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Abstract
The urocortin (UCN) hormones UCN1 and UCN2 have been shown previously to confer significant protection against

myocardial ischaemia/reperfusion (I/R) injury; however, the molecular mechanisms underlying their action are poorly

understood. To further define the transcriptional effect of UCNs that underpins their cardioprotective activity, a microarray

analysis was carried out using an in vivo rat coronary occlusion model of I/R injury. Infusion of UCN1 or UCN2 before the

onset of reperfusion resulted in the differential regulation of 66 and 141 genes respectively, the majority of which have not

been described previously. Functional analysis demonstrated that UCN-regulated genes are involved in a wide range of

biological responses, including cell death (e.g. X-linked inhibitor of apoptosis protein), oxidative stress (e.g. nuclear factor

erythroid derived 2-related factor 1/nuclear factor erythroid derived 2-like 1) and metabolism (e.g.Prkaa2/AMPK). In addition,

both UCN1 and UCN2 were found to modulate the expression of a host of genes involved in G-protein-coupled receptor

(GPCR) signalling including Rac2, Gnb1, Dab2ip (AIP1), Ralgds, Rnd3, Rap1a and PKA, thereby revealing previously

unrecognised signalling intermediates downstream of CRH receptors. Moreover, several of these GPCR-related genes have

been shown previously to be involved in mitogen-activated protein kinase (MAPK) activation, suggesting a link between

CRH receptors and induction of MAPKs. In addition, we have shown that both UCN1 and UCN2 significantly reduce free

radical damage following myocardial infarction, and comparison of the UCN gene signatures with that of the anti-oxidant

tempol revealed a significant overlap. These data uncover novel gene expression changes induced by UCNs, which will

serve as a platform to further understand their mechanism of action in normal physiology and cardioprotection.
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Introduction

The urocortins (UCNs) are 40-amino acid homologues
of the hypothalamic stress peptide corticotropin-
releasing hormone (CRH), and are widely expressed
in the heart, central nervous system, gut, skeletal
muscle, skin and immune system (Davidson et al.
2009). There are three members: UCN1, UCN2 (also
known as stresscopin-related peptide) and UCN3 (also
known as stresscopin). UCNs exert their effects by
binding to two classes of G-protein-coupled receptors
(GPCRs), the corticotropin-releasing hormone rece-
ptors, CRHR1 and CRHR2, both of which can be
expressed as multiple splice variants (Hillhouse et al.
2002). UCN1 interacts with both CRHR1 and CRHR2,
although with a higher affinity for the latter, whereas
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UCN2 and UCN3 only bind to CRHR2. In the brain, the
UCNs appear to counteract the stress-provoked anxiety
produced by hypothalamic CRH, and are appetite
suppressors (De Kloet 2003). In addition, they
modulate glucose homoeostasis and metabolic activity
in peripheral tissues (Kuperman & Chen 2008), while
in the gut, they delay gastric emptying and promote
colonic motility (Martinez et al. 2004). The UCNs
have also been implicated in immune modulation
(Baigent 2001).

UCNs have been shown to have beneficial effects on
the cardiovascular system, which include protection
against heart failure and ischaemia/reperfusion (I/R)
injury (Scarabelli et al. 2002, Rademaker et al. 2007).
UCN1 has varied cardiovascular effects, which include
elevation of corticotrophin and cortisol levels,
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vasodilatation, promotion of increased blood flow, and
elevation of heart rate, and positive chronotropic and
ionotropic effects (Parkes et al. 1997). Cardiac
expression of UCN1 is increased during hypoxia and
hypertrophy, and circulating UCN1 levels are elevated
in patients suffering from heart failure (Ng et al. 2004).
Moreover, UCN1 administration has beneficial effects
in experimental heart failure, including promotion of
increased cardiac output, reduced peripheral resistance
and decreased circulating levels of the vasoconstricting
hormones such as angiotensin II, vasopressin and
endothelin-1 (Rademaker et al. 2002, Scarabelli et al.
2002). UCN1 also lowered mean arterial pressure and
circulating levels of atrial natriuretic peptide (ANP) and
B-type natriuretic peptide (BNP), and continuous
infusion significantly delayed the onset of experimental
heart failure (Rademaker et al. 2005, 2007). UCN2
increased contractility in rabbit ventricular myocytes,
and reduced diastolic pressure, increased left ventricu-
lar ejection fraction and increased cardiac output in a
mouse heart failure model, effects which were lost in
CRHR1-deficient mice (Bale et al. 2004, Yang et al. 2006).

Our group has previously demonstrated the protec-
tive effects of UCNs in I/R injury. UCN1 was shown to
protect cultured cardiac myocytes from simulated I/R
injury in vitro and reduce infarct size, protect against loss
of mitochondrial permeability and enhance cardiac
function in an ex vivo Langendorff model (Brar et al.
2000, Scarabelli et al. 2002, Townsend et al. 2007). UCN1
also reduced creatine phosphokinase release, decreased
the numbers of cleaved caspase-3-positive cells and
helped maintain the reserves of high energy phosphates
during I/R injury (Scarabelli et al. 2002). The adminis-
tration of UCN1 during experimental I/R in vivo
reduces infarct size, lowers mean arterial pressure and
reduces incidences of ventricular tachycardia and
fibrillation (Schulman et al. 2002, Liu et al. 2005).
Importantly, UCN1 can protect the heart when adminis-
tered just prior to reperfusion, making it attractive as a
possible therapeutic (Schulman et al. 2002). UCN2 has
also been shown to protect cardiac myocytes from I/R
injury in vitro and decrease infarct size in Langendorff
perfused rat hearts exposed to I/R injury (Chanalaris
et al. 2003, Brar et al. 2004). In agreement with a
protective role for UCNs in the myocardium, deletion of
the UCN receptor CRHR2 leads to increased suscep-
tibility to I/R injury (Brar et al. 2004). Treatment of
cardiac myocytes with UCNs induces the activity of the
MEK1/2–ERK1/2 and phosphatidylinositol 3-kinase–
AKT pathways, both of which appear to be necessary
for full-fledged cardioprotection by these hormones
(Brar et al. 2002, Chanalaris et al. 2003).

In order to identify the cardioprotective mechanisms
of UCN1, we have used limited microarray analysis
previously to identify the molecular pathways activated
by UCN1. For example, we have shown that UCN1
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increases the expression of the Kir 6.1 cardiac
potassium channel subunit in the Langendorff per-
fused rat heart, and the cardioprotective effects of
UCN1 are inhibited by selective Kir 6.1 channel
blockers (Lawrence et al. 2002). In similar studies, we
have also shown that UCN1 increases the expression
and activation of protein kinase C3 (PKC3; Lawrence
et al. 2005), but attenuates the expression of calcium-
insensitive phospholipase A2 (Lawrence et al. 2003).

