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Early growth response 1 (EGR-1) contributes to the
development of chronic obstructive pulmonary dis-
ease in the lungs of smokers by mediating pulmonary
inflammatory responses, but the direct downstream
genes of EGR-1 that regulate this process remain un-
known. We show that a new EGR-1 target gene, gera-
nylgeranyl dipbosphate synthase (GGPPS) which
controls protein prenylation, can regulate the proin-
flammatory function of EGR-1 by activating MAPK sig-
naling. When C57BL/6 mice were exposed to cigarette
smoke, EGR-1 and GGPPS levels increased in their
lungs, and the inflammatory responses were aug-
mented, whereas these effects could be reversed by
the down-regulation of EGR-1 transcription activity.
The accumulation of EGR-1 and GGPPS was induced
by MAPK/ERK pathway activation when Beas-2B hu-
man bronchial epithelial cells were exposed to cig-
arette smoke extract (CSE). Further examination
showed that EGR-1 in turn regulated Erk1/2 activity
because inhibition of EGR-1 transcription activity de-
creased CSE-induced Erk1/2 phosphorylation. Fur-
thermore, EGR-1-promoted Erk1/2 activation was de-
pendent on GGPPS transcription. Knockdown of
GGPPS expression with small-interfering RNA abol-
ished the EGR-1-activated Erk1/2 activity. Both EGR-1
transcription inhibition and GGPPS expression knock-
down decreased the inflammatory response induced by
CSE in Beas-2B cells. Our results reveal a new EGR-1/
GGPPS/MAPK signaling pathway that controls cigarette
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smoke—induced pulmonary inflammation, and this may
shed light on our understanding of the mechanism of
cigarette smoke-related pulmonary diseases such as
chronic obstructive pulmonary disease. (dAm J Pathol
2011, 178:110-118; DOI: 10.1016/j.ajpath.2010.11.016)

Although cigarette smoke is a major risk factor for chronic
obstructive pulmonary disease (COPD), genetic suscep-
tibility may also be crucial to the progression of the dis-
ease because only 15% to 20% of heavy smokers de-
velop clinically significant airway obstruction.” However,
the genes that link cigarette smoking and COPD suscep-
tibility remain poorly understood. A report from Chan et
al? demonstrated that the early growth response 1 (EGR-1)
polymorphisms are significantly associated with plasma
total IgE and atopy in patients with asthma. Our previous
report also showed that EGR-1 is a genetic susceptibility
factor that can control the production of matrix metallo-
proteinase (MMP-2 and MT1-MMP) to overwhelm the an-
tiprotease systems and lead to destruction of alveolar
septal architecture.®># In addition, EGR-1 can also stim-
ulate heat shock protein 70 elevation in an Erk1/2-depen-
dent manner, which may regulate the cigarette smoke-
induced inflammatory processes.®

The transcription factor EGR-1 is the product of the
EGR-1 gene, which belongs to the immediate-early gene
family of proteins and is often rapidly and transiently
activated by a variety of stress signals, such as osmotic
pressure variation, heat shock, hypoxia, DNA-damaging
agents, radiation, injury, and stretch.®~'® As an important
zinc finger transcription factor, the function of EGR-1 is
dependent on the expression of its target genes. EGR-1
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can recognize highly conserved consensus GC-rich nu-
cleotide sequences (GCGG/TGGGCG)'™® "¢ and directly
activate the transcription of many genes, including im-
mune effector genes, such as cytokine interleukin (IL) 27
and proinflammation immune mediator tumor necrosis
factor a (TNF-a),'® and cell surface molecules, such as
IL-2 receptor,’® Fas/CD95,2° and intracellular adhesion
molecule 1.2" Through the regulation of its target genes,
EGR-1 plays important roles in various cellular programs,
including cell proliferation, differentiation, and apopto-
sis.’™® Although several downstream genes may be re-
lated to the pulmonary inflammatory response, %2225 g
detailed mechanism for the function of EGR-1 in cigarette
smoke-related pulmonary diseases still remains largely
unknown.

