pulses generated on the CPU in DP and the GPU in SP. The
points in Fig. 6a are simulated using RF pulses with identical design parameters as those
used in Fig. 3 and 4 where the coefficient matrix size was increased using different dwell
times of At =10, 8, 6, 4, 2, and 1.5 us. The Points in Fig. 6b were simulated using pulses
with a 10 us At and the coefficient matrix size was varied using 32 x 32, 40 x 40, 48 x 48,
56 x 56, and 64 x 64 excitation resolutions. We found no significant difference between
these two designs.

DISCUSSION AND CONCLUSIONS

In conclusion, we implemented a CGLS algorithm for parallel transmission RF pulse design,
using the small tip angle spatial domain method, on four NVIDIA Tesla C1060 GPUs. The
method uses easily accessible libraries and standard routines and does not require any low
level programming. We found an acceleration factor of 20 for eight-transmitter 2D spiral RF
pulses with a 64x64 excitation resolution and a10-ps dwell time when going from a single
CPU thread to four GPUs. We also found that greater acceleration factors can be achieved
for larger-scale problems that involve much more advanced RF pulse designs. Although we
used 2D spiral pulses for proof of concept, the underlying numerical method is identical for
the design of all multi-dimensional RF pulses including “fast-k,” 3D pulses for signal loss
reduction (15) and 4D spectral-spatial pulses (16). The design of these pulses can take
minutes on a CPU. The proposed approach should also accelerate the computation of large
flip angle multi-dimensional pulses for parallel transmission (17,18). In this application, the
forward and backward integrations of the Bloch equation are the most compute-intensive
part in the optimal control approach for nonlinear RF pulse designs. The evolution of the
spin magnetization at each spatial location can be computed independently and parallelized
on the GPU thread processors.

In general the implementation of CGLS in SP offers higher speed but lower numerical
accuracy. We found that the GPU implementation in SP using the small-tip-angle approach
produces slightly different RF waveforms than pulses generated using DP on the CPU.
However, the implementation in SP produced identical results on the CPU and the GPU.
The difference is primarily the result of lower numerical accuracy of SP. We also found that
the difference in the simulated magnetization profiles from small-tip-angle SP pulses and
DP pulses was negligible. However, in other pulse design algorithms the result using SP can
be significantly different than the DP result, and implementation in DP or mixed precision
might be necessary. For example. we found in separate studies that large-tip-angle designs
using optimal control approaches do require higher numerical accuracy. A general
suggestion would be to investigate the numerical accuracy of SP before the implementation
of the algorithm on GPUs.

Magn Reson Med. Author manuscript; available in PMC 2012 February 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Deng et al.

Page 8

We showed that two steps in the RF pulse design, the computation of coefficient matrix and
the CGLS algorithm, can be accelerated using four GPUs over one CPU by factors on the
order of 200 and 20, respectively. However, as mentioned above, the overhead introduced
from using multiple CPU threads to access multiple video cards is around 800 ms. Amdahl’s
law states that the maximum acceleration using parallel computing is 1/((1-p) + p/s), where
p is the part of the program that can be optimized via parallelization, and s is the
acceleration factor. Thus we would estimate the limit of acceleration using four NVIDIA
Telsa C1060 cards is t1/200 + t,/20 + 0.8 seconds, where t; is the computing time for
populating coefficient matrix and t, is the computing time for the CGLS routine using a
single CPU thread. This result shows qualitative agreement with what we observe. The
acceleration factor will be even higher using GPUs to design more complicated RF pulses.
In practice, creating GPU compute context and allocating GPU memory once and reusing
them for the design of multiple sets of RF pulses can reduce the overhead. However, if the
coefficient matrix is small enough that the computational overhead on the GPU becomes
substantial, using multiple host CPU threads in the CGLS routine becomes more
advantageous than using GPUs. Furthermore, using multiple GPUs is the solution for the
design of RF pulses when the coefficient matrix size exceeds the memory capacity of a
single GPU. The GPUs used in this study were based on NVIDIA G80 chip family, which
usually have more than 512 MB of onboard memory (ours had 4 GB). We found that 512
MB memory was sufficient to design pulses with a 64 x 64 excitation resolution and a
reduction factor of two (150 gauss/cm/s slewrate and 4 gauss/cm gradient amplitude) for
eight transmitters.

