
The American Journal of Pathology, Vol. 178, No. 3, March 2011

Copyright © 2011 American Society for Investigative Pathology.

Published by Elsevier Inc. All rights reserved.

DOI: 10.1016/j.ajpath.2010.11.071
Musculoskeletal Pathology

Targeting the Activin Type IIB Receptor to Improve
Muscle Mass and Function in the mdx Mouse Model

of Duchenne Muscular Dystrophy
Emidio E. Pistilli,*† Sasha Bogdanovich,*†

Marcus D. Goncalves,‡ Rexford S. Ahima,‡

Jennifer Lachey,§ Jasbir Seehra,§

and Tejvir Khurana*†

From the Departments of Physiology * and Medicine ‡ and the

Pennsylvania Muscle Institute,† University of Pennsylvania School

of Medicine, Philadelphia, Pennsylvania; and Acceleron

Pharma,§ Cambridge, Massachusetts

The activin receptor type IIB (ActRIIB) is a transmem-
brane receptor for transforming growth factor-� su-
perfamily members, including myostatin, that are in-
volved in the negative regulation of skeletal muscle
mass. We tested the translational hypothesis that
blocking ligand binding to ActRIIB for 12 weeks
would stimulate skeletal muscle growth and improve
muscle function in the mdx mouse. ActRIIB was tar-
geted using a novel inhibitor comprised of the extra-
cellular portion of the ActRIIB fused to the Fc portion
of murine IgG (sActRIIB), at concentrations of 1.0 and
10.0 mg/kg�1 body weight. After 12 weeks of treat-
ment, the 10.0 mg/kg�1 dose caused a 27% increase in
body weight with a concomitant 33% increase in lean
muscle mass. Absolute force production of the exten-
sor digitorum longus muscle ex vivo was higher in
mice after treatment with either dose of sActRIIB, and
the specific force was significantly higher after the
lower dose (1.0 mg/kg�1), indicating functional im-
provement in the muscle. Circulating creatine kinase
levels were significantly lower in mice treated with
sActRIIB, compared with control mice. These data show
that targeting the ActRIIB improves skeletal muscle
mass and functional strength in the mdx mouse model
of DMD, providing a therapeutic rationale for use of this
molecule in treating skeletal myopathies. (Am J Pathol

2011, 178:1287–1297; DOI: 10.1016/j.ajpath.2010.11.071)

The muscular dystrophies are a group of progressive,
hereditary primary myopathies that result in skeletal mus-

cle degeneration and wasting.1 Duchenne’s muscular
dystrophy (DMD) and the milder allelic Becker form are
X-linked diseases resulting from a genetic mutation in the
dystrophin gene (DMD), leading to a loss or severe re-
duction of functional dystrophin protein.2 With the loss of
dystrophin protein, the dystrophin-glycoprotein complex
that forms a link between the extracellular matrix and the
actin cytoskeleton is disrupted, leading to loss of muscle
membrane integrity.3,4 Skeletal muscles from DMD patients
have characteristic increases in inflammation, and cycles of
muscle fiber degeneration and regeneration lead to colla-
gen infiltration and muscle wasting.1,5 DMD is diagnosed in
early childhood, and patients typically require wheelchairs
and ventilatory assistance in their teens, demonstrating the
severe progressive course of the disease.1

At present, there is no cure for DMD, and standard
management for patients includes supportive measures
and corticosteroid therapy (ie, prednisone, deflazacort).
Although these drugs initially improve muscle function
and strength, adverse effects are associated with each
drug (eg, weight gain, hypertension, and reduced bone
density), and there are limitations to the therapeutic value
over time.6–8 Attempts to restore dystrophin protein in the
muscles of DMD patients using exon skipping techniques,
gene-based therapies and stem cell transplantation have
shown some promise in clinical trials.9–14 Nonetheless, only
a limited number of patients can benefit from these strate-
gies, and individualized medicine may be required to take
full advantage of these therapies.15 Research using animal
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models has also identified promising therapies that can
ameliorate the dystrophic phenotype.16 The pharmacolog-
ical stimulation of muscle growth, attenuation of muscle
wasting, and reduction in the muscle inflammation that is
characteristic of dystrophic muscle may be a viable option
for patients, in conjunction with supportive measures. In the
short term, if muscle mass can be increased or preserved in
DMD patients, this may prolong muscle function and life
expectancy. Therapeutic targets that have been investi-
gated to stimulate muscle mass in dystrophic muscle in-
clude insulin-like growth factor-1,17–19 IL-15,20 and myosta-
tin (MSTN).21–23