We have reported that human primary lung fibroblasts
can synthesize MMP and chemokines in an EGR-1-de-
pendent manner when exposed to cigarette smoke ex-
tract (CSE) stress.®® To further understand the patholog-
ical functions of EGR-1 in pulmonary diseases during
cigarette smoke—-induced stress, we used chromatin im-
munoprecipitation methods to identify a new target gene,
geranylgeranyl diphosphate synthase (GGPPS). GGPPS is
a branch-point enzyme in the mevalonate pathway that
catalyzes the synthesis of geranylgeranyl diphosphate®*2°
from farnesyl diphosphate,?® which is used for the gera-
nylgeranylation of proteins such as Ras and Ras-related
small GTP-binding proteins with a CaaX motif at the
C-terminus. Ras prenylation enhances its membrane
association and facilitates the activation of Ras/Raf/
MAPK signaling.?”2®

In this report, we find that GGPPS is a novel target
gene of EGR-1 that can mediate cigarette smoke-related
pulmonary diseases. Furthermore, we also propose a
mechanism by which EGR-1/GGPPS can augment Erk1/2
MAPK activation under constant, long-term cigarette
smoke stimulation to promote the chronic inflammation
that causes airway abnormalities, emphysema, and con-
sequently, COPD in susceptible smokers.?*=%2 MAPK,
including Erk1/2, p38, and JNK, is able to induce EGR-1
expression, depending on the stimulus and cell type.®3-3°
We present evidence that not only can EGR-1 stimulate the
expression of GGPPS in an Erk1/2 MAPK-dependent man-
ner, but also that EGR-1/GGPPS can reactivate Erk1/2
MAPK by promoting the transcription of GGPPS. This reg-
ulation might be responsible for the expression of TNF-q,
IL-8, and MMP-2 during CSE exposure, which could pro-
mote cigarette smoke-related pathological processes in the
lung.

Materials and Methods

Preparation and Treatment of CSE

Nonfiltered research reference cigarettes (1R3F ciga-
rettes) were purchased from the University of Kentucky in
Lexington. CSE was prepared at a concentration of 1
cigarette per 5 ml of serum-free Dulbecco’s modified
Eagle’s medium (Gibco/BRL, Gaithersburg, MD) as pre-
viously described®® with modifications. This medium was
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defined as 100% CSE and was used after adjusting the
pH to 7.4 and filtering through a 0.22-um filter. Cells were
grown to 90% confluence in 10-cm cell culture plates and
rendered quiescent in a medium containing 0.5% fetal
bovine serum before CSE treatment. During the CSE
treatment, the cells were always cultured in the presence
of CSE until the cells were lysed. For the experiment
using the MEK inhibitor U0126, cells were preincubated
for 2 hours with U0126. The concentration used was 10
pwmol/L, which could inhibit MAPK without cytotoxicity.
The inhibitor was dissolved in dimethyl sulfoxide (DMSO)
as recommended by the manufacturer. The vehicle con-
tained the same concentration of DMSO that was used in
the treatment group, and the maximum DMSO content did
not exceed 0.1% of medium.

Cell Culture

The Beas-2B human bronchial epithelial cells were cul-
tured in Dulbecco’s modified Eagle’s medium supple-
mented with 10% (vol/vol) fetal bovine serum and pen-
icillin (100 IU/ml)/streptomycin (100 ng/ml) at 37°C in a
water-saturated atmosphere with 5% carbon dioxide.

Plasmids, siRNA, and Adenovirus Construction

Human EGR-1 and dnEGR-1 (dominant negative EGR-1)
cDNAs were a gift from Professor J. M. Baraban. To
generate adenoviruses overexpressing EGR-1, dnEGR-1,
and GGPPS, the sequences of EGR-1 and dnEGR-1 were
cloned from their original vectors into the pAdTrack-CMV
vector. Human GGPPS cDNA was cloned by reverse tran-
scription PCR (RT-PCR) from the total RNA of HEK293 cells
into the pAdTrack-CMV vector. These pAdTrack-CMV vec-
tors carrying EGR-1, dnEGR-1, and GGPPS were recom-
bined into an adenovirus backbone with the AdEasy Sys-
tem according to the manufacturer's protocol. The
adenovirus vector has a Green fluorescent protein (GFP) cas-
sette as an infection marker. To generate an adenovirus
expressing human GGPP small-interfering RNA (siRNA), a
unique 19-nuclectide sequence targeting human GGPPS
(5’-GTCCCACTGAAGAAGAATA-3') and the scrambled
sequence (5'-TTCTCCGAACGTGTCACGT-3') were in-
serted into the pShuttle-H1 vector and subjected to adeno-
virus recombination with the AdEasy System according to
the manufacturer’'s protocol. The siRNAs of EGR-1 were
purchased from Invitrogen Corp (Carlsbad, CA) and de-
signed to target the following cDNA sequence of EGR-1:
5'-TCTCCCAGGACAATTGAAATTTGCT-3'. The scrambled
sequence was used as control: 5'-CCTACGCCACCAATT-
TCGT-3".

