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The 5=-AMP-activated protein kinase (AMPK) functions
as a metabolic fuel gauge that is activated in response to
environmental stressors to restore cellular energy bal-
ance. In the heart, AMPK coordinates the activation of
glucose and fatty acid metabolic pathways to ensure
increased production of myocardial ATP when re-
quired, such as during cardiac ischemia/reperfusion
and hypertrophy, causing an increase in AMPK activity
that can be viewed as both protective and maladaptive.
While we understand the basic regulation of AMPK ac-
tivity by kinases, recent studies have introduced the
concept that AMPK is regulated by other post-transla-
tional modifications, specifically ubiquitination.
These studies reported that the ubiquitin ligase cell
death–inducing DFFA-like effector a ubiquitinates the
� subunit of AMPK to regulate its steady-state protein
levels. Other investigators found that AMPK regula-
tory components, including the AMPK � subunit and
AMPK kinases NUAK1 and MARK4, can be ubiquiti-
nated with atypical ubiquitin chains. The USP9X-deu-
biquitinating enzyme was identified to remove ubiq-
uitination from both NUAK1 and MARK4. Lastly,
AMPK activation increases the expression of the ubiq-
uitin ligases MAFBx/Atrogin-1 and MuRF1. These
ubiquitin ligases regulate key cardiac transcription
factors to control cardiomyocyte mass and remodel-
ing, thus suggesting another mechanism by which
AMPK may function in the heart. The relevance of
AMPK ubiquitination in cardiac disease has yet to be
tested directly, but it likely represents an important
mechanism that occurs in common cardiac diseases
that may be targeted for therapy. (Am J Pathol 2011,
178:4–11; DOI: 10.1016/j.ajpath.2010.11.030)
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The 5=-AMP-activated protein kinase (AMPK) functions as
a metabolic fuel gauge that is activated in response to
numerous environmental stressors to restore cellular and
whole-body energy balance.1,2 AMPK is allosterically
regulated by the competitive binding of AMP and ATP,
thereby “sensing” cellular energy status and, on activa-
tion, triggers compensatory ATP-generating mechanisms
while attenuating ATP-consuming processes.3 Perturba-
tions in cardiac metabolism are closely linked to the onset
and progression of cardiovascular diseases; given the
central role of AMPK in regulating cellular energetics,
there is considerable interest in the determination of the
precise role(s) of AMPK in cardiac pathophysiological
states and evaluation of the utility of modulating AMPK
activity as a therapeutic intervention.4 This review dis-
cusses AMPK function in normal and diseased hearts,
with emphases on AMPK and protein degradation via the
ubiquitin proteasome pathway—a potential novel ap-
proach to treating cardiovascular disease. These are sig-
nificant new findings as ubiquitination is emerging as a
pivotal regulatory mechanism that rivals phosphorylation
in its overall significance in biology.5

Structure and Regulation of AMPK

AMPK is a highly conserved heterotrimeric enzyme consist-
ing of three subunits, �, �, and �, with multiple genes en-
coding distinct subunit isoforms (ie, �1, �2, �1, �2, �1, �2,
and �3). The structure and regulation of AMPK is the subject
of an extensive recent review6; therefore, this article pre-
sents a brief structural and regulatory overview and focuses
on the heart-specific aspects of AMPK. The � subunit of
AMPK contains the catalytic domain and the Thr172 residue
targeted by upstream kinases required for subsequent ac-
tivation.7 The � subunit contains a glycogen-binding do-
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main that is important for kinase function and substrate
definition8 and functions as scaffold for � and � subunit
binding.9 The � subunit consists of four tandem or cysta-
thione �-synthase (CBS) repeats, forming two basic func-
tional units called Bateman domains that bind AMP or ATP
in a mutually exclusive manner, depending on the particular
intracellular energetic milieu.10,11

The �1 and �1 isoforms are ubiquitously expressed in
mammals, whereas the �2 and �2 isoforms are enriched in
the heart as well as skeletal muscle.12,13 Of the three �
subunits, �1 is ubiquitously expressed,14 whereas �2 is
enriched in the heart (but not skeletal muscle), and �3 is
expressed exclusively in skeletal muscle.15 Together, these
studies demonstrate distinct expression patterns for AMPK
subunits; for example, the cardiac AMPK multi-protein com-
plex predominantly consists of �2-�2-�2 subunits, while
�2-�2-�3 is the major complex found in skeletal muscle.14 It
is likely that different AMPK subunit isoform combinations
play different roles in various tissues, depending on the
prevailing intracellular energetic status; however, this inter-
esting possibility requires further study.