MSTN, a negative regulator of muscle mass, is a mem-
ber of the transforming growth factor-� superfamily of
proteins. Animals with genetic mutations in the Mstn
gene, including Belgian Blue cattle,24 the Mstn knockout
mouse,25 and the whippet dog,26,27 all exhibit a hyper-
muscled phenotype, and this has also been documented
in a child.28 Endogenous MSTN protein circulates as an
inactive complex that consists of a 26-kDa propeptide
region and a 12-kDa active region. Release of active
MSTN dimers allows binding to the activin type IIB recep-
tor (ActRIIB), leading to subsequent phosphorylation of
SMAD proteins and initiation of gene expression (re-
viewed by Fedoruk and Rupert).29 Experimental means
to inhibit MSTN, including antibodies directed against
MSTN,21,30 propeptide-mediated inhibition of MSTN,22

and DNA-based inhibition methods,31,32 have resulted in
increased muscle mass in wild-type mice30 and an im-
provement in the dystrophic phenotype in the mdx mouse
model of DMD.21–23 Additional ligands bind to ActRIIB,
including activin A, NODAL, bone morphogenetic protein
2, bone morphogenetic protein-6/7, and growth/differen-
tiation factor 11.33 Some of these ligands may act in
concert with MSTN to inhibit muscle growth, as recently
suggested.34

In the present study, we used a soluble form of
ActRIIB (sActRIIB) as a means to suppress multiple
ligands that bind to ActRIIB, and we tested the trans-
lational hypothesis that sActRIIB therapy would stimu-
late skeletal muscle growth and improve muscle func-
tion in the mdx mouse model of DMD. Our data
demonstrate that 12 weeks of sActRIIB therapy in-
creases body mass, muscle mass, and muscle func-
tion in the mdx mouse, providing rationale for the ther-
apeutic use of this strategy for improving muscle
wasting in skeletal myopathies such as DMD.

Materials and Methods

Mice

Male C57BL/10ScSn-Dmdmdx/J (mdx) and C57BL/
10ScSn wild-type mice were purchased from Jackson
Laboratories (Bar Harbor, ME) at 4 weeks of age. Mice
were exposed to a 12-hour light/dark cycle and 22°C
ambient temperature, and received rodent chow (Lab
Diet 5001; PMI Nutrition International, Gray Summit, MO)
and water ad libitum. Mice were acclimated at the animal

facility at the University of Pennsylvania before initiation of
experiments. The mdx mice were randomly assigned to
receive either sActRIIB injections (n � 14) or sterile PBS
injections (n � 13). Control and sActRIIB-treated mice
were housed in separate cages during the 12-week pre-
clinical trial. Age-matched C57BL/10ScSn mice (n � 6)
were used as untreated wild-type controls. All experi-
ments were approved by the Institutional Animal Care
and Use Committee at the University of Pennsylvania.

ActRIIB-Inhibition Strategy

Inhibition of ActRIIB signaling was achieved using a fusion
protein comprised of a form of the extracellular domain of
ActRIIB linked to the Fc portion of murine IgG (RAP-031;
Acceleron Pharma, Cambridge, MA). Two independent
drug trials were performed in mdx mice, at concentrations of
1.0 and 10.0 mg/kg�1 body weight. The mdx mice in each
group were compared with a separate group of age-
matched control mdx mice. Experimental mice received
intraperitoneal injections of either sActRIIB or sterile PBS
two times per week for 12 weeks. sActRIIB activity in vivo
was verified through qPCR for expression of the transgelin
gene (Tagln; synonym, Sm22) and Western immunoblotting
analysis (phosphorylated Akt) analysis for markers down-
stream of ActRIIB, using treated and control muscles35–38

(see Supplementary Figure S1 at http://ajp.amjpathol.org).

Body Weight and Composition

The mdx mice were weighed twice per week to determine
the correct volume of sActRIIB to be delivered and to plot
growth curves. In the 10.0 mg/kg�1 group, body composi-
tion was determined during week 11 of treatment using
nuclear magnetic resonance quantification (Echo Medical
Systems), as described previously.39

Ex Vivo Physiological Assessment of Skeletal
Muscle

Physiological properties, including isometric twitch force,
contraction time of the twitch, half-relaxation time of the
twitch, isometric tetanic force, and force drop after eccen-
tric lengthening contractions, were quantified in freshly dis-
sected extensor digitorum longus (EDL) muscles from 16-
week-old mdx mice, as described previously.21,22 Muscle
length was adjusted to obtain the maximal twitch response
and this length was measured and recorded as optimal
length. Three maximal twitch and tetanic contractions were
performed, followed by a series of five eccentric lengthen-
ing contractions. The force drop from eccentric lengthening
contractions was calculated as the percent difference in
maximum force between the first and fifth eccentric length-
ening contraction. Muscles were stimulated in a Ringer’s
solution composed of 100 mmol/L NaCl, 4.7 mmol/L KCl,
3.4 mmol/L CaCl2, 1.2 mmol/L KH2PO4, 1.2 mmol/L MgSO4,
25 mmol/L HEPES, and 5.5 mmol/L D-glucose. At the end of
the physiological assessment, EDL muscles were incu-
bated in an oxygenated 1% w/v Procion Orange solution for
30 minutes, flash frozen in isopentane cooled to the tem-

perature of liquid nitrogen, and stored at �80°C until used
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for sectioning. Muscle cross-sectional area (CSA) was
calculated by dividing the muscle mass by the product of
the muscle density coefficient (1.06 g · cm�3), muscle
optimal length, and the fiber length coefficient for EDL
muscles, as described previously40,41: CSA � EDL mass/
(Lo � fiber length coefficient � 1.06 g/cm3).