Western Blotting

Beas-2B whole-cell lysates were prepared according
to previously reported standard protocols.® For West-
ern blotting, equal amounts of protein for each group
were resolved on 10% sodium dodecyl sulfate—polyac-
rylamide gel electrophoresis and then transferred
onto polyvinylidene fluoride membrane (Bio-Rad, Her-
cules, CA). The membranes were then incubated with
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Table 1. Primers Used in Real-Time PCR Analysis

Genes Accession no. Forward/reverse primer
Human
EGR-1 NM_001964.2 5'-CAGCAGTCCCATTTACTCAG-3'
5'-GACTGGTAGCTGGTATTG-3'
GGPPS NM_004837.3 5'-CCAGGTAAACAAGTGAGAACCAA-3'
5'-CGTCGGAGTTTTGAGTTGTCT-3'
IL-8 NM_000584.2 5'-ATGACTTCCAAGCTGGCCGTGGCT-3'
5'-TCTCAGCCCTCTTCAAAAACTTCTC-3'
TNF-« NM_000594.2 5'-CCCAGGCAGTCAGATCATCTTC-3’
5'-AGCTGCCCCTCAGCTTGA-3'
MMP-2 NM_001127891.1 5'-CCTGTTTGTGCTGAAGGACA-3’
5'-GTACTTGCCATCCTTCTCAA-3'
18s NR_003286.2 5'-GTCTGTGATGCCCTTAGATG-3’
5'-AGCTTATGACCCGCACTTAC-3'
Mouse
TNF-a NM_013693.2 5'-GTGGAACTGGCAGAAGAGGC-3'
5'-AGACAGAAGAGCGTGGTGGC-3'
18s NR_003286.2 5'-GTCTGTGATGCCCTTAGATG-3'

5'-AGCTTATGACCCGCACTTAC-3'

EGR-1, early growth response 1, GGPPS, geranylgeranyl diphosphate synthase; IL-8, interleukin 8; MMP-2, matrix metalloproteinase 2; TNF-«, tumor

necrosis factor «; 78s rRNA, 18 svedberg units rRNA.

the appropriate primary antibody as indicated. Bound
antibody was visualized using alkaline phosphatase—
conjugated or horseradish peroxidase-labeled sec-
ondary antibodies.

Real-Time RT-PCR

Total RNA from lung tissues and treated cells was ex-
tracted using TRIzol reagent (Invitrogen) and reversely
transcribed with the ReverTra Ace-a kit (Toyobo Co Ltd,
Osaka, Japan). The resulting cDNA was used for real-
time RT-PCR performed on an ABI-7300 (Applied Biosys-
tems. Carlsbad, CA). SYBR Green master mix was pur-
chased from Toyobo. All quantitations were performed in
triplicate and normalized to an endogenous 18-strand
RNA control. The sequences of primer probes are pre-
sented in Table 1.

Animal Experiments

C57BL/6 mice were purchased from the Model Animal
Research Center of the Nanjing University Animal Cen-
ter. Experiments were conducted in accordance with
the China Guidelines for the Care and Use of Labora-
tory Animals. The animals were maintained in individ-
ual ventilated cages (Suzhou Fengshi Laboratory Ani-
mal Equipment Co Ltd, Huanggiao Town City, Suzhou,
China) under specific pathogen-free conditions. The
8-week-old mice were exposed to smoke in a whole-
body manner using a method previously published by
Witschi et al.3” Cigarette smoke exposure was per-
formed (45 minutes per day and 6 days per week for up
to 27 weeks) by burning 1R3F reference cigarettes
(1.16 mg of nicotine per cigarette; purchased from the
Tobacco Research Institute, University of Kentucky,
Lexington) through a smoking machine (model TE-10;
Teague Enterprises, Woodland, CA). Each smoldering
cigarette was puffed for 2 seconds once every minute

for a total of 8 puffs, at a flow rate of 1.05 L/min, to
provide a standard puff of 35 cm®. The smoke machine
was adjusted to produce a mixture of sidestream
smoke (89%) and mainstream smoke (11%) by burning
5 cigarettes at one time. The chamber atmosphere was
monitored for total suspended particulates and carbon
monoxide, with concentrations of 90 mg/m® and 350
ppm, respectively. The control mice were exposed to
filtered room air. Each experimental group contained at
least 5 mice.