AMPK activation is dependent on the cellular AMP/ATP
ratio and the phosphorylation status of �Thr172 that contin-
ually cycles between phosphorylated and dephosphoryl-
ated.16 Several cardiac stressors, such as ischemia, result
in increased AMP and decreased ATP levels.17 With a rise
in the AMP/ATP ratio, AMP displaces the ATP bound to the
� regulatory subunit, leading to three different functional
outcomes.3,14 First, AMP allosterically activates AMPK ac-
tivity by a factor of 10. Additionally, AMP binding causes a
conformational change, thereby enhancing access by up-
stream AMPK kinases (AMPKK) and further increasing
AMPK activation18 and relieving the inhibition of the autoin-
hibitory domain.19 Last, AMP binding inhibits �Thr172 de-
phosphorylation by upstream phosphatases, thus promot-
ing increased AMPK phosphorylation.20

However, there is also AMP/ATP-independent activa-
tion of cardiac AMPK by upstream AMPKKs, such as the
serine-threonine liver kinase B1 (LKB1) and Ca2�/cal-
modulin-dependent protein kinase kinase (CAMKK)21,22

as well as the hormones insulin23–25 and adiponec-
tin.26,27 LKB1 is highly expressed in the heart and is
thought to be constitutively active under basal condi-
tions.4 Accordingly, LKB1-deficient mouse hearts are un-
able to activate cardiac AMPK�2.22 CAMKK is expressed
at relatively low levels in the heart and is triggered by an
increase in cytosolic Ca2� levels and subsequently acti-
vates AMPK without altered AMP/ATP ratios.21 Trans-
forming growth factor-� (TGF-�)–activated kinase-1 is
also expressed in the heart and activates AMPK, al-
though its role in this process is less well understood.28

Interestingly, well-described cardiometabolic drugs,
such as metformin and statins, can also activate cardiac
AMPK, although likely through indirect means.29 For exam-
ple, it has been suggested that metformin inhibits mitochon-
drial respiratory chain complex I, increasing the AMP/ATP
ratio and subsequent AMPK activation.30,31 However, oth-
ers have found that metformin can activate AMPK indepen-
dent of changes in the AMP/ATP ratio.32 This discrepancy
may be explained by differences in metformin dosing and

length of exposure; further studies are required to elucidate
the precise mechanism of metformin on cardiac AMPK ac-
tivity. AICA riboside (AICAR) is an adenosine analog that
allosterically activates AMPK and is often used in experi-
mental studies; however, the short half-life of AICAR and
effects on glycemic regulation limits AICAR as an effective
agent for long-term activation of AMPK in vivo.29

AMPK Function in the Heart

The normal mammalian heart has tremendous energy
requirements; as such, cardiac fuel substrate selection is
a complex process that is orchestrated by a number of
factors that include circulating metabolite and hormone
levels, myocardial substrate uptake rates, and intracellu-
lar signaling cascades that regulate metabolic pathway
flux at multiple levels.33 AMPK impacts cardiac metabolism
at multiple levels: (1) increasing glucose metabolism
through increased glucose transport and activation of phos-
phofructokinase (PFK); (2) enhancing mitochondrial fatty
acid �-oxidation (FAO) by increasing fatty acid uptake and
phosphorylating acetyl-CoA carboxylase (ACC), a key reg-
ulator of fatty acid oxidation; (3) increasing mitochondrial
biogenesis by activation of peroxisome proliferator-acti-
vated receptor-� co-activator-1� (PGC-1�), a key transcrip-
tional modulator of mitochondrial biogenesis34; and (4) in-
hibiting energy-consuming pathways, such as the
mammalian target of rapamycin (mTOR) and downstream
targets p70S6K and 4EBP-1, decreasing cardiac protein
synthesis.35 Together, AMPK activation of myocardial glu-
cose and fatty acid metabolic pathways are coordinated at
multiple levels: fuel substrate availability, uptake, and
breakdown, ultimately ensuring increased production of
myocardial ATP when required.

