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Abstract
Peritoneal carcinomatosis (PC) of colorectal origin is associated with a poor prognosis. However, cytoreductive
surgery combined with hyperthermic intraperitoneal chemotherapy is available for a selected group of PC patients,
which significantly increases overall survival rates up to 30%. As a consequence, there is substantial room for
improvement. Tumor targeting is expected to improve the treatment efficacy of colorectal cancer (CRC) further
through 1) more sensitive preoperative tumor detection, thus reducing overtreatment; 2) better intraoperative
detection and surgical elimination of residual disease using tumor-specific intraoperative imaging; and 3) tumor-
specific targeted therapeutics. This review focuses, in particular, on the development of tumor-targeted imaging
agents. A large number of biomarkers are known to be upregulated in CRC. However, to date, no validated criteria
have been described for the selection of the most promising biomarkers for tumor targeting. Such a scoring sys-
tem might improve the selection of the correct biomarker for imaging purposes. In this review, we present the
TArget Selection Criteria (TASC) scoring system for selection of potential biomarkers for tumor-targeted imaging.
By applying TASC to biomarkers for CRC, we identified seven biomarkers (carcinoembryonic antigen, CXC chemo-
kine receptor 4, epidermal growth factor receptor, epithelial cell adhesion molecule, matrix metalloproteinases,
mucin 1, and vascular endothelial growth factor A) that seem most suitable for tumor-targeted imaging applica-
tions in colorectal cancer. Further cross-validation studies in CRC and other tumor types are necessary to establish
its definitive value.
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Introduction
Patients with colorectal cancer (CRC) have an estimated 5-year sur-
vival, varying from approximately 90% in patients with stage I dis-
ease (Dukes A) to approximately 10% in patients with metastatic
disease (Dukes D) [1]. Peritoneal carcinomatosis (PC) is a common
form of end-stage colorectal cancer (CRC), affecting 10% to 15% of
patients at the time of primary surgery and accounting for 25% to
35% of the recurrences of CRC [2]. PC has a median survival of 5 to
7 months without treatment [3–5].
Since the last decade, selected stage IV CRC patients with PC are

treated with hyperthermic intraperitoneal chemotherapy (HIPEC).
This procedure consists of flushing the intra-abdominal cavity with
heated chemotherapy perioperatively after primary cytoreduction.
HIPEC improves the median survival to 13 to 63 months, with a
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5-year survival varying from 19% to 51% [6–10]. However, further
improvement is still desirable.

A more extensive surgical cytoreduction is associated with an in-
crease in survival [11,12]. Furthermore, because penetration of chemo-
therapeutic drugs into peritoneally located tumor tissue is only
superficial (limited to 1-2 mm), optimal cytoreduction by removing
all visible tumor noduli is an essential prerequisite for the HIPEC
procedure [13–15].

The limited survival in stage IV CRC asks for a more vigorous
approach to improve prognosis. Current research is mainly focused
on tumor-targeted imaging and therapy for diagnosis, treatment, and
follow-up because these are expected to yield tumor-specific and thus
stronger diagnostic and therapeutic effects. Therefore, objective iden-
tification of suitable tumor biomarkers for diagnostic and therapeutic
purposes seems appropriate. Furthermore, tumor-targeted imaging
can aid in identification of metastatic disease and in detection of re-
current disease. In this review, we emphasize tumor-targeted imaging
because targeted therapeutics demand an entirely different approach
for a meta-analysis.

A large number of biomarkers have been reported to play an im-
portant role in CRC. However, a limited number of these markers
are suitable for tumor targeting based on characteristics such as, for
example, expression rates. In literature, few objective data on how to
determine the suitability of a potential target are available. Therefore,
we set out to design a novel scoring system for classification and se-
lection of biomarkers for tumor targeting applications. CRC is used
as a clinical example for development and initial testing of this novel
scoring system. With the emphasis on diagnostic and intraoperative
imaging, we identified the most promising markers for tumor target-
ing in CRC using the scoring system.
Figure 1. Selection of biomarkers upregulated in CRC.
In conclusion, in this review, we provide an overview of potential
biomarkers for tumor targeting in CRC, supported by a newly de-
signed TArget Selection Criteria (TASC) scoring system.
Methods

Design of the TASC Scoring System
Seven most important target characteristics selected based on the

literature were summarized and granted 0 to 6 points, in order of
importance. Subsequently, the selection system was tested by scoring
a number of random biomarkers. Cutoff values were determined,
and the scores were slightly adjusted where necessary to assure real-
istic outcomes. Finally, the selection system was further validated
by testing a wide spectrum of biomarkers based on a publication of
Cardoso et al. [16].