To inhibit the transcriptional activity of EGR-1 in the
lung tissues of the mice, intranasal administration of
dnEGR-1 adenovirus (a dominant-negative EGR-1 that
only expresses the zinc finger domain that binds to the
GGPPS promoter but that does not have any transcrip-
tional activity)®® [5 X 10° plaque-forming units (PFU)],
control adenovirus (5 X 10° PFU) (Ade group), or PBS
(mock group) was performed 2 weeks before cigarette
smoke stimulation. To maintain the efficiency of the
adenoviruses, intranasal administration was performed
every 2 weeks during the entire cigarette smoke stim-
ulation process.

Bronchoalveolar Lavage

After the thorax was opened and the trachea exposed,
the lung tissues were lavaged with PBS. A total of 0.8
ml of PBS was injected into and retrieved from the
trachea twice, and this process was repeated 3 times
for each mouse. The fluid was centrifuged at 1500 X g
for 10 minutes. The supernatant was stored at —70°C
and used for the determination of cytokine concentra-
tion by enzyme-linked immunosorbent assay. The cells
in the bronchoalveolar lavage were resuspended with
100 L of PBS. The neutrophils were counted based on
morphologic criteria; at least 10 high-powered fields
were counted per slide.
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Figure 1. Cigarette smoke exposure increased
early growth response 1 (EGR-1) and gera-
nylgeranyl diphosphate synthase (GGPPS) ex-
pression in normal mouse lung tissues. Immu-
nostaining of EGR-1 and GGPPS in lung tissue of
normal mice exposed to cigarette smoke. EGR-1
levels increased in the cigarette smoking group
(CS) compared with the control group (CTL) in
the airway epithelium (arrow) after 5 weeks of
challenge, alveolar epithelial cells (arrowhead)
after 15 weeks, and airway epithelium (arrow)
and invasive inflammatory (hollow arrow-
head) cells after 27 weeks of exposure. GGPPS
was also found in the airway epithelium (ar-
row), alveolar epithelial cells (arrowhead), and
invasive inflammatory cells (hollow arrow-
head) as EGR-1 did after 27 weeks of exposure.
Scale bars: 200 wm, insets: 12.5 um.

Immunohistochemical Analysis

Mice were sacrificed at indicated times 4 hours after
cigarette smoke exposure, and lung tissue was collected
for immunostaining. Lung tissues were fixed, paraffin em-
bedded, and cut 6 to 7 um thick. The sections were
deparaffinized, stained with hematoxylin-eosin using
standard protocols, and then immunostained using anti-
human EGR-1 antibody and antihuman GGPPS antibody.
Next, the sections were incubated with peroxidase-la-
beled secondary antibody and stained with diaminoben-
zidine solution (0.05% diaminobenzidine, 50 mmol/L Tris
hydrochloride, pH 7.4, freshly prepared 0.01% hydrogen
peroxide).

Results

Cigarette Smoke Exposure Caused EGR-1 and
GGPPS Elevation in Mouse Lung Tissue

We monitored the expression of EGR-1 and GGPPS in the
lungs of mice when they were exposed to cigarette
smoke. EGR-1 was found to increase over time with cig-
arette smoke exposure (Figure 1). With a cigarette smoke
challenge every day for 5 weeks, EGR-1 was found
mainly in the epithelial cells and stromal cells of the
airway epithelium, whereas it was found mainly in the
airway epithelium and alveolar epithelial cells after 15
weeks of exposure. After 27 weeks of exposure, EGR-1
was found in the airway epithelium, alveolar epithelial
cells, and invasive inflammatory cells. Many invasive in-
flammatory cells were found in the airway and alveolar
epithelia after 27 weeks of exposure. GGPPS, a new target
gene of EGR-1 we recently indentified (N. Shen, unpub-
lished data), was also found to increase in the lung tissues
of mice exposed to cigarette smoke challenge for 27 weeks.
The increase in GGPPS was mainly observed in the airway
epithelium, alveolar epithelial cells, and invasive inflamma-
tory cells, similar to EGR-1 (Figure 1).