It is currently unknown whether UCN1 and UCN2
mediate their cardioprotective effects through similar or
distinct mechanisms. Although they are both equally
cardioprotective, UCN2 binds exclusively to CRHR2 and
thus may induce a separate cardioprotective programme
towards UCN1. To address this question and to identify
new possible targets of UCN-dependent cardioprotec-
tion, we have performed a microarray analysis to
compare global gene expression profiles mediated by
both UCN1 and UCN2 during I/R injury. In addition, we
examined the effect of UCN treatment on I/R-induced
oxidative stress. We have shown that UCN1 and UCN2
are as effective as the reactive oxygen species (ROS)
scavenger tempol at lowering free radical damage
during I/R injury. The changes in transcriptional
profiles induced by UCNs were therefore compared to
that of tempol, and overlap in differential expression was
shown, suggesting that the protective effects of UCNs
may also, in part, involve reducing free radical damage.
Materials and methods

This study was performed in accordance with the
United Kingdom Home Office Animals (Scientific
Procedures) Act 1986. All reagents were obtained
from Sigma–Aldrich, unless otherwise stated.
In vivo I/R injury in rats

Coronary artery occlusion and reperfusion were
performed as described previously in anaesthetised
rats (Sivarajah et al. 2005). Briefly, male Wistar rats
(255–285 g) were anaesthetised with thiopentone
sodium (Intraval 120 mg/kg i.p). Anaesthesia was
maintained by supplementary injections of thiopen-
tone sodium as required. The trachea was cannulated,
and the rats were ventilated using a Harvard ventilator
(inspiratory oxygen concentration: 30%; 70 strokes/
min, tidal volume: 8–10 ml/kg). Body temperature was
maintained at 37G1 8C, and the right carotid artery was
cannulated and connected to a pressure transducer
(Senso-Nor 840, Senso-Nor, Horten, Norway). The right
jugular vein was then cannulated for the administration
of drugs. A parasternal thoracotomy was then per-
formed using an electrosurgery device to cauterise the
intercostal arteries before cutting through three ribs.
www.endocrinology-journals.org
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The chest was retracted, and pericardium was dissected
from the heart. The left anterior descending (LAD)
coronary artery was isolated, and a snare occluder was
placed around the LAD coronary artery. The retractor
was then removed, and the rats were allowed to stabilise
for 15 min. The occluder was tightened at time 0. After
25 min of LAD occlusion, the occluder was released to
allow reperfusion for 2 h. At the end of the reperfusion
period, the LAD coronary artery was reoccluded, and
1 ml of Evans Blue dye (2% w/v) was injected into
the rats via the jugular vein. Evans Blue dye stains
the tissue through which it is able to circulate, so the
non-perfused vascular (occluded) tissue remains unco-
loured. Each rat was killed with an overdose of
anaesthetic, and the heart was excised and thoroughly
washed with PBS. The heart was then sectioned into
slices of 3–4 mm, the right ventricle wall was removed,
and the risk area (the non-perfused and, hence, non-
stained myocardium) was separated from the non-
ischaemic (blue) tissue and immediately snap-frozen
in liquid nitrogen. In each treatment group, the drug
was infused 5 min prior to the onset of reperfusion. The
treatment groups were as follows: i) sham operation or
LAD occlusion with infusion of ii) saline, iii) 15 mg/kg
UCN1, iv) 15 mg/kg UCN2 and v) 100 mg/kg tempol,
nZ3 per group. These doses were chosen based on
previous studies (McDonald et al. 1999, Patel et al. 2004).
Determination of tissue malondialdehyde
concentration

Levels of malondialdehyde (MDA), a marker of lipid
peroxidation, in heart tissue were measured by HPLC.
Tissue was homogenised using an Ultra-Turrax homo-
geniser in 2 ml of 50 mM potassium phosphate buffer
(pH 6.0) containing 0.5% (w/v) hexadecyltri-methyl-
ammonium bromide. Twenty-five microlitres of homo-
genate were incubated with 2 ml of 0.2% (w/v)
butylated hydroxytoluene in ethanol and 375 ml of 1%
(v/v) phosphoric acid, and then derivatised with 345 ml
of 15 mM 2-thiobarbituric acid at 100 8C for 60 min.
Two hundred microlitres of the derivatised solution
were collected and mixed with 200 ml of methanol.
After the addition of 15 ml of 1 M KH2PO4 and 4 ml of
2 M KOH/2.4 M KHCO3, samples were centrifuged
(18 000 g for 10 min at 4 8C). HPLC was performed on a
Hypersil 5-mm ODS column at a flow rate of 1 ml/min
isocratically with an eluent of 65% 50 mM KH2PO4 (pH
7.0)/35% methanol. Fluorescence was monitored
using a Jasco FP-1520 detector (excitation wavelength
515 nm and emission wavelength 553 nm), and the
values of molar concentration were calculated by
comparison with the reference solutions of derivatised
MDA-tetrabutylammonium salt and were analysed in
parallel. The concentration of MDA was expressed as
mmol/g protein.
www.endocrinology-journals.org
Affymetrix microarray analysis

RNA was extracted from the risk area of the left
ventricle using TRIzol (Invitrogen). Biotinylated cRNA
targets were prepared using the Ambion Message Amp
II protocol: 15 mg of fragmented cRNA probes were
added to 50 pM of control oligonucleotides (bioB, bioC,
bioD and Cre), 30 mg of herring sperm DNA, 150 mg of
BSA, 30 ml of DMSO and 150 ml of hybridisation buffer
to a final volume of 300 ml, and heated to 99 8C for
5 min and then to 45 8C for 5 min. Two hundred
microlitres of hybridisation mix were added to pre-
hybridised Affymetrix rat expression 230A microarrays
and rotated overnight at 60 r.p.m. for 16 h at 45 8C.
Arrays were stained and washed on an Affymetrix
GeneChip Fluidics Station 450 using the standard
Affymetrix EukGE-WS2v4 script, and were scanned
using an Affymetrix GeneChip scanner. Scanned
images were obtained using Affymetrix GeneChip
Operating Software, and all 15 microarrays passed
quality control standards which included present calls
R40%, scaling factor !2, GAPDH 3 0/5 0 ratios !3 and
RNA degradation plots, which showed equivalent slopes
between microarrays. Downstream analysis was con-
ducted using the Bioconductor R 2.8 programmes
AffylmGUI (Wettenhall et al. 2006) and OneChannel-
GUI (Sanges et al. 2007). Background correction,
normalisation and summarisation of the probe- level
data into probe-set expression values were carried out
using GC-Robust multi-array analysis from imported
Affymetrix image (.CEL) files. Differential expression
was calculated based on the Linear Models for
Microarray (limma) statistics package in Bioconductor
R, and multiple testing was corrected for using the
Benjamini and Hochberg false discovery rate (FDR;
Reiner et al. 2003). Genes were considered to be
differentially expressed where there was a fold
change R2 with an FDR-adjusted P value %0.05.
Each transcript was annotated based on the gene
identifiers present in the Affymetrix NetAffx database.
Microarray data have been deposited at the EMBL-EBI
ArrayExpress repository (http://www.ebi.ac. uk/micro-
array-as/ae/, accession number E-MEXP-2098). Venn
diagrams were constructed in Bioconductor R, and
overlapping gene signatures between each treatment
group were produced.
Ingenuity pathway analysis

To uncover functional groupings and putative
interaction networks, lists of differentially expressed
genes were analysed using Ingenuity Pathway Analysis
(IPA) software (Ingenuity Systems, Redwood City, CA,
USA). Datasets containing gene identifiers and
expression values were mapped to the corresponding
identifier in the Ingenuity Pathway Knowledge Base,
Journal of Molecular Endocrinology (2010) 45, 69–85
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which ascribes functional groupings and known
interactions from the published literature. This allows
the identification of biological networks and functional
pathways contained within each dataset. Fischer’s test is
used to calculate a P value, which determines whether
the biological function assigned to the gene signature is
due to chance alone. The IPA algorithm applies a score
to rank networks based on the number of focus genes
and the network size. Networks are related graphically
where each gene is represented as a node; links between
nodes denote biological relationships between genes
and are supported by at least one peer-reviewed
publication. Colour intensity signifies the levels of
differential regulation and uncoloured nodes are
integrated by the IPA algorithm, with them being
relevant to the network but not differentially regulated
in the input gene signature.
Quantitative real-time PCR