Literature Search Methods
Cardoso et al. [16] presented a table of genes found to be upregu-

lated in CRC compared with normal colon tissue, as confirmed in
three or more articles. The initial literature search query was based
on this extensive table of genes. In addition, based on this table, we
analyzed all genes mentioned for overexpression of the related protein
because protein expression is not always synchronously upregulated,
using Swiss-Prot and PubMed from 1985 to May 2010 (Figure 1).
Furthermore, we included a number of proteins that were not men-
tioned in the table of Cardoso et al. but were otherwise described in
the literature to play a significant role in CRC.

Finally, a systematic search of literature was performed, with PubMed
as the main database, using the following search terms: the name of
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the protein + “immunohistochemistry” + “colorectal cancer,” and the
name of the protein + “imaging” + “colorectal cancer,” or variations of
these terms, from 1985 to May 2010.
Target Selection: Introducing TASC
A tumor biomarker can be defined as a distinguishable component
present on the tumor cell or secreted by a tumor cell to the surround-
ing stromal tissue. Such a biomarker is often a target in biologic inter-
actions, e.g., the combination of CXC chemokine receptor 4 (CXCR4)
as target of SDF-1. Alternatively, a biomarker can be used as a target for
a synthetic substrate, which can be a single molecule, antibody, or
others. Such a substrate can be conjugated to a diagnostic or imaging
agent or a drug for clinical application purposes.
To our best knowledge, a scoring system to identify the most ideal

target characteristics has never been explicitly described or developed
or even validated. However, a number of favorable target features can
be logically extracted from literature so far. On the basis of these char-
acteristics, we propose a novel scoring system for target selection in
particular for imaging purposes, the TASC.
The TASC score is based on the seven most favorable target char-

acteristics that are granted points if it applies to the marker (Table 1).
These characteristics are as follows: I) extracellular biomarker localiza-
tion, either on the cell membrane or in close proximity of the tumor
cell; II) expression pattern; III) tumor-to-healthy tissue ratio (T/N);
IV) percentage of positive tumors; V) reported successful use of the
biomarker in in vivo imaging studies; VI) enzymatic activity; and VII)
internalization (Figure 2).
We will briefly explain these seven individual characteristics:
Figu
boun
10. B
has p
are c
I—A target must be easily accessible by an agent, administered
either systemically or intraperitoneally. For effective targeting, as
re 2. The TASC. The blue flag represents the selected biomarker. I
d, or in close proximity of tumor cell. II. Diffuse up-regulation of th
lue cells represent tumor cells; normal cells are green. IV. Up-regu
reviously successfully been used in in vivo imaging studies. VI. Enzym
leaving enzymes (yellow) that activate the imaging agent. VII. Intern
little as possible barriers should be between the agent and its
target. As a consequence, most conveniently, the marker is pres-
ent on the cell surface. Alternatively, the expression of the target
in the extracellular tumor matrix may also be adequate for im-
aging purposes. In our opinion, the extracellular localization of
the target, either membrane-bound or near the tumor cell, is one
of the most important factors and is therefore weighted substan-
tially in the TASC system. Extra points are given to a cell mem-
brane bound target because it is expected that membrane-bound
targets more specifically emit signal from the tumor cell than sol-
uble targets.
II—In the best scenario, the target is expressed by all tumor
cells. However, in reality, this is very rare because cancer cells
have the reputation of being heterogenic [17]. Also acceptable
Table 1. The TASC.
TASC Scoring System
.