Muscle Histology and Morphology

Frozen muscle sections (10 �m thickness) were cut at
the midbelly of the muscle and fixed in ice-cold meth-
anol for 5 minutes. Diaphragm and tibialis anterior sec-
tions were processed for histological examination with
H&E and Masson’s trichrome stains. For morphometric
analyses, EDL muscle sections were stained with an
anti-laminin monoclonal antibody (Sigma-Aldrich, St.
Louis, MO), incubated with Alexa 488 goat anti-mouse
secondary antibody (Invitrogen, Carlsbad, CA), incu-
bated with the DNA-binding dye Hoechst 33825, and
visualized using epi-fluorescence illumination on an
Olympus BX51 microscope at an objective magnifica-
tion of 10� or 40�. Digital images were acquired using
an Olympus Magnafire digital camera. Morphometric
measurements were made using ImageJ image process-
ing software version 1.43 (NIH, Bethesda, MD; http://rsb.
info.nih.gov/ij/). Morphometric measurements included sin-
gle-fiber CSA, total number of fibers, percentage of
centrally nucleated fibers, and number of Procion Orange-
positive fibers.

Serum Creatine Kinase Quantification

Blood was collected from all experimental mice via
cardiac puncture and was allowed to clot for 30 min-
utes at room temperature. Serum was collected after
centrifugation for 10 minutes at 4.0 relative centrifugal
force. Creatine kinase (CK) levels were quantified us-
ing a kit as per manufacturer’s instructions (catalog no.
2910-430; Stanbio Laboratories, Boerne, TX). In addi-
tion to serum samples, normal and abnormal serum
standards were included in all analyses to validate the
assay (catalog no. G427, G428; Stanbio Laboratories).

Hydroxyproline Content

The content of the amino acid hydroxyproline has been
used as a measure of the extent of fibrosis in dystrophic
skeletal muscle.42 The tibialis anterior muscle and the
diaphragm were used for hydroxyproline quantification
(AAA Laboratory, Mercer Island, WA).

qPCR Gene Expression Analysis

Total RNA was isolated from gastrocnemius muscles as
described previously.43 RNA quantity and integrity was
accessed using a NanoDrop spectrophotometer (Thermo
Scientific, Wilmington, DE); the 260/280 ratio for all sam-
ples used was between 1.9 and 2.1. Two micrograms of
total RNA was reverse transcribed to make cDNA using a

high-capacity cDNA reverse transcription kit according
to the manufacturer’s instructions (Applied Biosystems,
Foster City, CA). The wells of a 96-well optical reaction
plate were loaded with a 20-�L volume consisting of 10�
PCR master mix (Applied Biosystems, Foster City, CA),
cDNA diluted in sterile H2O, and either a primer mix for
the gene of interest or the housekeeping gene 18S
(Rn18s).The relative quantification of each gene was cal-
culated using the ��Ct method, with one control B6129
cDNA sample used as the assay calibrator.

Western Immunoblotting

Quadriceps tissue was homogenized in lysis buffer
containing 50 mmol/L Tris · HCl (pH 7.4), 250 mmol/L
mannitol, 50 mmol/L NaF, 1 mmol/L sodium pyrophos-
phate, 1 mmol/L benzamidine, and 1 mmol/L phenyl-
methylsulfonyl fluoride with 0.5% (w/v) Triton X-100,
supplemented with complete protein inhibition cocktail
tablet from Roche (Penzberg, Germany), as described
previously.36 Protein extracts (50 �g) were separated
using 4% to 12% NuPAGE Bis-Tris gels (Invitrogen) and
transferred to nitrocellulose membranes with wet transfer
cells (Bio-Rad Laboratories, Hercules, CA). After 1 hour of
blocking with Tris-buffered saline with 0.1% (v/v) Tween 20
containing 10% (w/v) nonfat dried milk, membranes were
incubated with a polyclonal antibody against phosphory-
lated (Ser473) Akt, Akt1/2/3 (Santa Cruz), and GAPDH (Cell
Signaling Technology, Danvers, MA). Blots were washed
with the Tris-buffered saline with Tween 20 and were incu-
bated with anti-rabbit IgG conjugated to horseradish per-
oxidase (Santa Cruz Biotechnology, Santa Cruz, CA). The
signals were detected with enhanced enzymatic chemi-
luminescence (Amersham-GE Healthcare, Chalfont St
Giles, UK).