One microgram of RNA was extracted from the left
ventricles of each of the treatment groups (nZ3) or
from neonatal myocytes (nZ3 per group), and cDNA
was prepared using Superscript II (Invitrogen). Quan-
titative PCR (qPCR) was carried out using Platinum
SYBR Green (Invitrogen) on the DNA Engine Opticon
system (MJ Research, Waltham, MA, USA). For PCRs,
5 ml of SYBR Green were added to 5 ml of cDNA with
500 nM primers in a 20-ml reaction mixture, and the
PCR conditions were as follows: 95 8C for 3 min,
followed by 40 cycles of 95 8C for 30 s, 60 8C for 30 s
and 72 8C for 30 s. A melting curve analysis was
performed from 65 to 95 8C by reading every 0.3 8C
Table 1 Primer sequences used for quantitative PCR analysis

Forward Rever

Genes

c-fos (Fos) GCCTTTCCTACTACCATTCC CCGT
Il1b TTCAGGCAGGCAGTATCACT CAGC
inos (Nos2) AGCGGCTCCATGACTCTCA TGCA
Mmp8 ATCTGGAGTGTGCCATCAAC GCTG
Mmp9 GAAGACGACATAAAAGGCATCC TCAG
Il6 ACTGCCTTCCCTACTTCACA GCTC
Socs3 TGGTCACCCACAGCAAGTTT ACCA
Dusp1 TACAGGAAGGACAGGATCTC AGTG
Icos CGGTGTCCATCAAGAATCCA ACGG
Map4k2 CCGCTTGTGGATATGTATGG ATTG
Bnip3 GTTCCAGCTTCCGTCTCTAT CGCT
Prkaa2 GGAATATGTGTCTGGAGGTG GATC
Xiap GAGGGCTCACGGATTGGAA ACTC
Hsp70 ACATGAAGCACTGGCCCTT AAGA
Nfe2l1 AGAGCCCGAGCCATGAAGA TCAG
Dut TCTGGGTGCTATGGAAGAGT AAGC
b2-microglobulin GTCTTTCTGGTGCTTGTCTCA GTGA
Hprt CTCATGGACTGATTATGGACAGGAC GCAG
b-actin AGATGACCCAGATCATGTTTGAG AGGT
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with a 1-s hold between reads. Specific primers were
designed with the aid of CloneWorks and the Ensembl
database, and are listed in Table 1. Wherever possible,
primers were subjected to intron spanning, and for
single-exon genes, a control cDNA reaction without
reverse transcriptase was included to confirm the
absence of genomic DNA, and all PCR products were
visualised on agarose gels to ensure the presence of
a single product. For each experiment, Hprt, b-actin
and b2-microglobulin were used together as the
normalising genes. PCR efficiency of both target and
normalising genes was determined initially to ensure
that the normalising genes were acceptable; to test
primer efficiency, qPCR was carried out on a twofold
dilution series from a pooled set of cDNAs, and the
threshold Ct value was plotted against the log cDNA
dilution. Efficiency was then calculated using the
equation mZ(K1/logE), where m is the slope of the
line and E is the efficiency, and primer pairs were used
only if the PCR efficiency of the normalising and
control genes was found to be within 10% of each other
(Schmittgen & Livak 2008). Expression changes were
calculated using the 2KDDCt method, and expressed as
fold change over control (Livak & Schmittgen 2001).
Western blot

Cardiac tissue from the risk area was snap-frozen in
liquid nitrogen and ground to a fine powder using a
pestle and mortar. The tissue was lysed in RIPA buffer
(0.75 M NaCl, 5% (v/v) NP40, 2.5% (w/v) deoxycho-
late, 0.5% (w/v) SDS, 0.25 M Tris–HCl, pH 8.0, and
10 mM dithiothreitol- containing protease inhibitor
se Accession numbers

TTCTCTTCCTCTTCAG NM_022197
ATCTCGACAAGAGCTT NM_031512
CCCAAACACCAAGGT NM_012611
GGTTCTCTGTAAGCAT NM_022221
AAGGACCAGCAGTAG NM_031055
TGAATGACTCTGGCTT NM_012589
GCTTGAGTACACAGTC NM_053565.1
CACAAACACCCTTCCT NM_053769
GTAACCAAAGCTTCAG NM_022610
TAGCCACCCTTGCGTT NM_001106329
TGTGTTTCTCATGCTG NM_053420
CACAGCTAGTTCGTAG NM_023991.1
ACAAGATCTGCAATCAG NM_022231.2
TGAGCACGTTGCGCT NM_031971.2
TCACGGTCCTGTAAATT NM_001108293
CTCCTGAGCCTCTCTC NM_053592
GCCAGGATATAGAAAGA NM_012512
GTCAGCAAAGAACTTATAGCC NM_012583
CCAGACGCAGGATG NM_031144
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cocktail), and was centrifuged at 13 000 g to pellet
cell debris. Protein concentration in the supernatant
was determined using the BCA protein assay kit
(Pierce, Rockford, IL, USA). Twenty micrograms of
protein in Laemmli buffer were electrophoresed on
10% polyacrylamide gels, transferred onto Hybond-C
nitrocellulose membranes (Amersham Biosciences)
and blocked for 30 min in 4% non-fat dry milk in
TBS. The following primary antibodies were used: AMP-
activated protein kinase (AMPK)-a2 (PRKAA2; Abcam,
Cambridge, UK), nuclear factor erythroid derived
2-related factor 1 (NFE2L1, also known as NRF1;
Santa Cruz Biotechnology, Santa Cruz, CA, USA),
X-linked inhibitor of apoptosis protein (XIAP; Santa
Cruz Biotechnology), inducible HSP70 (iHSP70; Stress-
gen, Ann Arbor, MI, USA) and GAPDH (Chemicon,
Billerica, MA, USA). Secondary antibodies were
obtained from DAKO (Glostrup, Denmark).
Neonatal rat ventricular cardiac myocyte culture

Neonatal rat ventricular cardiac myocytes were isolated
from the hearts of 1–3-day-old Sprague–Dawley rats.
Hearts were removed and placed in oxygenated ADS
buffer (116 mM NaCl, 5.4 mM KCl, 20 mM HEPES,
0.8 mM NaH2PO4, 405.7 mM MgSO4 and 5.5 mM
glucose, pH 7.35). Heart tissue was digested in 10 ml
oxygenated ADS buffer supplemented with 0.1%
collagenase and 0.025% pancreatin for 15 min, and
the liberated cells were pelleted at 300 g for 5 min and
resuspended in FBS. This digestion procedure was
repeated seven times, after which, the cells were plated
at 37 8C for 1 h to allow the adherence of fibroblasts.
Myocytes were plated at a density of 2.5!105/ml in
DMEM with 40 units/ml penicillin (Gibco), 40 mg/ml
streptomycin and 15% FBS. Cells were allowed to attach
to the plates overnight, and the medium was replaced
with DMEM containing 1% FBS. For I/R experiments,
cells were incubated for 4 h in ischaemic buffer
(137 mM NaCl, 12 mM KCl, 0.49 mM MgCl2, 0.9 mM
CaCl2, 4 mM HEPES, 20 mM sodium lactate and 10 mM
deoxyglucose, pH 6.2) in a 37 8C hypoxic chamber
with 5% CO2 and 95% argon. Following hypoxia,
the medium was replaced with DMEM containing 1%
FBS, and the cells were reoxygenated in 5% CO2 in a
Table 2 Numbers of differentially regulated probe sets and annotated