Inhibition of EGR-1 Transcription Function
Decreased Cigarette Smoke—Induced
Inflammatory Response

We measured the cytokines and neutrophils in lung tissue
and lavage after cigarette smoke exposure. The mRNA and
protein levels of the cytokine TNF-a were significantly in-
creased by smoke exposure in lung tissues and in the
lavage, respectively (Figure 2, A and B). The number of
neutrophils was also elevated (Figure 2C). If dnEGR-1 ad-
enovirus was administrated during cigarette smoke expo-
sure (the efficiency of overexpression of dnEGR-1 in lungs
is shown in Figure 2D), the TNF-a mRNA level in the lung
tissues was significantly reduced (Figure 2A). The protein
level of TNF-a and the number of neutrophils also de-
creased in the lavage, although the difference was not
significant (Figure 2, B and C). The results suggest that
EGR-1 might mediate cigarette smoke-induced pulmonary
inflammation.

The Erk1/2 Pathway Is Involved in EGR-1
Expression and Could Be Regulated by
Elevated EGR-1

It has been reported that EGR-1 is regulated by various
MAPK pathways, in particular the Erk1/2 path-
way. 3339743 Fyrthermore, recent studies have shown
that CSE exerts its biological effects via the MAPK
signaling pathway.*?“3 We also found that CSE was
able to significantly increase Erk1/2 phosphorylation
within 10 to 30 minutes after exposure in Beas-2B cells
(Figure 3A). When cells were treated with U0126, an inhib-
itor of MEK (a specific kinase that activates Erk1/2 MAPK),
the CSE-induced EGR-1 expression was significantly de-
creased (Figure 3B). Meanwhile, we found that Erk1/2-acti-
vated EGR-1 was able to promote Erk1/2 reactivation. As
shown in Figure 3C, overexpression of exogenous EGR-1
with adenovirus could mimic CSE stress to elevate Erk1/2
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Figure 2. Inhibition of early growth response 1 (EGR-1) transcriptional
activity decreased the cigarette smoke—induced inflammatory response.
mRNA levels of tumor necrosis factor a (INF-a) in mouse lung (A), TNF-«
protein in the lavage (B), and neutrophil number (C) in the lavage. The
mice were infected with dominant negative EGR-1 (dnEGR-1 group)
adenovirus, control adenovirus (Ade group), or PBS (mock group)
through nasal incubation. The TNF-a mRNA level (A) in lung tissue, as
detected by quantitative PCR, decreased significantly in the dnEGR-1
group. The protein level of TNF-a (B) in lavage, as detected by enzyme-
linked immunosorbent assay, was also decreased in the dnEGR-1 group.
The number of neutrophils (C) from the bronchoalveolar lavage was
decreased in the dnEGR-1 group. However, there was no significant
difference in the TNF-a protein level and the number of neutrophils
between the Ade control group and the dnEGR-1 group. D: The efficiency
of dnEGR-1 adenovirus in mouse lung tissues was detected using Western
blot. The protein was extracted from the lung tissues of the mice, which
had been infected with the control adenovirus (Ade) or the dnEGR-1
adenovirus (dnEGR-1) for 27 weeks (intranasal administration every 2
weeks) and subjected to Western blot. The overexpressed dnEGR-1 is a
zinc finger protein that can bind the promoters of EGR-1 target genes but
has no transcriptional activity. It is a 10.5-kDa protein, which can be
detected with the EGR-1 antibody (Santa Cruz, Biotechnology). *P < 0.05.

activation (Figure 3C). At the same time, inhibiting EGR-1
transcriptional activity with the dnEGR-1 adenovirus could
block the phosphorylation of Erk1/2 after CSE stimulation for
4 hours (Figure 3D). These results suggest that the reacti-
vation of Erk1/2 is regulated by CSE-induced EGR-1.