Statistical Analysis

Student’s t-test was used to analyze the data from the
two independent trials, using independent control
groups for comparisons with the two doses of sActRIIB
used. Data were analyzed using the GraphPad Prism 4
statistical software package (GraphPad Software, La
Jolla, CA), with statistical significance set at P � 0.05.
Data are reported as means � SEM.

Results

sActRIIB Treatment Increases Body Mass and
Lean Muscle Mass in Vivo in mdx Mice

To test the effects of sActRIIB therapy, two indepen-
dent preclinical drug trials were performed in which
4-week-old mdx mice received intraperitoneal injec-
tions twice weekly for 12 weeks at a dose of 1.0 mg/
kg�1 or 10.0 mg/kg�1 body weight and were compared
with trial-matched control mdx mice that received equal
volumes of sterile PBS. Mice treated with the 10.0 mg/
kg�1 dose had a significant increase in body weight,
which began after only 3.5 weeks of treatment (ie, seven

injections; Figure 1A). This resulted in a 27% increase in
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body weight at the termination of the trial (Figure 1B). In
contrast, the body weight of mdx mice that received the
1.0 mg/kg�1 dose was not significantly different from
control (Figure 1, A and B). Nuclear magnetic resonance
quantification revealed that treatment with the 10.0 mg/
kg�1 dose produced a selective increase in muscle
mass. Skeletal muscle mass was 33% greater in treated
mdx mice, compared with control mdx mice, with no
changes in the amount of adipose tissue mass (Figure
1C). The increases in lean mass were clearly visible in the
gross muscle anatomy of mice treated with the 10.0 mg/
kg�1 dose, compared with control. The upper and lower
limb skeletal muscles of treated mice, as well as the
muscles along the caudal region, were all visibly larger
than in control mice, reminiscent of the dumbbell shape
characteristic of Mstn-null mice (Figure 1D).25

The absolute weight of gastrocnemius, tibialis ante-
rior, and quadriceps skeletal muscles from mdx mice
treated with the 10.0 mg/kg�1 dose were all 30% to
45% larger at the end of the 12-week trial, with mar-
ginal increases in muscle size at the 1.0 mg/kg�1 dose
(Figure 2, A–C). When muscle weights were normal-
ized to body weight, the tibialis anterior muscle from
mice treated with the 10.0 mg/kg�1 dose was 16.6%
greater than control (Figure 2E). In contrast, the tibialis
anterior and quadriceps muscles from mice treated
with the 1.0 mg/kg�1 dose were 16.4% and 26.4% less,
compared with control, respectively (Figure 2, E and
F). These data demonstrate the ability of sActRIIB to
stimulate increases in body weight and specifically
lean muscle mass in the mdx mouse, although a dose-

Figure 1.
adipose tis
control md
weight at
higher dos
not adipos
mdx mice
anatomica
10.0 mg/k
dependent effect was clearly evident.
sActRIIB Treatment Increases the Mass and
Force Generating Capacity of the EDL Muscle

Previous studies have shown that MSTN blockade strate-
gies in both wild-type and mdx mice improves muscle mass
and force-generating capacity after treatment,21,23,30 but
absolute force production in muscle from Mstn-null mice
is not significantly different from control mice.25 To di-
rectly determine the effects of sActRIIB treatment on
muscle contractile properties, the EDL muscles from mdx
mice were dissected and analyzed ex vivo after the 12-
week preclinical trials. The EDL muscles from mdx mice
treated with the 1.0 mg/kg�1 dose were 7% greater than
control mice, whereas EDL muscles from mice treated
with the 10.0 mg/kg�1 dose were 42% greater, compared
with control mice (Figure 3A). Normalized to body weight,
the EDL muscles from mice treated with the 10 mg/kg�1

dose were 21.1% greater than control mice, with no dif-
ferences noted for the 1.0 mg/kg�1 dose (Figure 3B).
There was a corresponding 41% increase in the EDL whole-
muscle CSA in the mice treated with the 10.0 mg/kg�1

dose, compared with control mice, but no differences were
noted in muscle CSA from mice treated with the 1.0 mg/
kg�1 dose (Figure 3C). The increase in whole-muscle CSA
was verified when muscle sections were stained with an
anti-laminin fluorescent antibody to measure single-fiber
CSA. The single-fiber CSA histogram of the EDL muscles
from mice treated with the 10.0 mg/kg�1 dose was shifted to
the right, compared with control mice, indicating a greater
number of larger sized muscle fibers (Figure 3D). No such
shift was observed in the muscles from mice treated with the
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fibers from EDL muscles was not significantly different be-
tween the sActRIIB-treated mdx mice and the respective
control mdx mice (Table 1), suggesting that the greater EDL
mass was due to muscle fiber hypertrophy and not to hy-
perplasia.