l

a

Characteristics
Extracellular localization of the biomarker, cell membra
e target throughout tumor tissue. III. T/N ratio greater t
ation of the biomarker in most patients. V. A biomarker
atic activity facilitating the use of activatable probes. Sho
lization of probe for accumulation of imaging agent.
Score
I
 Extracellular protein localization
 Bound to cell surface (receptor)
 5

In close proximity of tumor cell
 3
II
 Diffuse up-regulation through tumor tissue
 4

III
 T/N ratio > 10
 3

IV
 Percentage up-regulation in patients
 >90%
 6
70%-90%
 5

50%-69%
 3

10%-49%
 0
V
 Previously imaged with success in vivo
 2

VI
 Enzymatic activity
 1

VII
 Internalization
 1

Total: maximum 22
Potential target ≥ 18
A biomarker is granted points for seven factors (I-VII). A total score of 18 or higher indicates that
the biomarker is potentially suitable for tumor-targeted imaging purposes.
ne–
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is a marker that is evenly distributed throughout the tumor tis-
sue. High sensitivity to detect all tumor tissue is essential; there-
fore, this factor also has a significant power in TASC.
III—The expression of the biomarker should be minimal in
normal tissue. In modalities like positron emission tomography
(PET) and single photon emission computed tomography
(SPECT) scanning, a tumor-to-healthy cell (T/N) ratio of greater
than 10 is considered sufficient [18]. In fluorescence imaging, a
minimal T/N ratio has not yet been described but is expected to
be comparable to the previously mentioned modalities on the
basis of its detection sensitivity and specificity.
IV—It is highly preferable that the use of a particular biomarker
is of value for large patient populations rather than only small
groups of “special” patients. Overexpression of the target in most
patients increases clinical applicability of a tumor-targeted agent.
V—Previous use of a biomarker in in vivo imaging indicates
suitability of the marker for imaging purposes in other diseases;
in this case, CRC.
VI—Although not an absolute condition for a target, (extracellu-
lar) enzymatic activity in and around the tumor tissue offers the
possibility of applying locally activated imaging agents, so-called
smart probes, increasing the signal-to-background ratio [19].
VII—It is reported in the literature that internalization of the
probe-target complex in the tumor can lead to intracellular ac-
cumulation of the imaging agent, which improves the signal
and leads to a more optimal T/N ratio [20]. For this reason,
internalization is granted points in the selection criteria.
Selecting a target that meets up to all of these conditions is chal-
lenging. In most cases, it is not necessary to meet all criteria.

A total score of 21 or 22 implies that a marker has a high potential
for use as a target for imaging tracers in vivo. If a marker scores 18 or
higher, it is considered to be a potential target. Markers with a score
of less than 18 seem less suitable for targeted imaging modalities and
require more research to evaluate their potential.
Possible Target Candidates in Colorectal Cancer
It is well known that it can be difficult to distinguish cancer cells
from its normal surroundings because of the many similarities be-
tween malignant cells and normal cells. Furthermore, tumors are mu-
tually heterogenic. However, what most cancer cells have in common
and what separates them from normal cells is uncontrolled growth,
resulting in a high nutritional uptake. An alternative property is the
ability to invade normal tissue and metastasize. In this respect, it is
not surprising that the potential targets presented in this review sup-
port these phenotypic characteristics. The biomarkers reported for
CRC can roughly be divided into the following groups:

� Proteins necessary for high cancer cell metabolism and prolif-
eration rate: epidermal growth factor receptor (EGFR), folate
receptor-alpha (FR-α), transforming growth factor (TGF), vas-
cular endothelial growth factor (VEGF).

� Proteins with regulatory functions in the extracellular matrix:
carbonic anhydrase (CA) IX, collagen, matrix metalloproteinases
(MMPs), osteonectin (SPARC).

� Cell adhesion and signaling molecules: cadherin 3, carcinoem-
bryonic antigen (CEA), CD44, CXCR4, epithelial cell adhe-
sion molecule (EpCAM), integrins.
� Cytokines/chemokines and their corresponding receptors, in-
volved in metastasis: CXCR1, CXCR2, CXCR4, CXC chemo-
kine ligands (CXCLs).