Metabolic derangements are closely linked to the on-
set of numerous cardiac pathophysiologies. Accordingly,
a multitude of studies focus on understanding the role of
AMPK under such conditions, such as myocardial isch-
emia-reperfusion (I/R), cardiomyopathies, and cardiac
hypertrophy. The main observations of these studies are
highlighted in Table 1.14,22,26,36–49

Regulation of AMPK by Post-Translational
Modification of Ubiquitin

Post-translational modification of proteins is the process
by which chemical modifications are made to a protein
after it is translated. There is a wide range of post-trans-
lational modifications that can be made to proteins. One
of the best-studied modifications is phosphorylation,
whereby enzymes add a phosphate group to a protein,
often at specific serine, threonine, or tyrosine residues, to
change that protein’s activity or fate. Phosphorylation of
the � subunit of AMPK is the best-delineated system of
AMPK regulation to date. However, several recent stud-
ies have implicated the modification of AMPK with ubiq-
uitin, suggesting another layer of AMPK regulation in the
heart. With many reports demonstrating a significant role
of AMPK in heart disease (Table 114,22,26,36–49) and our
increasing appreciation of the ubiquitin proteasome sys-

tem in the heart (for a comprehensive review, see Ro-
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driguez et al 200950), the significance of AMPK ubiquiti-
nation is just beginning to be appreciated.

Ubiquitin Proteasome System

Post-translational modification of proteins with ubiquitin is
a multistep enzymatic process that reacts to the carbox-
ylic acid of the ubiquitin to protein lysines to form a
covalent amide bond (Figure 1A). The small protein ubiq-
uitin is first activated in a two-step process. First, the E1
ubiquitin-activating enzyme interacts with ubiquitin in an
ATP-dependent process to form a thioester linkage be-
tween the C-terminal carboxyl group of ubiquitin and the
E1 sulfhydryl moiety. Ubiquitin is then transferred to the
active cysteine of the E2 ubiquitin-conjugating enzyme.
The specificity of the ubiquitination process is found in
the E3 ubiquitin ligases. E3 ubiquitin ligases function to
recognize specific substrates and to transfer ubiquitin to
their final lysine on target proteins (Figure 1A). There are
hundreds of ubiquitin ligases that have been identified,
with at least nine identified in the heart to date.50 The
single E1 is able to bind to dozens of E2s, which bind
hundreds of E3s to regulate a host of cellular processes.
After the addition of a single ubiquitin, additional ubiquitin
molecules can be added to form a polyubiquitin chain.
Ubiquitin has seven lysine residues by which this can
occur [ie, Lys 6, Lys 11, Lys 27, Lys 29, Lys 33, Lys 48,
and Lys 63 (Figure 1B)]. The more common chains that
have been described to date are through the lysine 48,
which are recognized by the 26S proteasome (Figure

Table 1. The Role of AMPK in Cardiac Disease Models
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1A). Polyubiquitinated chains can be removed by a family
of enzymes called de-ubiquitinating enzymes (DUBs),
consisting of a large group of proteases that counter the
ubiquitin-dependent metabolic pathways by cleaving the
bonds between ubiquitin and proteins. The human ge-
nome encodes approximately 100 DUBs specific for
ubiquitin.51 DUBs function to recycle and proofread pro-
tein ubiquitination and act in the disassembly of chains
that inhibit protein activity.