Probe sets Annotated g

Treatment

Sham versus saline 1055 798
UCN1 versus saline 65 43
UCN2 versus saline 141 89
Tempol versus saline 66 38
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37 8C incubator for 4 h. For experimental controls, cells
were incubated for 4 h in a control buffer (137 mM
NaCl, 3.8 mM KCl, 0.49 mM MgCl2, 0.9 mM CaCl2,
4 mM HEPES and 10 mM glucose, pH 7.4), and then
in DMEM containing 1% FBS.
Statistical analysis

Statistical analysis was carried out using Student’s t-test
or a one-way ANOVA with Dunnett’s post test; P values
of !0.05 were considered significant. Error bars
represent meanGS.E.M.
Results

Differential gene expression mediated by UCN1 and
UCN2 infusion during I/R injury

Both UCN1 and UCN2 have been shown to confer
cardioprotection against ischaemic damage; however,
little is known regarding the gene expression changes
mediated by UCNs during I/R injury. We therefore
sought to better understand the transcriptional effects
that may underscore the protective activity of UCN
hormones during I/R injury through the use of a
microarray analysis. Male rats were subjected to either
sham operation or 25-min ischaemia followed by 2-h
reperfusion with infusion of saline, UCN1 or UCN2
prior to the onset of reperfusion. RNA was extracted
from the left ventricle, and the microarray analysis was
conducted using Affymetrix RAE 203A arrays. Genes
were considered to be differentially expressed if there
was a fold change R2 between the groups with an
adjusted FDR P value !0.05. The number of differen-
tially expressed genes in each group is shown in Table 2.
In total, I/R was found to differentially regulate 1055
genes compared to the sham group. UCN1 and UCN2
were compared to the I/R group in order to assess
the effect of the hormones on I/R-dependent gene
expression. UCN1 and UCN2 treatment resulted in the
differential expression of 66 and 141 genes respectively.
Of these, over half were de novo changes in gene
expression rather than simply a reversal of gene
expression changes induced by I/R injury (Table 3).
To validate the microarray results, the expression of
genes differentially regulated in each group

enes Upregulated Downregulated

502 553
38 27

104 37
52 14
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Table 3 Number of genes in each treatment group that are
regulated by ischaemia/reperfusion

Regulated by I/R Not regulated by I/R

Treatment

UCN1 34 31
UCN2 81 59
Tempol 47 19
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Figure 1 Validation of microarray analysis. Fold changes between
the sham and I/RCsaline groups obtained by microarray and
qPCR were compared using linear regression.
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several transcripts that were differentially expressed
during I/R was also assessed by qPCR (Table 4). Linear
regression analysis gave an R2 coefficient of 0.93
between qPCR and microarray analysis fold changes,
demonstrating good correlation between differential
expression measured by microarray analysis and
qPCR (Fig. 1).
IPA of UCN-mediated differential expression

The complete lists of annotated differentially expressed
genes from the UCN1 and UCN2 treatment groups are
presented in Tables 5 and 6. The majority of these gene
expression changes are novel, and have not been
reported previously as UCN-regulated gene expression
changes; indeed, very few UCN2 downstream trans-
criptional targets have been documented previously.
Of the 66 and 141 genes differentially regulated by
UCN1 and UCN2, 30 were common to both peptides.
This demonstrates that both UCNs induce distinct gene
expression profiles during I/R injury; however, signi-
ficant overlap exists between them.

IPA can uncover biological pathways and interaction
networks between members in a list of differentially
expressed genes. IPA identifies focus genes from the
Table 4 Comparison of fold changes obtained by microarray
and qPCR

qPCR Microarray

Genes

c-fos 64.1 40.8
Il1b 21.1 12.8
iNos 18 11.8
Mmp8 17.1 8.5
Mmp9 11.7 10.2
Il6 10.6 9.4
Socs3 8.8 6.4
Dusp1 4.7 4.9
Icos 1.9 1.2
Map4k2 K1.4 K1.8
Scn5a K1.7 K1.5
Bnip3 K2 K2.1
Nfe2l1 K2.3 K7.6
Dut K2.4 K4.7
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imported list, which it uses as a starting point to
generate a biological network; P values for each
network are assigned based on the number of focus
genes in a given network compared to the presence
of these genes in all networks in the IPA database.
The highest ranking UCN1 network contained 15 focus
genes, including cardioprotective genes such as Xiap,
Igf1, Syk, Cdh2 and nuclear factor erythroid derived
2-like 1 (Nfe2l1), as well as genes involved in G-protein
signalling, including Rac2, Gnb1 (transducin), Prkaa2
(AMPK), Prkar1a (protein kinase A, PKA) and Cap2
(Fig. 2). The highest ranking UCN2 network was more
extensive, containing 25 focus genes from several
classes. As with UCN1, there were several genes that
participate in G-protein-related signalling including
Ras, Ralgds, Rnd3, Dab2IP (AIP) and Akap12, as well as
the apoptosis-associated genes Eif2c, Tgm2, Mtif, Glrx2
and Nfe2l1, chaperones Hspa4 (Hsp70) and Dnaj13
(Hsp40) and the cytoskeletal genes Rdx and Myo9b
(Fig. 2). The presence of several GPCR-related genes in
the signalling networks prompted us to search for other
differentially expressed genes involved in G-protein
signalling, and in addition to the genes that have been
mentioned already, UCN2 induced differential
expression of Rabgap1, Rap1a, Rhobt1, Cap2 and Dnmbp.

Both the UCN1 and UCN2 networks contained the
mitogen-activated protein kinases (MAPKs) ERK and
JNK as well as AKTas the central nodes, which anchored
the networks. Although these kinases were not found to
be transcriptionally regulated by either UCN hormone
in this study, we have shown previously that both UCN1
and UCN2 can induce the phosphorylation and
activation of MAPKs and AKT in cardiac myocytes
(Brar et al. 2000, 2002, Chanalaris et al. 2003, 2005).
Many of the G-protein-regulated genes that are induced
by UCN1 and UCN2 lie upstream of MAPK activation;
for example, PKA, Rac2 and Akap12 have been shown
www.endocrinology-journals.org



Table 5 List of differentially expressed genes following urocortin 1 treatment during ischaemia/reperfusion injury

Symbol Gene title Fold change P value

AffylD

1375788_at Rpl7 Ribosomal protein L7 K10.3 0.00
1368894_at Cap2 CAP, adenylate cyclase-associated protein, 2 7.0 0.04
1370745_at Slc34a1 Solute carrier family 34 (sodium phosphate), member 1 K7.0 0.01
1369248_a_at Xiap X-linked inhibitor of apoptosis 4.8 0.03
1388246_at Clu Clusterin K4.4 0.01
1370953_at Ccdc58 Coiled-coil domain containing 58 K4.2 0.00
1375277_at Nrarp Notch-regulated ankyrin repeat protein 4.1 0.01
1373278_at Nfe2l1 Nuclear factor erythroid derived 2-like 1 4.0 0.05
1375127_at Cox5a Cytochrome c oxidase, subunit Va K3.8 0.03
1373229_at Lsm12 LSM12 homologue (S. cerevisiae) 3.6 0.02
1367731_at Gnb1 Guanine nucleotide-binding protein, beta 1 K3.3 0.00
1387865_at Dut Deoxyuridine triphosphatase 3.1 0.00
1368521_at Napsa Napsin A aspartic peptidase K2.9 0.05
1370333_a_at Igf1 Insulin-like growth factor 1 K2.8 0.03
1368946_at Arf2 ADP-ribosylation factor 2 2.7 0.02
1373161_at Tmem98 Transmembrane protein 98 2.6 0.03
1372404_at Rac2 RAS-related C3 botulinum substrate 2 K2.6 0.02
1368911_at Kcnj8 Potassium inwardly-rectifying channel, subfamily J, member 8 K2.5 0.04
1387259_at Cdh2 Cadherin 2 2.4 0.05
1377060_at Mccc2 Methylcrotonoyl-Coenzyme A carboxylase 2 (beta) 2.4 0.01
1387801_at Ppp6c Protein phosphatase 6, catalytic subunit 2.4 0.04
1387455_a_at Vldlr Very low density lipoprotein receptor 2.4 0.03
1375843_at Ids Iduronate 2-sulphatase 2.4 0.05
1399045_at Galnt1 UDP-N-acetyl-alpha-D-galactosamine:polypeptide