The absolute force generated by EDL muscles in re-
sponse to a single twitch was 27% greater (1.0 mg/kg�1)
and 52% greater (10.0 mg/kg�1), compared with control
mice (Figure 4, A and B). When absolute force was nor-
malized to muscle CSA; however, the specific twitch force
was 33% greater in the 1.0 mg/kg�1 group, but did not differ
from control mice in the 10.0 mg/kg�1 group (Figure 4C).
The absolute force from a tetanic contraction was 31%
greater (1.0 mg/kg�1) and 39% greater (10.0 mg/
kg�1), compared with control mice (Figure 4, D and E).
Similarly, specific tetanic force was 45% greater in the
EDL muscles from mice treated with 1.0 mg/kg�1, com-
pared with control mice, but did not differ from control
mice in the 10.0 mg/kg�1 group (Figure 4F). The contrac-
tion time and half-relaxation time of maximal twitch con-
tractions were not different in EDL muscles from treated
or control mice (Table 1). Additionally, no differences were
observed in the eccentric contraction-induced force drop or
in the percentage of centrally nucleated fibers (Table 1).
The increases in specific force of the EDL muscle during
twitch and tetanic contractions in the 1.0 mg/kg�1 group

Figure 2. Effects of sActRIIB therapy on skeletal muscle mass in control mdx
increases in absolute skeletal muscle mass were observed at one or both dos
with control mdx mice. Normalized to body weight, however, no significant
dose, compared with control mice. A significant decrease was observed at th
significant increase was observed in the tibialis anterior (E) muscle. *P � 0.
provide evidence for a functional improvement in the EDL
muscles of mdx mice at this dose of sActRIIB that cannot be
explained solely by an increase in muscle size. In addition,
the lack of a difference in the contraction time and half-
relaxation time after treatment suggests that sActRIIB ad-
ministration did not alter any of the calcium-related proteins
related to the speed of contraction and relaxation (ie, sarco/
endoplasmic reticulum Ca2� ATPase isoforms).

mdx Mice Treated with sActRIIB Have Reduced
Circulating Creatine Kinase Levels

Creatine kinase is a muscle enzyme that is used as a
biomarker of muscle damage and muscle pathology; it is
consistently elevated in the blood of DMD patients, be-
cause of loss of muscle membrane integrity. Improve-
ments (ie, decreases) in the amount of CK circulating in
the blood suggest an improvement in muscle membrane
integrity and thus in disease pathology. After 12 weeks of
sActRIIB treatment, the amount of CK measured in the
serum of mdx mice that received the 10.0 mg/kg�1 dose
was significantly lower, compared with trial-matched con-
trol mice (Figure 5). This reduction occurred in the ab-
sence of differences in the percentage of Procion Or-
ange-positive fibers among the groups (Table 1). A trend
for lower CK values in the 1.0 mg/kg�1 group was ob-

nd mdx mice treated with 1.0 mg/kg�1 or 10.0 mg/kg�1 sActRIIB. Significant
strocnemius (A), tibialis anterior (B), and quadriceps (C) muscles, compared
in skeletal muscle mass was observed for gastrocnemius muscle (D) at either
dose for tibialis anterior (E) and quadriceps (F) muscles; at the higher dose,

� 0.001; ***P � 0.0001.
mice a
es for ga
change
served, but this was not statistically significant because
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of a relatively high level of variation in the trial-matched
control mice (Figure 5).

Treatment with sActRIIB Results in Minimal
Effects on Muscle Histopathology in the Young
Adult mdx Mouse

The diaphragm muscle in the mdx mouse most closely
resembles the characteristic histopathology observed

Figure 3. Effects of sActRIIB therapy on EDL weight and CSA in control
Significant increases were observed at both doses in absolute EDL weight
cross-sectional area (CSA) (C). The dashed line (A–C)indicates values for u
CSA analysis reveal a shift to the right for the higher dose (D). *P � 0.05; *

Table 1. Contractile and Morphometric Properties of the Extenso
Mouse Model of Duchenne Muscular Dystrophy

Variable

1.0 mg/kg�1 Treatm

Control mdx Treated mdx

Contraction time (ms) 34.0 � 1.6 37.5 � 1.6
½ Relaxation time (ms) 37.5 � 1.3 38.6 � 2.1
ECC force drop (%) 22.8 � 5.6 15.5 � 1.4
Total fibers (no.) 769.7 � 38.6 633.3 � 46.0
CN fibers (%) 52.3 � 4.6 62.3 � 5.9
PO-positive fibers (%) 6.9 � 2.1 8.7 � 3.8