The proposed method can be easily transferred to image reconstruction using numerical
inverse approaches including multiple receiver coils (19,20). The numerical method of
SENSE for parallel image reconstruction is identical to the spatial domain method for
parallel transmission and requires solving a similar inverse linear problem. In practice, the
CG method is sometimes preferred for its speed over the CGLS method. This is because
each CGLS iteration includes a matrix-vector multiplication and a transposed matrix-vector
multiplication, whereas each CG iteration has only one matrix-vector multiplication. Even
though the CG method requires a symmetric matrix, it can be applied to solve the linear
equation: A7 « A = b=A" « m, and this symmetric matrix only needs to be computed once for
all the images. A GPU computer system is also flexible to upgrade compared with
conventional clusters. More GPU cards can be installed into a workstation for imaging
applications that acquire larger data sets. With vendors striving to pack more computation
power on graphics cards and competing for market shares, GPUs will keep up to meet the
computational demands in parallel imaging as an affordable and promising solution.

Acknowledgments

Work supported by the National Institute on Drug Abuse (R01DA019912, KO2DA020569). Core resources
supported by the National Center for Research Resources (G12-RR003061, P20-RR011091), National Institute of
Neurological Disorders and Stroke (U54-NS56883), and the Office of National Drug Control Policy

Magn Reson Med. Author manuscript; available in PMC 2012 February 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Deng et al. Page 9
Appendix
[Thread 1 || Thread2 || Thread3 || Threadd |
_GPUL i GPUZ it GPU3 » GPU4
£ % Populate Populate Populate Populate
22 Ay 4, Ay A
3
n=my n=m, r=m,; rp=m
L= |B=0 b, =0 b, =0 b, =0
ZE |d=dpxmg ||[d=—a xmld = A xm, ||d,= 4] xm,
. Copy d; to Copyd, to Copy d; to Copy d, to
host memory host memory host memory host memory
L
-
) i) e
3
Copy dy to Copy dy to Copy dyto Copy d; to
GPU 1 GPU 2 GPU 3 GPU 4
§§ P =Agxdy || py =4, Xdy || py==A4;Xd, || py= A xm;
HE Copy p; to Copy p;to Copy p3 to Copy pyto
host memory host memory host memory host memory
i 4
43 ,:(pe |_[ptpy) we P
52 ! (P Patps J plep
1
Copy pg to Copy pg to Copy p; to Copy p; to
GPU 1 GPU 2 GPU 3 GPU 4
= |b=htad ([b=b+ad, ||b=b+ad |[b=b+od,
Eg n=Entep ||n=ntap, ||n=ntap, ||n=r+op,
- sl=/4;><rk .v:=—A,T><rR s3=AITXr, s4=A;><r,
Copy §; to Copy 5, to Copy §3t0 Copy 54 to L‘mp
host memory host memory host memory host memory
, 4
3
Copy S to Copy Sgto Copy sy to Copy §;to
é 2 GPU | GPU 2 GPU 3 GPU 4
ig s,=s,+Bd, || s,=s5,+PBd, ||sy=s,+Bd; ||s,=s,+Bd,
dy=s, d,=s, dy=s, d,=s,
l
Figure A.
displays a flowchart detailing the implementation of the CGLS algorithm on multiple GPUs.
The context for each GPU is created in the local scope of each thread and the computing
load is distributed onto GPUs. The gray boxes are segments of CGLS that can be
parallelized, and the white boxes are vector norm operations, which require copying parts of
vector d, p, and s into system memory and calculating the sums in one CPU thread.
References

1.

Hardy CJ, Cline HE. Spatial localization in two dimensions using NMR designer pulses. J Magn
Reson. 1989; 82:647-654.