� Miscellaneous: cathepsin, inducible nitric oxide synthase (iNOS),
mucin 1 (Muc1), neutrophil gelatinase–associated lipocalin
(NGAL) also called lipocalin-2 (LCN2), tumor-associated glyco-
protein 72 (TAG-72).

These potential targets are summarized in Table 2. As is shown in
this table, several potential target candidates can be identified; how-
ever, currently, a limited number of matching clinically approved agents
are available for application in humans (Table 3).

Some targets have T/N ratio of less than 10. However, it should be
noted that some targets internalize the imaging agent more rapidly in
tumor cells compared with normal cells [18].

This leads to an accumulation of the conjugated imaging agent,
which may compensate the signal for the lower T/N ratio, as with
FDG-PET imaging [18,20].

Which Biomarkers Meet the Targeting Criteria?
When applying the proposed TASC score (Table 1) to the biomark-
ers mentioned in Table 2, not all requirements can be objectified by
data from literature. Most often, expression rates and pattern are un-
known; therefore, it would be interesting to focus future research on
target finding on these aspects. The following six targets have a score
greater than 17 points and can therefore be considered most promis-
ing in CRC (Table 4): EpCAM (20 points), CXCR4 (20 points),
Muc1 (18 points), MMPs (18 points), EGFR (20 points), and CEA
(19 points). In this section, we discuss these targets in more detail,
including the status of these biomarkers in targeted imaging.

VEGF-A scores 17 points, which implies less potential as a target.
However, given the extensive experience in VEGF-A–targeted imag-
ing, this biomarker was, nevertheless, considered to be promising and
is therefore given attention in this section.

Epithelial Cell Adhesion Molecule
EpCAM is a cell surface receptor, which is involved in cell adhesion

and is expressed on most epithelial cells. EpCAM is upregulated on
several epithelial cancers, including CRC. The expression of EpCAM
in CRC is more than 80% [21–23]. Paradoxically, a higher expression
of EpCAM on tumor cells is associated with increased tumor cell mi-
gration [23]. Eder et al. [24] successfully imaged EpCAM-expressing
tumors in mice, using an antibody fragment targeting EpCAM conju-
gated to radionuclide, for PET imaging.

Edrecolomab and catumaxomab are clinically approved antibodies
directed at EpCAM (Table 3) and tested for therapeutic use. How-
ever, so far, no obvious therapeutic advantage has been reported for
these agents [25–28]. To our best knowledge, these antibodies have
not yet been used for in vivo imaging of EpCAM. When applying
TASC to EpCAM; the total score of 20 points comes about as fol-
lowed: EpCAM is cell membrane bound (5 points), diffusely upregu-
lated (4 points), has a high T/N ratio (3 points), is upregulated in
more than 79% of the CRC patients (5 points), has been previously
imaged with success in vivo (2 points), and is able to internalize a
compound (1 point) [21,22,29].

CXC Chemokine Receptor 4
CXCR4 is a cell surface receptor involved in homing of hemopoi-

etic stem cells and lymphocytes to the bone marrow, but it is also
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associated with metastatic spread in several types of cancer, including
CRC. CXCR4 is expressed in approximately 70% of the colorectal
tumors [30].

Imaging of CXCR4 has recently attracted attention of many dif-
ferent research groups. Nimmagadda et al. [31,32] reported imaging
of CXCR4 in tumor-bearing mice using a radionuclide-labeled anti-
CXCR4 monoclonal antibody (mAb) using SPECT/CT scanning.
Recently, the same group also succeeded in imaging CXCR4 expres-
sing tumors in mice with the use of AMD3100, a clinically approved
molecule that selectively binds to CXCR4 (Table 3), conjugated to a
radionuclide [32]. AMD3100 is a clinically approved agent that is
most promising in harvesting hemopoietic stem cells from the bone
marrow. Alternatively, CXCR4-targeting peptides conjugated to a radio-
nuclide or a fluorophore have been reported [33,34]. Misra et al. [35]
labeled stromal-derived factor-1 alpha (SDF-1α), a ligand of CXCR4, to
a radionuclide for myocardial infarction imaging purposes.