CN, centrally nucleated; ECC, eccentric contraction; ms, milliseconds

*Treatment: Inhibition of activin receptor type IIB (ActRIIB) signaling was achie

of ActRIIB linked to the Fc portion of murine IgG (RAP-031; Acceleron Pharma,
in DMD patients,44 showing the characteristic evi-
dence of diffuse degeneration, fibrosis, and inflamma-
tion, whereas peripheral muscles show more localized
areas of pathology.44,45 Previous studies have shown
that MSTN blockade can result in improvements in the
presence of degenerative and regenerative muscle fi-
bers, inflammatory foci, and collagen infiltration in the
diaphragm muscle.21,22 In the present study, histopa-
thology of the diaphragm and tibialis anterior muscles

ce and in mdx mice treated with 1.0 mg/kg�1 or 10.0 mg/kg�1 sActRIIB.
at the higher dose in normalized EDL weight (B), and EDL whole-muscle
, age-matched wild-type BL/10 mice. D and E: Histograms from single-fiber
001.

orum Longus Muscle Following sActRIIB Therapy in the mdx

10.0 mg/kg�1 Treatment*

P value Control mdx Treated mdx P value

0.1545 41.0 � 2.3 38.0 � 1.3 0.2790
0.6583 47.0 � 2.5 44.5 � 1.4 0.3924
0.2438 27.9 � 2.4 33.3 � 4.7 0.2938
0.0638 742.0 � 28.1 842.4 � 71.4 0.1910
0.2079 52.2 � 5.6 43.2 � 6.0 0.3066
0.6754 11.9 � 2.3 11.1 � 1.1 0.7544

rocion Orange.
mdx mi
(A) and
r Digit

ent*

; PO, P

ved using a fusion protein comprised of a form of the extracellular domain
Cambridge, MA).
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were analyzed by H&E and Masson’s trichrome stains,
and hydroxyproline content was assessed as a marker
of connective tissue infiltration. In these young adult
mdx mice, there was minimal evidence of fibrosis, but
diaphragm muscle pathology showed the presence of
degenerative fibers, regenerative fibers, and inflamma-
tory cell infiltration, evident after histological staining.
sActRIIB treatment for 12 weeks did not appreciably
alter the diaphragm muscle histopathology evident in
4-month-old mdx mice after either the 1.0 mg/kg�1

dose or the 10.0 mg/kg�1 dose (Figure 6, A–C). Simi-
larly, sActRIIB treatment had minimal effects on histo-
pathology in the tibialis anterior muscle after either

Figure 4. Effects of sActRIIB therapy on ex vivo contraction force of the EDL
and mdx mice treated with 1.0 mg/kg�1 or 10.0 mg/kg�1 sActRIIB. B: At bot
C: Normalized twitch force was greater in EDL muscle only at the lower dos
mdx mice treated with 1.0 mg/kg�1 or 10.0 mg/kg�1 sActRIIB. E: At both do
Normalized tetanic force was greater in EDL muscles only at the lower do
wild-type BL/10 mice. *P � 0.05; **P � 0.001; ***P � 0.0001.

Figure 5. Effects of sActRIIB therapy on circulating CK levels. The mdx mice
�1
treated with the 10.0 mg/kg dose of sActRIIB had a significantly lower

concentration of serum CK compared with control mdx mice. ***P � 0.0001.
dose (Figure 6, D and E). Hydroxyproline quantifica-
tion in diaphragm (Figure 6F) and tibialis anterior mus-
cles (Figure 6G) supported the histological evidence,
with no significant differences between control and
treatment groups. These data suggest that, despite
functional improvements in limb skeletal muscles
after sActRIIB treatment, the muscle histopathology
characteristic in 4-month-old mdx mice was not signif-
icantly improved with treatment in the present study.
This is surprising, given the role of MSTN in promoting
fibrosis, and we speculate that longer treatment or
initiating therapy at an earlier age may produce a more
beneficial effect in reducing muscle histopathology.

Discussion

A definitive cure for DMD remains elusive, and until ther-
apies are developed to treat the primary defect of this
myopathy (ie, dystrophin deficiency), minimizing muscle
wasting and/or maintaining muscle function may be a
viable option for patients. In fact, the necessity for ther-
apies to spare existing muscle mass in patients with
muscular dystrophies has been suggested, with contin-
ued efforts to develop DNA-based therapies aimed at
introducing and/or stimulating dystrophin expression in
muscle.46,47 Therapies aimed at sparing existing muscle
mass or stimulating increases in muscle mass would be

A: Representative twitch force traces from EDL muscles of control mdx mice
absolute twitch force was significantly greater in mice treated with sActRIIB.
presentative tetanic force traces from EDL muscles of control mdx mice and
olute twitch force was significantly greater in mice treated with sActRIIB. F:
dashed line (B, C, E, and F) indicates values for untreated, age-matched,
muscle.
h doses,
e. D: Re
ses, abs
beneficial as adjuncts to DNA-based methodologies,
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which require intact muscle fibers for translation of func-
tional dystrophin protein.