The Promotion of GGPPS Transcription by
EGR-1 Is Critical to MAPK Erk1/2 Reactivation

When cells were treated with U0126, the level of GG-
PPS mRNA transcription significantly decreased (Fig-
ure 4A). This result implies that the early phase of
Erk1/2 activation is also critical for GGPPS expression.
As shown in Figure 4B, exogenous expression of GG-
PPS with adenovirus increased the phosphorylation of
Erk1/2, like CSE and EGR-1 overexpression did. When
we introduced GGPPS siRNA into cells (the efficiency
of GGPPS siRNA is shown in Figure 4C), knockdown of
GGPPS blocked EGR-1 overexpression-induced
Erk1/2 activation (Figure 4D). These results suggest

that Erk1/2 activity is regulated through the function of
EGR-1 in promoting GGPPS expression.

The EGR-1/GGPPS/Erk1/2 Pathway Is
Responsible for the Production of
Proinflammatory Cytokines and an MMP

To determine the biological function of the EGR-1/
GGPPS/Erk1/2 pathway, we checked the expression level
of proinflammatory cytokines and an MMP, which are in-
volved in EGR-1-mediated pulmonary disease develop-
ment®® in Beas-2B cells after smoke treatment. We showed
that CSE stress challenge stimulated the Beas-2B cells to
synthesize the proinflammatory cytokines IL-8 (Figure 5A)
and TNF-a (Figure 5B) (which promote inflammatory re-
sponses) and to express MMP-2 (Figure 5C) (which might
be related to alveolar destruction during pulmonary fibro-
sis). When the transcriptional activity of EGR-1 was inhibited
with dnEGR-1 and the expression of GGPPS was knocked
down with siRNA, the synthesis of IL-8, TNF-«, and MMP-2
was significantly decreased. The results suggest that the
EGR-1/GGPPS/Erk1/2 pathway might mediate the progres-
sion of cigarette smoke—related pulmonary disease.

Discussion

Although more and more people are developing COPD, the
cause of this condition is complex and still incompletely
understood. One of the key factors is the genetic suscepti-
bility. A series of studies in diverse populations have shown
a large genetic contribution to the variability in pulmonary
function and COPD.**“5 Polymorphisms in multiple genes
have been reported to be associated with COPD, such as
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was decreased by U0126. C: Beas-2B cells were infected with exogenous
EGR-1 adenovirus or control adenovirus for 48 hours and subjected to
Western blot. Overexpression of exogenous EGR-1 largely increased the
phosphorylated Erk1/2. D: Beas-2B cells were infected with dominant-neg-
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Figure 4. The promotion of geranylgeranyl diphosphate synthase (GG-
PPS) transcription by early growth response 1 (EGR-1) is critical to MAPK
Erk1/2 reactivation. A: The mRNA level of GGPPS in Beas-2B cells. The
cells were pretreated with or without U0126 for 2 hours before cigarette
smoke extract (CSE) exposure. Sampling was performed after stimulation
of cells with or without CSE for another 4 hours. The elevation of GGPPS
mRNA by CSE is down-regulated by U0126. B: Beas-2B cells were infected
with GGPPS adenovirus (AdGGPPS) or control adenovirus (Ade) for 48
hours. The cell lysates were collected and subjected to Western blot. The
phosphorylation of Erk1/2 is enhanced by overexpression of GGPPS. C:
Beas-2B cells were infected with GGPPS small-interfering RNA (siRNA)
adenovirus (siGGPPS) or the scrambled siRNA adenovirus (SCR) and
subjected to Western blot and quantitative PCR. D: Beas-2B cells were
coinfected with EGR-1 adenovirus and with or without GGPPS siRNA
adenovirus. GGPPS and Erk1/2 activation increases after EGR-1 overex-
pression, whereas it is blocked by GGPPS knockdown with siRNA. *P <
.05 compared with the control group without any treatment, **P < 0.05
compared with CSE treatment only, ***P < .01 compared with the scram-
bled group.