While the canonical polyubiquitin (lys48) chains target
their substrates for degradation, linkages through the other
available lysines, including the N-terminus,52 and branched
chains containing multiple linkage types53 also occur.
These atypical chains generally do not target proteins for
degradation, but they do play important roles in regulating
cellular processes.54 Atypical ubiquitination is most studied
in nuclear factor �B signaling, receptor endocytosis, and
DNA repair processes55,56; therefore, it is not surprising that
atypical ubiquitination regulates AMPK.

Emerging Concept: AMPK Is Regulated by
Ubiquitin

Recent studies identified both direct and indirect mech-
anisms by which the ubiquitin proteasome system regu-
lates AMPK activity. While LKB1 is the best-characterized
AMPK kinase, there are others that regulate the activity of
AMPK, including the protein NUAK1 (AMPK-related ki-
nase 5) and MARK4 (microtubule-affinity-regulating ki-
nase 4). Recent studies demonstrated that the de-ubiq-
uitinating enzyme USP9X interacts with endogenous
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tation.57 The AMPK kinases NUAK1 and MARK4 are also
polyubiquitinated in vivo.57 Inhibiting the deubiquitinating
enzyme enhances NUAK and MARK4 ubiquitination, im-
plicating the role of USP9X in ubiquitinating these AMPK
kinases in vitro.57 In vitro deubiquitination studies con-
firmed the ability of USP9X to directly deubiquitinate
NUAK1 and MARK4; conversely, knock-down of USP9X
in vitro enhanced their ubiquitination.57 Expressing mu-
tant NUAK and MARK4 constructs unable to interact with
the USP9X DUB causes hyperubiquitination of NUAK and
MARK4, resulting in decreased AMPK catalytic activity.57

Ubiquitin-dependent inhibition of AMPK kinase activity is
thought to be due to the interference of ubiquitin with
phosphorylation of the activation (T-loop) residues.57 The
polyubiquitination of NUAK and MARK4 is formed pre-
dominantly by linkages at lys29 and lys33, but not other
lysines, indicative of atypical polyubiquitin chains.57 The
mechanisms by which ubiquitination regulates the NUAK
and MARK4 AMPKKs, which then affect AMPK activity,

Figure 1. The ubiquitin proteasome system. A: Specific proteins are recog-
nized by E3 enzymes (ubiquitin ligases) and ubiquitinated in a multistep
process. The E1 enzyme activates ubiquitin, which is then transferred to one
of the dozens of E2 enzymes. The E3 then catalyzes the transfer of the
ubiquitin from the E2 to the recognized substrate in an ATP-dependent
manner. Ubiquitinated substrates with canonical Lys48 chains are then rec-
ognized by the 26S proteasome and targeted for degradation or de-ubiquiti-
nated as part of the ubiquitin proteasome system regulation and ubiquitin
chain quality control. Substrate activity and/or location may be altered if
mono-ubiquitin or atypical polyubiquitin chains are added. B: Polyubiquitin
chains can be formed by any of the seven lysines within ubiquitin as well as
by the N-terminal lysine to form atypical (Lys11, Lys29, and Lys63), canonical
(Lys48), or linear (N-terminal lysine) chains. Our understanding of the sig-
nificance of all of the non-canonical chains is incomplete.
are summarized in Figure 2.58
These fascinating studies raise many additional ques-
tions about how the ubiquitin proteasome system regu-
lates AMPK activity. Most of the work to date on the
ubiquitin proteasome system has focused on the E1, E2,
and particularly the E3 ubiquitin ligases that regulate
substrate activities. Much less focus has been put on
identifying de-ubiquitinases and their role in regulating
cellular processes (recently reviewed59–61). However,
the therapeutic potential of deubiquitinating enzyme in-
hibitors has been a new line of investigation in cancer
chemotherapies.62 So it is interesting that a specific DUB
has been identified in regulating AMPK kinases without
the identification of the E3 ubiquitin ligases they are com-
peting with (Figure 258). Moreover, the alpha1 subunit of
AMPK is found to be ubiquitinated in the presence of
DUB inhibitors (Figure 258). In the presence of NEM, an
inhibitor of de-ubiquitination, enhanced polyubiquitina-
tion of immunoprecipitated AMPK alpha1 subunit has
been observed.57 Interestingly, the polyubiquitin chains
on this subunit were predominantly atypical (lys29 and
lys33) linkages. This observation indicates an important
role for DUBs in the direct regulation of AMPK and raises