When applying TASC, CXCR4 is granted 20 points based on its
expression in CRC.

Vascular Endothelial Growth Factor-A
VEGF is an epithelial growth factor that is most extensively known

for its ability to induce angiogenesis. Angiogenesis in turn is consid-
ered one of the primary markers in tumor diagnostics [36]. There are
four VEGFs, namely VEGF-A, -B, -C, and -D. VEGF-A is the most
important subtype. When tumor cells become hypoxic, VEGF-A ex-
pression is upregulated [36]. VEGF-A is partly membrane bound,
but it also diffuses through the interstitial cell space. The latter po-
tentially limits broader use as a target. However, the highest VEGF-A
concentrations are observed close to the source of expression, induc-
ing the creation of new blood vessels to the hypoxic tumor areas [37].

VEGF-A is upregulated in more than 56% to 78% of all colorectal
tumors [38,39].

Multiple groups have successfully imaged VEGF-A expression in
tumors induced in animals using a VEGF-A antibody conjugated to
an imaging agent. Imaging has most commonly been performed with
bevacizumab (Avastin; Roche), a clinically approved therapeutic anti–
VEGF-A mAb, which was made suitable for imaging by conjugation
to a radionuclide [40–44].

In a clinical imaging study, Scheer et al. [40] did not find a signif-
icant correlation between VEGF-A expression and a positive SPECT
signal, which may imply that the used tracer was not specific enough.
Furthermore, a study in melanoma patients with bevacizumab con-
jugated to a radionuclide by Nagengast et al. [44] yielded more prom-
ising results.

When applying TASC to VEGF-A, a total of 17 points are granted.
This low score is mainly caused by the fact that the largest proportion
of VEGF-A is not membrane bound and by the expression in a rela-
tively low percentage of patients with CRC. However, because of the
recent results in various imaging modalities, as described above,
VEGF-A can be considered a potential target for future imaging pur-
poses and is therefore worth to be included in this overview.
Mucin 1
Muc1 is a cell surface receptor that plays a role in protection and

lubrication of epithelial surfaces in luminal structures. This receptor
is also involved in signal transduction in cell adhesion and antiadhesion
mechanisms. Overexpression of Muc1 is often found on malignant
cells. In CRC, Muc1 is expressed on approximately 50% of the
tumors [45,46].

Different groups have successfully imaged Muc1 in tumor-bearing
mice using muc1-targeted monoclonal antibodies or aptamers conju-
gated to a radiopharmaceutical [47–53]. The use of monoclonal anti-
bodies directed to Muc1 conjugated to a radionuclide has already been
described in patients with bladder and pancreatic cancer [54–56].
Medarova et al. [57] described the use of a dual-modality imaging
agent by conjugating a Muc1-targeting peptide to fluorophore Cy5.5
for fluorescence imaging and to iron oxide nanoparticles for magnetic
resonance (MR) imaging. This probe was tested in mice bearing human
pancreatic cancer with good imaging results for both modalities.
Muguruma and Ito [58] proved the ability to endoscopically detect
tumors by using a fluorescent antibody–based tracer targeting Muc1,
in freshly resected specimens of gastric cancer. A different approach
for tumor imaging is a two-step pretargeting technique using a bi-
specific antibody. An antibody directed to both Muc1 and the used ra-
diopharmaceutical is administered on which the radiopharmaceutical is
administered subsequently. The radiopharmaceutical binding site of the
circulating antibody can be blocked, thus yielding a higher tumor-to-
background ratio [59]. Promising results were obtained in breast cancer
patients with bispecific antibody-based PET scanning [60].