microsomal epoxide hydrolase,*® vitamin D-binding pro-
tein,*” TNF-a,*® SERPINE2,*° and a-nicotinic acetylcholine
receptor, such as neuronal acetylcholine receptor subunit
alpha-3/5 (CHRNA 3/5).5°%" Notably, Chan et al® reported
that EGR-1 polymorphisms are significantly associated with
plasma total IgE and atopy in asthmatic patients. Thus,
EGR-1 may be a genetic susceptibility factor for COPD.
After long-term exposure to cigarette smoke, strains of
mice with different susceptibilities for the development of
smoke-induced emphysema have varied levels of EGR-1.
EGR-1 is markedly increased in the lungs of the emphy-
sema-susceptible AKR/J mice but only minimally in-
creased in the resistant NZWLac/J mice.? In the moder-
ately susceptible C57BL/6 strain we used, both EGR-1
and its downstream target gene, GGPPS, increased in
lungs after long-term exposure to cigarette smoke. Mean-
while, the inflammatory responses were augmented,
which could be reversed by down-regulation of EGR-1
transcriptional activity. We also found that GGPPS is a
crucial mediator of the proinflammatory function of EGR-1
because it may reactivate Erk1/2 through enhancing Ras
prenylation (N. Shen, unpublished data). Thus, we pro-
vide the first evidence, to our knowledge, that EGR-1 can
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activate MAPK Erk1/2 in a positive feedback manner
through promoting GGPPS transcription in lung epithelial
cells when they are exposed to long-term constant ciga-
rette smoke stimulation (Figure 6). This pathway can reg-
ulate the production of proinflammatory cytokines, such
as IL-8 and TNF-«, as well as MMP-2, and all of these
factors can promote chronic inflammation that causes
airway abnormalities, emphysema, and consequently,
COPD in susceptible smokers.

Cigarette smoke-induced chronic inflammation has
also long been viewed as central to the pathogenesis
of COPD. The inhaled substances, such as cigarette
smoke, cause an inflammatory response in the lung,
which results from the oxidant-antioxidant imbalance and
protease—antiprotease imbalance induced by oxidants or
mutagenic substances in cigarette smoke.®? The balance
of the protease—antiprotease system is regulated by
EGR-1 in that it can directly activate the transcription of
MMPs in lung fibroblasts, which may affect extracellular
matrix turnover in the development of COPD-associated
emphysema.®>*5% Our report also suggests that EGR-1
can directly up-regulate heme oxygenase 1 transcription
when C57BL/6 mice are exposed for long periods to
cigarette smoke, to protect the lung from oxidant dam-
age.®* Furthermore, the inflammatory response resulting
from the oxidant-antioxidant imbalance and protease—
antiprotease imbalance is also regulated by EGR-1. Cy-
tokines such as IL-18 and TNF-« in pulmonary epithelial
cells and IL-8 in human fibroblasts can be up-regulated
by CSE via EGR-1 activation.®2? Interestingly, an anal-
ysis of the promoters of these cytokines revealed no
direct EGR-1 response elements, which suggests that
the transcription of these cytokines requires indirect
transcriptional regulation that is induced by EGR-1
through the activation of an additional signaling
pathway.

GGPPS is a new target gene of EGR-1 that was iden-
tified and confirmed through chromatin immunoprecipi-
tation and electrophoretic mobility shift assay methods
(N. Shen, unpublished data). GGPPS is an enzyme that
catalyzes its substrate for protein prenylation. Most pro-
teins of the Ras-like GTPase superfamily need to be post-
translationally modified by prenyl groups to associate
with cellular membranes and to activate their down-
stream effectors. The mouse lung chocolate mutation has
been attributed to a G146T transversion in the conserved
GTP/GDP-interacting domain of Rab38 (Rab38°™). The
molecular basis for the mutant phenotype is defective
membrane-binding activity of Rab38°"* due to a failure in
its prenyl modification but is not due to the loss of its
GTP-binding activity.5® In addition, statin, which is an
inhibitor of HMG-CoA reductase (a key upstream com-
ponent of the mevalonate pathway), can inhibit CSE-
mediated MMP-9 induction by blocking prenylation of
Ras in MAPK pathways.®® The inhibition of geranylgera-
nyltransferase (GGTase) by geranylgeranyltransferase
inhibitor (GGTI) is also effective in inhibiting the infiltration
of inflammatory cells into airways in mouse experimental
asthma models.®” Thus, prenylation of Ras can augment
inflammatory responses in lung pathological processes.
We found that EGR-1 could enhance Ras prenylation and
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Figure 5. The EGR-1/GGPPS/Erk1/2 pathway is responsible for the production of proinflammatory cytokines and a matrix metalloproteinase (MMP). The
expression level of interleukin (IL)-8 (A), tumor necrosis factor e (INF-a) (B), and MMP-2 (C) in Beas-2B cells. Cells were infected with adenovirus (Ade) carrying
either dominant-negative early growth response 1 (dnEGR-1) or geranyigeranyl diphosphate synthase (GGPPS) small-interfering RNA (siRNA) and then exposed

to cigarette smoke extract (CSE) for 6 hours. Total RNA was extracted and subjected to quantitative PCR. CSE could stimulate Beas-2B cells to produce
proinflammatory cytokines IL-8 and TNF-q, as well as the MMP-2. However, the role of CSE was reversed by overexpression of dnEGR-1 or GGPPS siRNA. *P <