. Meyer CH, Pauly JM, Macovski A, Nishmura DG. Simultaneous spatial and spectral selective

excitation. Magn Reson Med. 1990; 15:287-304. [PubMed: 2392053]

. Saekho S, Boada FE, Noll DC, Stenger VA. A small tip angle 3D tailored RF slab-select pulse for

reduced B1 inhomogeneity at 3T. Magn Reson Med. 2005; 53:479-484. [PubMed: 15678525]

. Stenger VA, Boada FE, Noll DC. Three-dimensional tailored RF pulses for the reduction of

susceptibility artifacts in T2*-weighted functional MRI. Magn Reson Med. 2000; 44:525-531.
[PubMed: 11025507]

. Katscher U, Bornert P, Leussler C, van den Brink J. Transmit SENSE. Magn Reson Med. 2003;

49(1):144-150. [PubMed: 12509830]

. Zhu Y. Parallel excitation with an array of transmit coils. Magn Reson Med. 2004; 51(4):775-784.

[PubMed: 15065251]

Magn Reson Med. Author manuscript; available in PMC 2012 February 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Deng et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Page 10

. Pauly JM, Nishimura D, Macovski A. A k-space analysis of small-tip-angle excitation. J Magn

Reson. 1989; 81:43-56.

. Yip CY, Fessler JA, Noll DC. Iterative RF pulse design for multidimensional, small-tip-angle

selective excitation. Magn Reson Med. 2005; 54(4):908-917. [PubMed: 16155881]

. Grissom W, Yip CY, Zhang Z, Stenger VA, Fessler JA, Noll DC. Spatial domain method for the

design of RF pulses in multicoil parallel excitation. Magn Reson Med. 2006; 56(3):620-629.
[PubMed: 16894579]
Hansen MS, Atkinson D, Sorensen TS. Cartesian SENSE and k-t SENSE reconstruction using
commodity graphics hardware. Magn Reson Med. 2008; 59(3):463-468. [PubMed: 18306398]
Sebastien Roujol, BDdS; Vahala, Erkki. Online real-time reconstruction of adaptive TSENSE with
commodity CPU/GPU hardware. Magn Reson Med. 2009; 62:1658-1664. [PubMed: 19902515]

NVIDIA. NVIDIA compute unified device architecture programming guide. 2.3 ed.. 2009.

Adam C, Zelinski LLW, Setsompop Kawin, Alagappan Vijaynand, Gagoski Borjan A. Goyal
Vivek K, Herbank Franz, Fontius Ulrich, Schmitt Franz, Adalsteinsson Elfar. Comparison of three
algorithms for solving linearized systems of parallel excitation RF waveform design equations:
experiments on an eight-channel system at 3 Tesla. Concepts in Magn Reson B. 2007; 31B(3):
176-190.

Setsompop K, Alagappan V, Gagoski BA, Potthast A, Hebrank F, Fontius U, Schmitt F, Wald LL,
Adalsteinsson E. Broadband slab selection with B1+ mitigation at 7T via parallel spectral-spatial
excitation. Magn Reson Med. 2009; 61(2):493-500. [PubMed: 19161170]

Yip CY, Fessler JA, Noll DC. Advanced three-dimensional tailored RF pulse for signal recovery in
T2*-weighted functional magnetic resonance imaging. Magn Reson Med. 2006; 56(5):1050-1059.
[PubMed: 17041911]

Yang C, Deng W, Alagappan V, Wald L, Stenger V. Four-dimensional spectral-spatial RF pulses
for simultaneous correction of B1+ inhomogeneity and susceptibility artifacts in T2*-weighted
MRI. Magn Reson Med. in press.