Figure 2. Post-translational regulation of AMPK activity. The AMP-activated
protein kinase (AMPK) is a metabolite-sensing serine-threonine kinase that acts
as a master regulator of cellular energy metabolism, with the ability to regulate
lipid, glucose, and protein metabolism in response to decreasing ATP levels. The
AMPK holoenzyme–consisting of �, �, and � subunits–is regulated by AMP:ATP
ratios, whereby AMP binds the Bateman (CBS) domains in the � subunit,
resulting in a conformational change which allows the � catalytic domain to be
phosphorylated (Thr172) by one of many AMPK kinases. Activation (green) and
deactivation (red) has canonically been described by AMPK kinases and phos-
phatases (left column). Protein phosphatases, such as protein phosphatase 2C,
also counteract AMPK.58 The role of the ubiquitin proteasome system in regu-
lating AMPK activity is just beginning to be understood (right column). Polyu-
biquitination and proteasome-dependent degradation has been reported to be
mediated by the E3 ubiquitin ligase Cidea (top, right), which inhibits down-
stream AMPK activity. The AMPK kinases MARK4 and NUAK1 are de-ubiquiti-
nated by the USP9X DUB, affecting the ability of these enzymes to activate
AMPK (middle, right). Last, atypical ubiquitin chains can be placed on the �
subunit of AMPK have been described, and that may affect its activity. *A DUB
has been identified, although competing E3 not identified (See text for details).
**Ubiquitination of the alpha1 subunit of AMPK is enhanced in the presence of
a DUB inhibitor (See text for details). ***Cidea interacts with the beta subunit of
AMPK to target (polyubiquitinate) it for proteasome-mediated degradation (See
text for details).
the question of what E3 ubiquitin ligase(s) are placing the
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atypical polyubiquitin chains on the AMPK alpha1 sub-
unit. It also remains to be determined if this modification
affects AMPK activity.

To date, only one study has identified an E3 ubiquitin
ligase that mediates the ubiquitination and degradation
of AMPK. In brown adipose tissue, the Cidea (cell death-
inducing DFFA-like effector a) protein ubiquitinates and
degrades AMPK.63 Cidea is found in many tissues, in-
cluding heart, and is found to regulate metabolism
through its interaction with AMPK. Cidea co-localizes in
the endoplasmic reticulum and forms a complex with
AMPK in vivo.63 Cidea specifically interacts with the �
subunit of AMPK, but not the � or � (Figure 258).63 When
Cidea is co-expressed with AMPK � subunit, the stabil-
ity of AMPK � is reduced due to ubiquitin-dependent
degradation.63 Cidea-/- mice have an enhanced AMPK
stability and enzymatic activity, which is consistent with
both the role of Cidea as an E3 ubiquitin ligase that
regulates AMPK activity as well as with the increased
energy expenditure and lean phenotype that could be
explained by this enhanced AMPK activity.63 While the
type of polyubiquitination that Cidea placed on the AMPK
� subunit was not identified in these studies, it is likely
that the polyubiquitination is of the canonical (lys48)-type
that targets proteins for proteasome-dependent degra-
dation. This contrasts to the atypical lysine chains found
on the � subunit in previous studies.63 However, atypical
lys29 ubiquitin chains can also promote protein degra-
dation via the lysosome, so parallels may exist between
these two systems.64 Ubiquitination of AMPK by the ubiq-
uitin ligase Cidea plays a role in inhibiting AMPK activity,
likely by targeting the AMPK holo-enzyme or one of its
subunits (�) for degradation by the proteasome.

AMPK Interacts with the Proteasome?