The total TASC score for Muc1 in CRC is 18 points.
Table 4. The Biomarkers That Score 18 or More Points When Applying TASC.
Biomarker
 TASC Score
CXCR4
 20

EpCAM
 20

EGFR
 20

CEA
 19

Muc1
 18

MMPs
 18

VEGF-A
 17*
These biomarkers are regarded most promising for tumor-targeted imaging in colorectal cancer.
*VEGF-A scores 17 points but was nonetheless included based on the broad experience with this
marker for imaging purposes.
Table 3. Clinically Approved Ligands for the Biomarkers Mentioned in Table 2.
Target
 Clinically Approved Ligand
 In Clinical Trial
CEA
 Arcitumomab, Altumomab

CXCR4
 AMD3100
 BKT-140, AMD11070, MSX-122

EGFR
 Cetuximab, Panitumumab, Nimotuzumab
 Necitumumab, Zalutumumab

EpCAM
 Edrecolomab, Catumaxomab (anti-EpCAM × anti-CD3)
 Adecatumumab, Tucotuzumab

Folate receptor-α
 Folate

Integrin
 MoaB PF-04605412 (mAb against α5β1 integrin), Etaracizumab (mAb against αvβ3 integrin)

Muc1
 Pemtumomab
 90Y-hPAM4

TAG-72
 Anatumomab mafenatox, Minretumomab

VEGF
 Bevacizumab, Ranibizumab
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Carcinoembryonic Antigen
CEA is a glycoprotein that plays a role in cell adhesion. In healthy

adults, hardly any CEA is found; however, CEA is strongly expressed
in CRC (>90%) [61–64] and is one of its best studied tumor markers.
CEA is also measurable in blood, but by far, the highest concentration
of CEA is found at the tumor site. CEA imaging using a CEA-directed
antibody or antibody fragment conjugated to a radionuclide has ex-
tensively been described in animal studies and in patients, without
showing disadvantages of having simultaneous high serum and tumor
CEA levels [65–70]. Yazaki et al. [71] fused CEA-antibody fragments
conjugated to a radionuclide to albumin for a more specific tumor
uptake. Technetium 99m (99mTc) arcitumomab is a commercially
available antibody fragment directed to CEA conjugated to 99mTc,
which is used in the CEA scan. However, in comparison to FDG-
PET, 99mTc arcitumomab offers little convincing advantages in the
detection of CRC [72,73]. The use of CEA-antibody fragment–based
radiotracers for guided surgery has also been described [68,70,74].
As well as in Muc1 targeting, the two-step pretargeting system using

a bispecific antibody has been described in animal studies and in pa-
tients for CEA [75,76].
Few studies are available on fluorescence imaging for targeting of

CEA. Fidarova et al. [77] described the use of an anti-CEA mAb con-
jugated to a fluorophore for the detection of metastatic CRC in mice.
Kaushal et al. [78] showed the use of an anti-CEA mAb conjugated
to a fluorophore, in intraoperative detection of colorectal tumor de-
posits, with good in vivo results.
When applying TASC to CEA in CRC, the total score is 19 points.

Matrix Metalloproteinases
MMPs are zinc- and calcium-dependent endoproteases that are

upregulated in the tumor environment and are capable of degrading
proteins in the extracellular matrix. MMPs are upregulated in 30% to
95% of colorectal tumors, depending on the type of MMP (Table 2)
[45,79–82].
Several groups have targeted MMPs in vivo by using fluorescent or

radiolabeled specific MMP-inhibitors [83–86]. One study reports
using a radiolabeled mAb for in vivo targeting of MMP1, an MMP
subtype [87]. Because MMPs have proteolytic activity, this target is
ideal for activatable probes. The advantage of activatable probes is that
they greatly reduce background signal. Several studies demonstrate the
in vivo use of proteolytic beacon coupled to a fluorophore, which emits
a signal after cleavage by MMP [88,89]. MMPsense is a commercially
available MMP-dependent activatable fluorescent probe, successfully
tested in in vivo models [90]. Veiseh et al. [91] describe the in vivo
use of chlorotoxin, a small peptide derived from snake venom that
interacts with MMP2, conjugated to the fluorophore Cy5.5, for poten-
tial intraoperative imaging. Lepage et al. synthesized a contrast agent
containing gadolinium chelate, which is cleaved byMMP. On cleavage,
this agent is less soluble in water and remains at the tumor site. Good
in vivo results have been demonstrated for MR imaging using this
protease-modulated contrast agent [92–94]. Aguilera et al. [95] devel-
oped activatable cell penetrating peptides (ACPPs) that enter the cell
after cleavage by MMP. The ACPPs were labeled with Cy5.5 for fluo-
rescence imaging, with gadolinium chelate for MR imaging, or with
both for dual imaging [96]. These ACPPs were further improved by
conjugation to large molecule dendrimers, which improved tumor
uptake and thus the emitted signal [97,98].
MMPs granted an average of 18 points in CRC when applying