N-acetylgalactosaminyltransferase 1
2.4 0.01

1368186_a_at Syk Spleen tyrosine kinase K2.4 0.03
1390478_at Orc4 Origin recognition complex, subunit 4 2.3 0.05
1380547_at Clcn3 Chloride channel 3 2.3 0.04
1389265_at Gbe1 Glucan (1,4-alpha-), branching enzyme 1 2.3 0.02
1369654_at Prkaa2 Protein kinase, AMP-activated, alpha 2 catalytic subunit 2.2 0.03
1373381_at Herc4 Hect domain and RLD 4 2.2 0.02
1398795_at Dars Aspartyl-tRNA synthetase 2.2 0.03
1387872_at Hnrnpa1 Heterogeneous nuclear ribonucleoprotein A1 2.2 0.02
1368235_at Clk3 CDC-like kinase 3 K2.2 0.05
1373937_at Fyco1 FYVE and coiled-coil domain containing 1 2.1 0.01
1388483_at Cfl2 Cofilin 2, muscle 2.1 0.03
1388642_at Ei24 Etoposide induced 2.4 mRNA 2.1 0.03
1386905_at Prkar1a Protein kinase, cAMP-dependent regulatory, type I, alpha 2.1 0.05
1387903_at Pja2 Praja 2, RING-H2 motif containing 2.1 0.02
1389333_at Fbxo3 F-box protein 3 2.1 0.03
1373472_at Actr6 ARP6 actin-related protein 6 homologue 2.1 0.03
1374306_at Zdhhc18 Zinc finger, DHHC domain containing 18 K2.1 0.02
1373152_at Prss23 Protease, serine, 23 2.0 0.00
1377937_at Mrps14 Mitochondrial ribosomal protein S14 2.0 0.03
1373069_at Mrps30 Mitochondrial ribosomal protein S30 2.0 0.04
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to activate ERK (Frost et al. 1996, Sun et al. 2007),
while Dab2ip (AIP1), Ralgds and Rnd3 are upstream of
JNK (Zhang et al. 2004, Gonzalez-Garcia et al. 2005).
This suggests that the identified biological networks
may be centrally regulated at a post-translational level
through UCN-mediated activation of intermediate
kinases. This highlights the usefulness of network
analysis for uncovering possible post-translational
modification from a regulatory transcriptional network.

In order to ascertain whether the transcriptional
network analysis held true at the protein level, we
examined the expression of the members of the UCN1
www.endocrinology-journals.org
network by western blot. We chose several proteins
which may be important in the cardioprotective effects
of UCNs (see Discussion). As a positive control, we
first examined iHSP70 levels, which are known to be
potently induced by I/R injury (Iwaki et al. 1993), and
indeed in our model, we found that HSP70 could barely
be detected in sham hearts, but that it was prominently
upregulated by I/R (Fig. 3A). Unexpectedly, UCN2
appeared to increase protein expression (not seen at
the mRNA level), and therefore, it may have unappre-
ciated effects on HSP70 turnover. Both AMPK-a2/
PRKAA2 and NFE2L1 (also known as NRF1) expression
Journal of Molecular Endocrinology (2010) 45, 69–85



Table 6 List of differentially expressed genes following urocortin 2 treatment during ischaemia/reperfusion injury

Symbol Gene title Fold change P value

AffyID

1369718_at Ssr3 Signal sequence receptor, gamma 6.3 0.02
1368894_at Cap2 CAP, adenylate cyclase-associated protein, 2 (yeast) 5.2 0.05
1373278_at Nfe2l1 Nuclear factor erythroid derived 2-like 1 5.2 0.03
1376175_at Gbas Glioblastoma amplified sequence 4.6 0.01
1368393_at C1qr1 Complement component 1, q subcomponent, receptor 1 K4.1 0.05
1367534_at Rabgap1 RAB GTPase-activating protein 1 K3.8 0.03
1390478_at Orc4 Origin recognition complex, subunit 4 3.7 0.01
1370007_at Pdia4 Protein disulphide isomerase-associated 4 3.7 0.01
1367825_at Ralgds Ral guanine nucleotide dissociation stimulator K3.5 0.04
1388267_a_at Mt1a Metallothionein 1a K3.4 0.03
1375788_at Rpl7 Ribosomal protein L7 K3.3 0.02
1390728_at Limd1 LIM domains containing 1 K3.3 0.02
1375138_at Timp3 Tissue inhibitor of metalloproteinase 3 K3.3 0.03
1387865_at Dut Deoxyuridine triphosphatase 3.2 0.00
1375552_at Srp72 Signal recognition particle 72 K3.2 0.02
1374640_at Them4 Thioesterase superfamily member 4 3.1 0.03
1390125_at Tm9sf1 Transmembrane 9 superfamily member 1 3.1 0.02
1368867_at Eif2c2 Eukaryotic translation initiation factor 2C, 2 3.0 0.05
1386877_at Ap2s1 Adaptor-related protein complex 2, sigma 1 subunit 3.0 0.03
1367562_at Sparc Secreted acidic cysteine-rich glycoprotein K2.9 0.05
1372142_at Asna1 arsA arsenite transporter, ATP-binding, homologue 1 2.9 0.02
1375542_at Rdx Radixin 2.9 0.02
1383065_at Nicn1 Nicolin 1 2.9 0.03
1398914_at Polr2j Polymerase (RNA) II (DNA directed) polypeptide J 2.9 0.01
1389338_at Tmem126b Transmembrane protein 126B 2.9 0.03
1376066_at Rnd3 Rho family GTPase 3 2.7 0.03
1374043_at Gramd3 GRAM domain containing 3 2.7 0.02
1368182_at Acsl6 Acyl-CoA synthetase long-chain family member 6 2.5 0.02
1377060_at Mccc2 Methylcrotonoyl-Coenzyme A carboxylase 2 (beta) 2.5 0.01
1398795_at Dars Aspartyl-tRNA synthetase 2.5 0.01
1373472_at Actr6 ARP6 actin-related protein 6 homologue 2.5 0.01
1373611_at Il17ra Interleukin 17 receptor A K2.5 0.03
1375862_at Pxdn Peroxidasin homologue (Drosophila) K2.5 0.02
1387617_at Tpm3 Tropomyosin 3, gamma K2.5 0.02
1370344_at Hspa4 Heat shock protein 4 2.4 0.02
1389580_at Hltf Helicase-like transcription factor 2.4 0.03
1399073_at Otub1 OTU domain, ubiquitin aldehyde binding 1 2.4 0.02
1372141_at Pfdn2 Prefoldin 2 2.4 0.01
1373381_at Herc4 Hect domain and RLD 4 2.4 0.01
1373161_at Tmem98 Transmembrane protein 98 2.4 0.03
1375843_at Ids Iduronate 2-sulphatase 2.3 0.03
1387903_at Pja2 Praja 2, RING-H2 motif containing 2.3 0.01
1389632_at Rhobtb1 Rho-related BTB domain containing 1 2.3 0.02
1374695_at Cbx1 Chromobox homologue 1 (Drosophila HP1 beta) 2.3 0.03
1387801_at Ppp6c Protein phosphatase 6, catalytic subunit 2.3 0.04
1375378_at Qk Quaking homologue, KH domain RNA binding 2.3 0.02
1375421_a_at Pja2 Praja 2, RING-H2 motif containing 2.3 0.02
1368186_a_at Syk Spleen tyrosine kinase K2.3 0.02
1368868_at Akap12 A kinase (PRKA) anchor protein (gravin) 12 K2.3 0.04
1387866_at Myo9b Myosin Ixb K2.3 0.02
1387455_a_at Vldlr Very low density lipoprotein receptor 2.2 0.03
1389265_at Gbe1 Glucan (1,4-alpha-), branching enzyme 1 2.2 0.02
1373002_at Mrps9 Mitochondrial ribosomal protein S9 2.2 0.02
1367609_at Mif Macrophage migration inhibitory factor 2.2 0.03
1398894_at Commd3 COMM domain containing 3 2.2 0.02
1368470_at Ggh Gamma-glutamyl hydrolase 2.2 0.02
1373069_at Mrps30 Mitochondrial ribosomal protein S30 2.2 0.02
1372189_at Dnajc13 DnaJ (Hsp40) homologue, subfamily C, member 13 2.2 0.02
1372650_at Dnmbp Dynamin binding protein 2.2 0.05
1389534_at Ube2e3 Ubiquitin-conjugating enzyme E2E 3, UBC4/5 2.2 0.02
1374518_at Tmem77 Transmembrane protein 77 2.2 0.03