Xu D, King KF, Zhu Y, McKinnon GC, Liang ZP. Designing multichannel, multidimensional,
arbitrary flip angle RF pulses using an optimal control approach. Magn Reson Med. 2008; 59(3):
547-560. [PubMed: 18306407]

Grissom WA, Yip CY, Wright SM, Fessler JA, Noll DC. Additive angle method for fast large-tip-
angle RF pulse design in parallel excitation. Magn Reson Med. 2008; 59(4):779-787. [PubMed:
18383288]

Sutton BP, Noll DC, Fessler JA. Fast, iterative image reconstruction for MRI in the presence of
field inhomogeneities. IEEE Trans Med Imaging. 2003; 22(2):178-188. [PubMed: 12715994]
Pruessmann KP, Weiger M, Bornert P, Boesiger P. Advances in sensitivity encoding with arbitrary
k-space trajectories. Magnetic Resonance in Medicine. 2001; 46:638—651. [PubMed: 11590639]

Magn Reson Med. Author manuscript; available in PMC 2012 February 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Deng et al.

Page 11

Fig. 1.

(a) The spiral k-space trajectory for a 64x64 excitation resolution in a 22 cm FOX. (b) The
corresponding gradient waveforms. The solid line is the x gradient, and the dashed line is the
y gradient.

Magn Reson Med. Author manuscript; available in PMC 2012 February 1.

1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Deng et al. Page 12

Fig. 2.

(a) Simulated transmission sensitivity maps for eight transmitters. (b) The first two hundred
points of the magnitude and the phase of the RF pulse for the first coil. (c) The desired 2D
excitation pattern. (d) The 2D pattern excited by the RF pulses for eight transmitters using a
reduction factor of two.

Magn Reson Med. Author manuscript; available in PMC 2012 February 1.

1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Deng et al.

Page 13

=
o
N

—
S}
A
T
v
ot

=
o
-

matrix A compute time (sec)
: °

0.5 1.0 1.5 2.0 2.5

d matrix size 1e8
102 '
[s)
Q
u
GE)101
=
wn
|
Q)
O
100 |
b 0.5 1.0 1‘.5 2.0 2‘.5
H H 1le8
matrix size

Fig. 3.

(a) Computation time for populating encoding matrices (eight transmitters, 64x64 excitation
resolution, reduction factor of two) using one CPU thread (stars), four CPU threads
(triangles), one GPU (squares) and four GPUs (circles) as a function of the coefficient
matrix size. (b) CGLS computation time as a function of the coefficient matrix size.
Coefficient matrices of different sizes were generated using different dwell time for RF
pulses.

Magn Reson Med. Author manuscript; available in PMC 2012 February 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Deng et al.

Page 14

total time (sec)
"

T 1

0 . . .
10 0.5 1.0 1.5

matrix size

Fig. 4.

2.0

2.5
le8

The total compute time to compute RF pulses (eight transmitters, 64x64 excitation
resolution, reduction factor of two) using one CPU thread (stars), four CPU threads
(triangles), one GPU (squares), and 4 GPUs (circles) as a function of the coefficient matrix

size.

Magn Reson Med. Author manuscript; available in PMC 2012 February 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Deng et al.

Page 15

Fig. 5.

(a) The first 100 points of the RF pulse designed on the CPU (crosses) using double-
precision floating point and the GPU (circles) using single-precision floating point for the
transmitter with first sensitivity map shown in Fig. 2a. (c) The magnetization magnitude
along the line in (b) excited by the CPU pulse (crosses) and the GPU pulse (circles).

Magn Reson Med. Author manuscript; available in PMC 2012 February 1.

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Deng et al. Page 16

i is
matrix size

l

matrix size

T magnetization difference @ magnetization difference

20 2
16

Fig. 6.

The mean values and the standard deviations of the differences between the magnetization
magnitudes produced by Bloch equation simulation using pulses generated on the CPU
using DP and on the GPU using SP. All points have same pulse parameters except in (a) the
RF dwell time (At = 10, 8, 6, 4, 2, and 1.5 ps) and (b) the excitation resolution (N = 32, 40,
48, 56, and 64) were changed to vary the coefficient matrix size.

Magn Reson Med. Author manuscript; available in PMC 2012 February 1.