TASC, depending on the subtype.
Epidermal Growth Factor Receptor
EGFR is a cell surface receptor involved in processes such as cell

proliferation, differentiation, adhesion, and migration. EGFR is up-
regulated in different types of cancer, including skin, breast, ovary,
bladder, prostate, kidney, head and neck, and non–small cell lung
cancers [99,100]. In colorectal cancer, EGFR is upregulated in ap-
proximately 80% of the tumors [101,102].

EGFR has been extensively imaged by radionuclide- or fluorophore-
conjugated antibodies. Most often, cetuximab, a clinically approved
anti-EGFR antibody, is used [103–107]. In 1994, Dadparvar et al.
[108] administered radionuclide-labeled anti-EGFR antibodies to pa-
tients with intracranial neoplasms for SPECT scanning. Although
promising results were obtained, to our knowledge, no sequel was
given to this radiopharmaceutical. Also, a few studies described the
use of panitumumab in vivo, which is the second clinically approved
antibody directed at EGFR [109,110]. Variants using antibody frag-
ments or affibodies have been described in animal studies [111,112].

Alternatively, EGF, the natural ligand of EGFR, is also used in vivo
as an imaging agent, conjugated to mainly fluorophores or quantum
dots [113–115]. Goetz et al. [116] described a fluorescent anti-EGFR
antibody capable of imaging human CRC tissue, which is not only
successful in in vivo imaging results but also potentially useful in endos-
copy. Hama et al. [117] described an alternative two-step pretargeting
model, using nonfluorescent biotinylated cetuximab as first antibody,
followed by a neutravidin-BODIPY-FL fluorescent conjugate. The lat-
ter binds to the first antibody by a neutravidin-biotin binding. The
concept was tested in vivo in a PC model. A 10-fold signal amplifica-
tion was found, leading to high tumor-to-background ratios and good
detection of lesions as small as 0.8 mm.

The TASC score of EGFR in CRC adds up to 20 points.
Discussion
TASC needs to be validated in other cancer types and adjusted where
necessary.

It should be pointed out that TASC is designed as a directive
which can help gain objectivity and extra insight in target selection.
Future validation studies and adjustments, to our opinion, will im-
prove TASC to make it more broadly applicable to various types of
cancer. Immunohistochemical analysis of collected tumor specimens
is a relatively easy way to determine applicability of a target. In the
case of a promising target, further validation is needed by testing a
target-directed imaging probe in vitro, for proof of concept and spe-
cific binding, and, subsequently, in appropriate tumor mouse models
in vivo.

Expression of a target may depend on tumor stage. For example,
CXCR4, EGFR, and VEGF are associated with more advanced tumor
stages and metastasis in CRC [118–120]. However, MUC1 is also gen-
erally expressed in T1 CRC tumors [46]. Therefore, such a target may
also be of value in early CRC detection.
Conclusions
In PC of colorectal origin, tumor-targeted imaging may yield better
diagnostic and therapeutic results. A large number of tumor biomar-
kers are upregulated in CRC. However, there is no objective system
for selecting their clinical applicability in targeted imaging applica-
tions. In this review, we introduce a novel scoring system for target
selection for imaging purposes, the TASC. When applying TASC to



78 Selecting Imaging Targets in Colorectal Cancer van Oosten et al. Translational Oncology Vol. 4, No. 2, 2011
biomarkers for CRC, we found that the most potent targets for im-
aging are CXCR4, VEGF-A, Muc1, MMPs, EGFR, EpCAM, and
CEA based on their scoring. Clearly, the ideal target for imaging pur-
poses does not exist; moreover, by using the TASC system, we pro-
pose a novel guideline in tumor targeting for selecting appropriate
targets for imaging purposes.
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