(continued)
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Table 6 Continued

Symbol Gene title Fold change P value

AffyID

1374183_at Eapp E2F-associated phosphoprotein 2.2 0.00
1370335_at Dab2ip Disabled homologue 2 (Drosophila) interacting protein K2.2 0.05
1373757_at Trafd1 TRAF type zinc finger domain containing 1 K2.2 0.05
1376319_at Sema3c Semaphorin 3C 2.2 0.04
1389327_at Mrpl32 Mitochondrial ribosomal protein L32 2.1 0.05
1373186_at Slain2 SLAIN motif family, member 2 2.1 0.00
1377262_at Smek2 SMEK homologue 2, suppressor of mek1 2.1 0.01
1388882_at Fkbp3 FK506-binding protein 3 2.1 0.02
1374318_at Brcc3 BRCA1/BRCA2-containing complex, subunit 3 2.1 0.00
1388779_at Zfp180 Zinc finger protein 180 2.1 0.04
1376690_at Med21 Mediator complex subunit 21 2.1 0.01
1367628_at Lgals1 Lectin, galactose binding, soluble 1 2.1 0.03
1389125_at Mrpl1 Mitochondrial ribosomal protein L1 2.1 0.04
1389525_at Rnf149 Ring finger protein 149 2.1 0.00
1368822_at Fstl1 Follistatin-like 1 K2.1 0.05
1369943_at Tgm2 Transglutaminase 2, C polypeptide K2.1 0.02
1368338_at Cd52 CD52 antigen K2.1 0.03
1388615_at Rap1a RAS-related protein 1a 2.0 0.01
1389333_at Fbxo3 F-box protein 3 2.0 0.03
1388780_at Terf2ip Telomeric repeat-binding factor 2, interacting protein 2.0 0.01
1390382_at Hypk Huntingtin interacting protein K 2.0 0.01
1373440_at Lyrm2 LYR motif containing 2 2.0 0.00
1390259_at Ube2d1 Ubiquitin-conjugating enzyme E2D 1, UBC4/5 2.0 0.04
1372865_at Zfp364 Zinc finger protein 364 2.0 0.03
1367541_at Mettl5 Methyltransferase like 5 2.0 0.03
1388803_at Dhps Deoxyhypusine synthase 2.0 0.03
1373675_at Glrx2 Glutaredoxin 2 (thioltransferase) 2.0 0.01
1374472_at Vps37a Vacuolar protein sorting 37 homologue A 2.0 0.00
1370953_at Ccdc58 Coiled-coil domain containing 58 K2.0 0.03
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levels closely paralleled the microarray data, with
decreased expression following I/R and restoration of
protein levels by UCN1 and UCN2 (Fig. 3A); this was
confirmed by densitometry (Fig. 3B). XIAP expression
was dramatically reduced by I/R injury, and while
microarray analysis did show a reduction in mRNA
expression, it did not reach statistical significance.
UCN1, but not UCN2, treatment led to increased
mRNA expression of XIAP compared with I/R levels,
and this was largely recapitulated at the protein level
(Fig. 3A and B). These data suggest that the transcrip-
tional network is indeed broadly representative of the
true situation at the protein level, and also highlight
potential novel regulators of UCN-mediated cardio-
protection (see Discussion).

The regulation of AMPK-a2, NFE2L1 and XIAP
during myocardial I/R injury has not been addressed
previously, and since all three were downregulated in
the whole heart by myocardial infarction, we were
interested in examining their expression in cardiac
myocytes. Thus to extend and confirm the in vivo
findings, neonatal cardiac myocytes were subjected to
simulated I/R injury. qPCR analysis revealed that the
expression of all the three genes was reduced, thus
confirming the regulation of these factors by I/R injury
www.endocrinology-journals.org
(Fig. 3C). As a control, increased expression of HSP70
following in vitro I/R injury is shown.
Molecular function analysis

In order to further classify the gene signatures for each
hormone and place them in a functional context,
molecular function analysis was carried out using IPA.
The most significant functional groupings of genes
regulated by UCN1 during I/R injury were those
involved in cell death (e.g. Xiap, Clu, Cdh2, Syk, Ei24,
Gnb1 and Nfe2l1), cell growth (e.g. IGF1, Vldlr, Rac2 and
Prkar1a) and molecular transport (e.g. Clcn3, Slc34a1
and Prkaa2); however, functional groupings encom-
passed a wide range of biological processes (Fig. 4A).
From the UCN2 gene signature, the most significant
functional groups were cell–cell signalling (e.g. Cd93,
Rdx, Rnd3, Tgm2, Timp3 and Dnmbp), cellular function
and maintenance (e.g. Cd93, Syk, Akap12 and Asp21),
and cellular compromise (e.g. Mt1f, Nfe2l1 and Rdx;
Fig. 4B). This analysis demonstrates that the most
significant molecular functions influenced by UCNs
during I/R injury are those involved in controlling cell
fate, and these genes may represent novel targets of
UCNs in cardioprotection against I/R damage.
Journal of Molecular Endocrinology (2010) 45, 69–85
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UCN1 and UCN2 inhibit free radical formation during
I/R injury

Interestingly, both UCN1 and UCN2 gene expression
signatures contained free radical scavenging as a
functional group. Free radical damage plays a major
role in the pathology of I/R injury, and inhibition
of oxidative stress has been shown to significantly
protect the myocardium from I/R-mediated cell
death (McCormick et al. 2006). We therefore
ascertained whether UCN1 and UCN2 were capable
of suppressing I/R-dependent free radical formation.
To this end, rats were subjected to ischaemia and
were infused with saline, UCN1, UCN2 or the free
radical scavenger tempol prior to the onset of
reperfusion, and the level of lipid peroxidation was
measured from left ventricular tissue using the MDA
assay (Fig. 5A). As expected, I/R injury increased the
MDA content in the left ventricles from 0.46G0.05
to 0.91G0.08 mmol/g. Remarkably, UCN1 and
UCN2 lowered MDA levels to 0.52G0.13 and 0.38
G0.08 mmol/g respectively, and this was compared
Journal of Molecular Endocrinology (2010) 45, 69–85
with an MDA level of 0.44G0.03 mmol/g in the
tempol-treated group. Therefore, UCN1 and UCN2
treatment almost completely abolished the I/R-
mediated increase in free radical levels, and indeed,
UCN1 and UCN2 are as effective as tempol in
reducing oxidative stress during I/R injury. Free
radical inhibition may thus represent a major
mechanism in the cardioprotective actions of the
UCN hormones.