Preclinical trials in experimental animals provide a
means to relatively quickly screen drugs and small mol-
ecules for therapeutic efficacy.48,49 With respect to DMD,
the mdx mouse has been used as a model because it has
been shown to recapitulate certain aspects of DMD dis-
ease progression. Specifically, the diaphragm muscle
undergoes significant muscle fiber degeneration, inflam-
matory cell infiltration, and reduced functional capacity,
and significant increases in circulating CK are evident in
serum from these mice.44,45 Thus, preclinical studies in
this mouse strain that improve these dystrophic impair-
ments can potentially lead to further studies in nonhuman
primates and eventually in humans.

MSTN is a negative regulator of skeletal muscle mass,
and blockade of MSTN activity in vivo has been reported
in numerous mouse models.21–23 Researchers from our
laboratory, and others, have reported improvements in
muscle mass and function in wild-type mice in the dys-
trophic-phenotype mdx mice, using both an antibody di-
rected against MSTN and the MSTN propeptide.21,22,30

The sActRIIB molecule has recently been shown to im-
prove muscle function in a mouse model of amyotrophic
lateral sclerosis,50 increase muscle mass and reduce
adiposity in mice fed a high-fat diet,51 and attenuate
muscle dysfunction in wild-type mice exposed to normo-

Figure 6. Effects of sActRIIB therapy on histopathology and hydroxyproline
tibialis anterior histopathology were observed in mdx mice treated with 1.0 m
diaphragm sections, H&E stain (A and B) and Mason’s trichrome stain (C). R
was observed in the hydroxyproline content of the diaphragm (F) and the
E). Scale bars � 100 �m (all images).
baric hypoxia.52 The therapeutic efficacy of sActRIIB ob-
served during hypoxic exposure is especially pertinent to
DMD pathology, because respiratory impairments in pa-
tients result in the need for ventilatory assistance at a
young age. The advantages of sActRIIB therapy may lie
in the ability to bind to multiple ActRIIB ligands, including
growth/differentiation factor 8 (MSTN) and growth/differ-
entiation factor 11, with similar binding affinities to activin
A, a known high-affinity ligand for this receptor.53 As
previously demonstrated, treatment of Mstn-null mice
with a similar soluble activin receptor molecule led to
additional modest increases in muscle mass, demon-
strating that multiple ActRIIB ligands can act in concert to
limit muscle growth in vivo.34

In the present study, we hypothesized that sActRIIB
therapy would stimulate skeletal muscle growth and im-
prove muscle function in the mdx mouse model of DMD
by inhibiting multiple members of the transforming growth
factor-� superfamily, in addition to MSTN. This therapeu-
tic protocol produced a rapid increase in body weight
and skeletal muscle mass of mdx mice treated with the
10.0 mg/kg�1 dose of sActRIIB; the difference in body
weight was less dramatic in response to the 1.0 mg/kg�1

dose. At the 10.0 mg/kg�1 dose, we observed a statisti-
cally significant increase in body weight over control
mice after just seven injections (3.5 weeks). With the 10.0
mg/kg�1 dose in wild-type C57BL/10 mice, we also ob-
served a significant 16% increase in body weight after 2

of diaphragm and tibialis anterior muscle. Limited effects on diaphragm and
or 10.0 mg/kg�1 sActRIIB, compared with mdx control mice. Representative
tative tibialis anterior sections H&E stain (D and E). No significant difference
nterior muscle (G). Original magnification, 10� (A and D); 40� (B, C, and
content
g/kg�1

epresen
weeks (four injections) of sActRIIB.52 These observations
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are in contrast to the smaller degree of body weight
changes we had observed in mdx mice treated with an-
tibodies directed against MSTN and the MSTN propep-
tide.21,22 Mice treated with the high dose of sActRIIB also
developed pronounced upper and lower limb muscula-
ture, with lean body mass being 33% greater than control
mice as determined using nuclear magnetic resonance.
These mice exhibited a dumbbell body shape similar to that
reported in MSTN knockout mice,25 and the absolute weight
of the gastrocnemius, tibialis anterior, and quadriceps mus-
cles from mice treated with the 10.0 mg/kg�1 dose were
between 30% and 45% greater than trial-matched control
mice. These data demonstrate that sActRIIB therapy has
the ability to rapidly stimulate improvements in lean mus-
cle mass, and may be beneficial therapeutically in mus-
cle wasting conditions, although dose-dependent effects
were evident.