Last, a recent study identified that AMPK interacts with
the proteasome itself. In yeast two-hybrid studies, it has
been reported that the PSMD11 proteasome subunit in-
teracts with AMPK.65 This finding suggests that AMPK
may physically interact with this proteasome subunit to
affect its phosphorylation status and potential function.
However, the effects of AMPK on the proteasome (and
vice versa) have not been directly tested. With the real-
ization of the importance of proteasome function in car-
diac health and disease, these findings may prove to be
significant as we better understand how AMPK regulates
the proteasome, which may be important for its own (ie,
AMPK’s) activity described above.

AMPK Activation Increases the Expression
of Ubiquitin Ligases Relevant to Cardiac
Disease

While the regulation of AMPK activity by ubiquitination is
just beginning to be elucidated, much more is known
about how AMPK activation regulates the ubiquitination
machinery, in particular the E3 ubiquitin ligases, the
proteins that give specificity to the system and mediate

the ubiquitination of specific substrates. This work has
exclusively been performed in skeletal muscle. How-
ever, like many lines of study of the ubiquitin ligases
MuRF1 and MAFBx/Atrogin-1, applicability to the heart
is likely relevant.

AMPK Activation Increases Expression of
MuRF1 and MAFBx/Atrogin-1

AMPK activation in striated muscle has dual effects. It
enhances cellular processes involved in ATP production,
including glucose uptake and fatty acid oxidation.66,67 It
also inhibits processes that consume energy, such as
protein synthesis.68–70 AMPK activation inhibits protein
synthesis by decreasing the mTOR activation.68 Three
studies have recently investigated how AMPK activation
affects MuRF1 and MAFBx/Atrogin-1 expression, both in
vitro and in vivo. They have generally found that AMPK
activation increases MuRF1 and MAFBx/Atrogin-1 ex-
pression.

Stimulating C2C12 myotubes with AICAR (5-aminoimi-
dazole-4-carboxamide 1-�-d-ribofuranoside) to enhance
AMPK activity, Nakashima and Yakabe71 identified an
enhanced protein degradation and increased MAFBx/
Atrogin-1 and MuRF1. In subsequent studies, Krawiec et
al72 found that AICAR, metformin, or 2-deoxyglucose
could all enhance MAFBx/atrogin-1and MuRF1 expres-
sion over time. Krawiec et al also found that when these
AMPK activity enhancers were given in parallel with
dexamethasone, a synergistic increase in these ubiquitin
ligases were seen.72 Dexamethasone is a commonly
used, potent inducer of experimental atrophy that highly
up-regulates the ubiquitin ligases MuRF1 and MAFBx/

Figure 3. AMPK agonists enhance the expression of the ubiquitin ligases
MAFBx/Atrogin-1 and MuRF1. Enhancing AMPK activity using AMPK ago-
nists in C2C12 myotubes increases the expression of MAFBx/Atrogin-1 and
MuRF1 (discussed in the text). With evidence that AMPK is ubiquitinated
(outlined in Figure 258), it raises the possible counterregulation of AMPK

yet-to-be-determined E3 ligases, or possibly MAFBx/Atrogin-1 and MuRF1,
although this remains to be investigated directly.
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atrogin-1 that directly mediate muscle atrophy. AICAR,
metformin, and 2-deoxyglucose treatment (with and with-
out dexamethasone treatment) did not enhance the ex-
pression of other UBR box E3 ubiquitin ligases, including
UBR1/E3 alphaI and UBR2/E3 alphaII, suggesting that
AMPK was specifically activating ubiquitin ligases that
are known to mediate muscle atrophy.72 Inhibiting AICAR
with compound C prevented MAFBx/atrogin-1 and
MuRF1 expression increases in response to serum de-
privation, AICAR treatment, or AICAR and dexametha-
sone treatment together.72 These findings were also seen
in in vivo models. When mice were challenged with
AICAR, an increase in skeletal muscle MAFBx/atrogin-1
and MuRF1 mRNA was identified, suggesting a role of
AMPK in the regulation of these ubiquitin ligases in vivo.
Since these ubiquitin ligases are critical components of
the complex network of signaling pathways activated in
skeletal muscle atrophy, AMPK may play key roles in
regulating atrophy in response to catabolic challenges.