UCNs are unlikely to inhibit free radicals directly,
rather the anti-oxidant activity is likely to be mediated
through gene expression changes. To examine this
possibility, the gene expression profiles of UCN1 and
UCN2 were compared to that of tempol treatment
during I/R injury. Tempol treatment resulted in the
differential regulation of 66 genes (Table 2), and
comparison with the UCN gene expression profiles
revealed that 21/65 genes differentially regulated by
UCN1 and 40/101 genes differentially regulated by
UCN2 were also regulated by tempol (Fig. 5B). There-
fore, w30% of genes that were differentially regulated
www.endocrinology-journals.org
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by UCN1 and UCN2 treatment during I/R injury were
also regulated by anti-oxidant treatment. This suggests
that a significant number of gene expression changes
mediated by UCNs during I/R injury may be involved
in the protection against oxidative stress in the
myocardium.

There were a total of 18 annotated genes common to
both UCN1 and UCN2, 15 of which were also
differentially regulated by tempol (Fig. 5C). One of
the most highly differentially regulated genes common
to both was Nfe2l1/Nrf1, a member of the CNC (cap ‘n’
collar) basic leucine zipper family of transcription
factors (Chen et al. 2003). Nfe2l1 was upregulated 4.0-,
5.2- and 6.3-fold by UCN1, UCN2 and tempol
respectively. NFE2L1 is a crucial mediator of oxidative
stress, and is required for free radical scavenging and
maintenance of redox potential (Kwong et al. 1999).
It achieves this through binding to the anti-oxidant
response element in a number of oxidative stress-
regulated gene promoters (Ohtsuji et al. 2008). Of these
www.endocrinology-journals.org
19 genes, Nfe2l1 thus represents the most likely
candidate common to both, which might be respon-
sible for free radical inhibition and as such warrants
further investigation.
Discussion

Both UCN1 and UCN2 have been shown to confer
protection against myocardial infarction; however, their
exact mechanism of action is poorly understood. Little
is known particularly regarding how UCN2 affects the
myocardium during I/R injury. Thus, a greater
appreciation of downstream UCN signalling in the
heart will greatly add to our understanding of both
UCN biology and I/R injury. To address this, we carried
out a microarray analysis on the hearts treated with
UCN1 or UCN2. In our experimental model, UCNs
were infused before the onset of reperfusion; the
rationale for this approach is that any therapeutic
Journal of Molecular Endocrinology (2010) 45, 69–85
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intervention in a clinical setting would ideally be
introduced before the surgical or medical induction
of reperfusion to the ischaemic myocardium. Micro-
array analysis revealed a host of novel gene expression
changes induced by both UCNs, which participate in a
wide range of biological processes. Approximately, 50%
of genes differentially regulated by UCN1 were also
regulated by UCN2, showing significant overlapping
functions. Since UCN2 signals only through CRHR2,
the genes that are exclusive to UCN1 may represent a
CRHR1-specific gene expression pattern. The possible
role of UCN-mediated gene expression changes in the
pathology of I/R injury will be discussed in turn.
GPCR-related genes

The UCN CRH receptors belong to the family of
GPCRs, and binding to CRHR1 or CRHR2 stimulates
G-protein and adenylyl cyclase activity; this in turn
Journal of Molecular Endocrinology (2010) 45, 69–85
catalyses the conversion of ATP to cAMP, resulting in
subsequent activation of PKA and PKC (Lawrence et al.
2005, Hillhouse & Grammatopoulos 2006, Kageyama
et al. 2007). In addition, CRH phosphorylation by these
kinases facilitates arrestin binding, leading to receptor
desensitisation and uncoupling from G-proteins
(Hillhouse & Grammatopoulos 2006). Several genes
involved in GPCR and adenylyl cyclase signalling were
found to be regulated by UCNs, including Ralgds,
Rhobtb1, Rnd3, Rap1a, Rabgap1, Prkaa2, Prkar1a, Cap2,
Akap12, Gnb1, Dab2ip and Dnmbp. The majority of these
genes have not been shown previously to be regulated
by UCNs or CRH receptors, and therefore, this reveals
previously unknown signalling complexity following
activation of CRH receptors. Since these G-protein-
related genes were found to be both induced and
repressed, UCNs may modulate the duration and
strength of their signalling through altered expression
of genes that are central to CRH receptor activity.
www.endocrinology-journals.org
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Figure 5 UCN1 and UCN2 inhibit free radical formation during I/R injury. (A) Saline,
tempol, UCN1 and UCN2 were infused after 25-min ischaemia, followed by 2-h
reperfusion (nZ5 rats). The left ventricles were extracted, and tissue MDA levels were
measured by HPLC. Error bars represent meanGS.E.M. Statistical analysis was carried
out using a one-way ANOVA with Dunnett’s post test, *P!0.05, ***P!0.001 compared
with I/RCsaline group. (B) Venn diagram depicting commonly expressed genes in each
treatment group. (C) List of annotated genes that are differentially regulated by both
UCN1 and UCN2. The level of differential expression between saline treatment and
UCN1, UCN2 and tempol treatment is indicated.
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Energy utilisation and metabolism

AMPK is activated by stresses which deplete cellular ATP
levels such as those occurring during ischaemia, and is
responsible for promoting fatty acid oxidation and
increasing glucose uptake and glycolysis through the
regulation of proteins such as GLUT4 (SLC2A4) and
www.endocrinology-journals.org
glycogen synthase (Dyck & Lopaschuk 2006). The
mRNA and protein levels of AMPK-a2 (PRKAA2),
which is the main cardiac isoform, were reduced
following in vivo I/R injury, as were the mRNA levels
in cardiac myocytes following in vitro I/R injury. UCN1
and UCN2 increased expression 2.3- and 1.9-fold
respectively, and this was also confirmed at the protein
Journal of Molecular Endocrinology (2010) 45, 69–85
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level, with UCN1 inducing slightly greater protein
expression of AMPK-a2 than UCN2. AMPK activity was
increased by PKA following GPCR stimulation, and
interestingly, UCN1 also increased the expression of
protein kinase, cAMP-dependent regulatory, type I,
a (PRKAR1A), a regulatory subunit of PKA. UCN-
mediated upregulation of AMPK is suggested to reduce
ischaemic damage, since several reports have demon-
strated that AMPK-a2 can protect the myocardium
from I/R injury. Carvajal et al. (2007) found that
AMPK-a2 deficiency resulted in reduced myocardial
glucose uptake and glycogen content during I/R injury,
leading to accelerated contracture. Mice expressing a
kinase dead form of AMPK-a2 had exacerbated
contractile dysfunction following I/R, accompanied
by elevated TUNEL positivity and caspase-3 activity
(Russell et al. 2004). AMPK has also been shown to
avert hypoxic damage to cardiac myocytes by preven-
ting endoplasmic reticulum stress (Terai et al. 2005).
We have demonstrated previously improved myocardial
energetics following UCN1 administration before
reperfusion, and it is tempting to speculate that
this energetic recovery of the ischaemic myocardium
might be linked to increased AMPK levels (Scarabelli
et al. 2002). In addition, AMPK has been shown to
stimulate AKT activity in cardiac myocytes, and there-
fore, upregulation of AMPK expression may explain
our previous observations of increased AKT activity in
cardiac myocytes treated with UCN1 and UCN2
(Brar et al. 2002, Chanalaris et al. 2003, Bertrand
et al. 2006).
Regulation of apoptosis