The differences in contractile parameters observed in
the present study between the 10.0 mg/kg�1 dose and
the 1.0 mg/kg�1 dose of sActRIIB were significant, and
they demonstrate that the lower dose can improve mus-
cle function. Despite the limited effects on overall body
size, the lower dose of sActRIIB caused a significant
improvement in specific force of the EDL muscle when
stimulated ex vivo. In our laboratory, an antibody directed
against MSTN and the MSTN propeptide were each able
to improve absolute contractile force of EDL muscles
from mdx mice.21,22 In addition, the MSTN propeptide
improved specific force of the EDL muscle, providing
evidence for an improvement in muscle mechanics inde-
pendent of any increases in muscle mass.22 The greater
degree of improvement in muscle physiology in response
to the MSTN propeptide treatment, compared with the
MSTN antibody, may have been due to the higher bind-
ing affinity of the propeptide for MSTN than for the anti-
body.22 In a similar fashion, we hypothesize that the
binding affinities of the sActRIIB molecule for MSTN and
growth/differentiation factor 11 contributed to the im-
provement in EDL specific force. This hypothesis is in-
triguing, given the conclusions of a phase I/II clinical trial
using an antibody directed against MSTN (MYO-029).
The study authors supported the use of MSTN inhibitory
drugs to treat muscular dystrophies, although they also
concluded that drugs with more potent inhibitory actions
should be evaluated.54 Recently, a humanized version of
sActRIIB (ACE-031), composed of the extracellular por-
tion of the human ActRIIB fused to a human Fc, has been
reported to produce similar effects (ie, improved muscle
mass and strength) in wild-type mice.55

In addition to the effects noted of sActRIIB on muscle
mass and function, sActRIIB therapy resulted in lower
circulating CK levels, compared with saline-treated con-
trol mice. The reduced CK levels occurred despite no
clear improvements in skeletal muscle histopathology,
nor any changes in sarcolemmal integrity as accessed
via Procion Orange uptake. Previous research has shown
that performing exercise at the same absolute and rela-
tive intensity after 16 weeks of exercise training designed
to improve muscle hypertrophy results in a blunted CK
response.56 In addition, when trained weightlifters were

compared with untrained individuals, the serum CK re-
sponse to a strenuous resistance training session was
lower in the weightlifters.57 These data demonstrate that
hypertrophied muscles can perform exercise without the
same CK response as untrained muscles. In the present
study, skeletal muscle size was on average 30% to 45%
greater with the 10.0 mg/kg�1 dose of sActRIIB, with a
concomitant 80% lower level of circulating CK. Addition-
ally, skeletal muscle size was less affected with the 1.0
mg/kg�1 dose of sActRIIB, with a nonsignificant 82%
lower CK value. Thus, the reductions in circulating CK
observed in the mice treated with the 10.0 mg/kg�1 dose
of sActRIIB may have occurred as a result of the sig-
nificant increases in muscle hypertrophy and/or
strength in the mdx mouse. The reduced levels of cir-
culating CK observed after sActRIIB therapy are clini-
cally meaningful, based on statistical and effect size
analyses indicating serum CK as an effective marker for
determining preclinical drug efficacy.49

Previous studies using MSTN blockade therapies in
mdx mice have reported improvements in diaphragm
muscle histopathology.21,22 In vitro studies localize MSTN
and ActRIIB directly on fibroblasts, supporting the idea
that MSTN is a profibrotic factor that interacts directly with
fibroblasts to mediate its effects.58 In vivo, MSTN-coated
beads implanted into skeletal muscle increased fibrotic
tissue, and this effect was inhibited when the endoge-
nous MSTN inhibitor follistatin was also present on the
beads.58 Diaphragmatic fibrosis was reduced by 44% in
Mstn�/� mdx mice at 6 months of age, compared with
Mstn�/� mdx mice, but was still elevated compared with
the wild type.23 These data support MSTN involvement in
fibrosis, but also demonstrate that it is not absolutely
required, because fibrosis can develop in the absence of
MSTN. It was indeed surprising that we observed no
improvements in diaphragm or limb muscle histopathol-
ogy or hydroxyproline content in the present study with
sActRIIB therapy, given that both antibody-mediated and
propeptide-mediated MSTN inhibition did improve histo-
pathology in mdx diaphragm muscle.21,22 A possible ex-
planation for the minimal effects on diaphragm histopa-
thology after sActRIIB therapy in the present study is that
a relatively low level of histopathological damage or evi-
dence of damage at the time the tissues were analyzed
(ie, at 4 months of age) limited the possibility of identify-
ing any therapeutic effect. In addition, the recent obser-
vation of histopathological improvements in dystrophic
muscle with early (ie, before active disease onset) MSTN
blockade therapy suggests that the presence of active
muscle pathology may also limit therapeutic efficacy.59

In conclusion, 12 weeks of treatment with sActRIIB at a
dose of 1.0 mg/kg�1 caused increases in specific force
of the EDL muscle in mdx mice, indicating a functional
improvement in the muscle, whereas the 10.0 mg/kg�1

dose led to significant increases in overall body mass
and lean muscle mass. Circulating CK levels were also
significantly lower after sActRIIB therapy at the 10.0 mg/
kg�1 dose, although improvements in muscle histopa-
thology were limited in the young adult mdx mice used in
the present study. These data demonstrate that pharma-
cologically targeting the ActRIIB can improve skeletal

muscle mass and strength in the mdx mouse model of
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DMD, providing a therapeutic rationale for use of this
small molecule in treating the muscle-wasting character-
istic of skeletal myopathies.
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