0.05 compared with other shown groups.

membrane association in a GGPPS-dependent manner,
and then it augments Erk1/2 activation in lung epithelial
cells (N. Shen, unpublished data). Because EGR-1 acti-
vation is also dependent on Erk1/2, the enhancement of
GGPPS transcription by EGR-1 can reactivate Erk1/2 in a
positive feedback manner, which might affect cigarette
smoke-related lung pathological processes.

EGR-1 has been termed an immediate-early response
protein based on the brisk kinetics of its induction within
minutes of a stimulus and on its rapid decay, often within
hours.™ This kind of immediate-early response protein is
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Figure 6. Model of the EGR-1/GGPPS/Erk1/2 pathway in the promotion of
the inflammatory response during cigarette smoke exposure. Cigarette
smoke extract (CSE) exposure leads to early growth response 1 (EGR-1)
elevation by activating the Erk1/2 MAPK pathway. The up-regulated EGR-1
can activate transcription of its target gene geranylgeranyl diphosphate syn-
thase (GGPPS), which is responsible for the reactivation of the Erk1/2 MAPK
pathway. This positive feedback pathway can constantly activate Erk1/2,
which is crucial for the inflammatory response.

usually thought to activate the expression of various tar-
get genes in response to stress. Many stress signals,
such as osmotic pressure variation, heat shock, hypoxia,
DNA-damaging agents, radiation, injury, and stretch, can
stimulate EGR-1 expression. EGR-1 can also directly ac-
tivate the transcription of many genes that are usually
crucial for the proper functioning in a cell system. The
mechanism that EGR-1 promoted GGPPS transcription is
not specific to the cigarette smoke stress and may also
be involved in other stresses, such as hyperinsulinism
exposure to adipocytes that enhances insulin resistance
development (N. Shen, unpublished data).

As an immediate-early gene, EGR-1 has been ob-
served in cells responding not only to acute injury or
environmental manipulation but also to prolonged long-
term insults, such as cigarette smoke.*® We provide a
molecular mechanism to explain the role of EGR-1 in
chronic diseases such as emphysema.®® The short-
term increase of EGR-1 in response to CSE can reac-
tivate Erk1/2 by promoting GGPPS transcription in such
a way that EGR-1 can reactivate the Erk1/2 as long as
CSE or cigarette smoke stimulation occurs. It is well
known that the activated Erk1/2 can promote chronic
inflammation. For example, the release of IL-8 in human
bronchial epithelial cells by acetylcholine is dependent
on NF-«BJ/Erk.? In addition, activated Erk1/2 is also
involved in the formation of CSE-induced death-induc-
ing signaling complex in human lung fibroblasts®® and
results in sustained lung damage. Thus, we proposed
a possible mechanism by which the long-term ciga-
rette smoke exposure leads to severe inflammatory
responses and EGR-1 feedback activation involving
GGPPS-promoted Ras prenylation that leads to reacti-
vation of Erk1/2 and thus enhances the imbalance of
oxidant-antioxidant and/or protease—antiprotease that
will damage lung structures.



In conclusion, our research reveals a new molecular
mechanism by which EGR-1 orchestrates pulmonary cel-
lular inflammatory responses to long-term exposure to
cigarette smoke. EGR-1 is induced by short-term ciga-
rette smoke exposure and leads to the increased secre-
tion of proinflammatory cytokines by pulmonary epithelial
cells. This process is often transient and reversible. How-
ever, when the cells are exposed to long-term constant
cigarette smoke stimulation, the induced EGR-1 can
intermittently activate MAPK Erk1/2 in a positive feed-
back manner by promoting GGPPS transcription. Con-
tinued activation of Erk1/2 can promote chronic inflam-
mation through the production of the proinflammatory
cytokines, IL-8, and TNF-«, as well as MMP-2, which
might be involved in pulmonary abnormalities in sus-
ceptible smokers.
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