One of the most highly upregulated genes in the UCN1
group was XIAP, one of a family of six IAPs. XIAP
functions by inhibiting the effector caspase-3, -7 and -9
through ubiquitin-mediated degradation (Eckelman
et al. 2006). XIAP also protects from ROS-induced
apoptosis through the promotion of increased
expression of anti-oxidative genes (Resch et al. 2008).
There are few studies addressing the role of XIAP in the
myocardium; however, we have shown previously that
the cardioprotective action of minocycline was associ-
ated with increased XIAP expression (Scarabelli et al.
2004). XIAP has also been shown to function as an anti-
apoptotic factor in a stroke model of I/R injury (Zhu
et al. 2007, Russell et al. 2008). We have found that
XIAP levels are reduced following in vivo I/R injury,
and that mRNA levels are reduced in cardiac myocytes
following I/R injury in vitro. UCN1 administration
partially restored XIAP expression, albeit not to the
sham levels. We have shown previously that UCN1
treatment reduces the number of caspase-3-positive
endothelial cells and cardiac myocytes following I/R
injury in vivo, and it is therefore tempting to speculate
Journal of Molecular Endocrinology (2010) 45, 69–85
that some of the anti-apoptotic effects of UCN1 may be
mediated through reduced executioner caspase activity
via XIAP upregulation (Scarabelli et al. 2002).
Genes involved in the regulation of oxidative stress

Both UCN1 and UCN2 significantly lowered MDA
levels, showing that they inhibit free radical formation
during I/R injury; indeed, they were as potent as the
free radical scavenger tempol as anti-oxidants. Approxi-
mately 30% of genes regulated by UCN1 and UCN2
were also found to be regulated by tempol during I/R
injury. These genes may comprise an anti-oxidant
signature responsible for UCN-mediated free radical
inhibition. Of the gene expression changes common to
both hormones, one candidate which may account for
the free radical inhibition was the anti-oxidant response
gene Nfe2l1 (Nrf1). In vivo I/R injury reduced the
mRNA and protein levels of NFE2L1, while Nfe2l1
mRNA levels were also reduced in cardiac myocytes
following in vitro I/R injury. Both UCN1 and UCN2
significantly increased Nfe2l1 expression (4.0- and 5.2-
fold respectively), and the protein expression closely
mirrored this, with UCN2 inducing greater NFE2L1
protein expression than UCN1. The physiological effect
of reduced NFE2L1 levels during I/R is unknown, but
some conclusions can be drawn from the studies of
NFE2L1 deficiency. Nfe2l1 knockout mice die at mid-
gestation; however, analysis of NFE2L1-deficient foetal
livers demonstrated exuberant oxidative stress due to
insufficient expression of genes for the anti-oxidants
GSH and GSSG, while NFE2L1-deficient fibroblasts
displayed increased levels of cell death when treated
with oxidants (Kwong et al. 1999, Chen et al. 2003).
Taken together, these findings suggest that transcrip-
tional repression of Nfe2l1 leads to reduced levels of
anti-oxidants during I/R injury, which may sensitise
cardiac myocytes to oxidative stress. In this setting,
upregulation of Nfe2l1 levels by UCN1 and UCN2 may
be important in aiding free radical scavenging and
protection from I/R injury. However, it is unknown
whether there is sufficient time within the 2-h
reperfusion period for the increased levels of NFE2L1
protein to in turn upregulate oxidative response
genes and account for the reduction in oxidative stress.
More detailed kinetic analysis of the effect of UCNs
on downstream NFE2L1 targets is needed to address
this question.

It is not clear why UCN2 treatment led to a greater
increase in Nfe2l1 expression than UCN1 treatment;
however, the Nfe2l1 promoter contains binding sites
for several transcriptional regulators including SP1,
AP2, C/EBP and CBP (Luna et al. 1995), which may
be regulated to different extents by UCN1 and UCN2.
It must be noted that UCN1 and UCN2 did not increase
Nfe2l1 levels to the same extent as tempol (4.0-, 5.2- and
www.endocrinology-journals.org
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6.3-fold respectively); however, while NFE2L1 may
indeed represent a major mediator of UCN-dependent
free radical inhibition, additional genes are likely to
be involved. Other candidates for the ROS- sparing
effects of UCNs include glutaredoxin 2 (Glrx2), which
was found to be reduced by 2.0-fold by I/R and
increased by 1.6-fold by UCN1 treatment and by
2.0-fold by UCN2 treatment. GLRX2 catalyses the
deglutathionylation of protein-glutathione mixed
disulphides, and is involved in the maintenance of
redox homoeostasis (Lillig et al. 2008). Transgenic
overexpression of GLRX2 conferred protection against
doxorubicin-mediated cardiac damage by increasing
left ventricular function associated with increased
levels of mitochondrial S-glutathionylation (Diotte
et al. 2009). In addition, GLRX2 transgenic mice
showed reduced infarct sizes and decreased ROS
production following I/R injury, accompanied by
reduced activity of caspase-3 and -9 (Nagy et al. 2008).
These effects were dependent on AKT activity,
suggesting that UCN1- and UCN2-mediated AKT
activation in cardiac myocytes may lead to the
restoration of GLRX2 levels following I/R injury,
which in addition to enhanced Nfe2l1 expression
may contribute to the decrease in ROS production
associated with UCN treatment. Reduction of Rac2
expression caused by UCN1 may represent another
potential candidate for reduced anti-oxidant activity.
RAC2 GTPase is critical in the regulation of NADPH
oxidase (NOX) function, and promotes NOX-
dependent generation of superoxide anions (Diebold
& Bokoch 2001). Rac2 was upregulated 3.4-fold by I/R,
and it was downregulated 2.6-fold by UCN1 but not by
UCN2; reduced RAC2 levels in UCN1-treated animals
may therefore reduce NOX activity and subsequent
ROS production.

In conclusion, although many of the gene
expression changes presented here remain to be
corroborated by protein expression data, these find-
ings nonetheless highlight previously unidentified
effects of UCNs on the myocardium. We have identified
a host of genes which may be intimately involved in
signalling downstream of the CRH GPCRs. Many of
the expression changes described may be central to
the cardioprotective activity of UCN1 and UCN2;
however, cardioprotection is more likely to be due
to the combined effects of many transcriptional, post-
transcriptional and translational changes acting in
concert. Further characterisation of these newly ident-
ified putative UCN target genes not only will reveal
new aspects to UCN biology, but may also uncover novel
pharmacological targets for the treatment of I/R injury.
Inhibition of free radical generation by both UCNs
may be central to their cardioprotective activity, and
the anti-oxidant response genes Nfe2l1, Glrx2 and Rac2
www.endocrinology-journals.org
may have a role to play in this effect, and therefore,
warrant further investigation.
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