Insulin-like growth factor 1 (IGF-1) stimulation en-
hances downstream signaling through activating (phos-
phorylating) Akt, which in turn phosphorylates the tran-
scription factor FoxO3a, resulting in a reduction in the
ubiquitin ligases MAFBx/atrogin-1 and MuRF1.73–75 Re-
cent studies have identified that AICAR synergizes with
IGF-1 induced Akt activation without affecting (inhibiting)
the expression of the MAFBx/atrogin-1 and MuRF1 ubiq-
uitin ligases.76 It was identified that AICAR inhibited
Fox03a phosphorylation in the cytoplasm and induced
Fox03a nuclear relocation.76 Inhibiting mTOR increased
basal MAFBx/atrogin-1 expression and reversed the in-
hibitor effect of IGF-1 on ubiquitin ligase expression.
These studies demonstrate that AICAR activation of
AMPK stimulates MAFBx/atrogin-1and MuRF1 expres-
sion despite the activation of Akt signaling, which may be
due to the inhibition of Fox0 phosphorylation by AMPK via
Akt.76 AMPK inhibition of mTOR may additionally provide
a mechanism by which AMPK enhances the expression
of ubiquitin ligases.76

These studies uniformly demonstrate that enhancing
AMPK activity increases the expression of ubiquitin li-
gases fundamentally involved in skeletal muscle and car-
diac atrophy (Figure 3). And specific ubiquitin ligases
ubiquitinate AMPK directly, such as Cidea (Figure 3).
Whether there is a feedback loop by which the MuRF1
and MAFBx/Atrogin-1 ubiquitin ligases limit AMPK has
not been determined. This is a logical possibility, given
the several ways in which ubiquitination regulates AMPK,
either directly or indirectly, as outlined in the previous
section (Figure 258). MuRF1 has been reported to have
the ability to place atypical ubiquitin chains, like those
found on AMPK experimentally.53 While these studies
have been uniformly performed in skeletal muscle, the
ubiquitin ligases MAFBx/atrogin-1 and MuRF1 have
proven to have a significant role in cardiac disease (see
recent review50). For example, MuRF1 inhibits cardiac
hypertrophy, is necessary for regression of cardiac hy-
pertrophy, and is cardioprotective in I/R injury by inhibit-
ing transcription factors such as SRF and cJun.50

Similarly, MAFBx/atrogin-1 inhibits pressure-overload in-

duced cardiac hypertrophy and increases susceptibility
to I/R induced apoptosis by proteasome-dependent deg-
radation of MKP-1, a negative regulator of JNK.50 With
the diverse regulation of AMPK during various cardiac
stresses (Table 114,22,26,36–49), it is certainly possible that
AMPK upstream regulation of MAFBx/atrogin-1 and
MuRF1 is involved in the heart’s adaptive responses to
injury. However, this remains to be directly tested.

Conclusions

The 5=-AMP–activated protein kinase (AMPK) functions
as a metabolic fuel gauge activated in response to nu-
merous environmental stressors to restore cellular energy
balance. In the heart, AMPK coordinates the activation of
glucose and fatty acid metabolic pathways at multiple
levels by regulating substrate availability, uptake, and
breakdown—ultimately ensuring increased production of
myocardial ATP when required. Cardiac AMPK activity is
regulated in cardiac diseases such as ischemia/reperfu-
sion injury and is implicated in regulating cardiac metab-
olism to exert both positive and negative roles in cardiac
ischemia/reperfusion injury and cardiac hypertrophy (Ta-
ble 114,22,26,36–49). Although the basic regulation of
AMPK activity by kinases has been delineated, we are
beginning to understand that other post-translational
modifications may regulate AMPK activity as well. Recent
reports determined that the ubiquitin ligase Cidea ubiq-
uitinates the � subunit of AMPK, leading to degradation.
Atypical ubiquitination has been identified on the � sub-
unit as well as two of the regulatory AMPK kinases
NUAK1 and MARK4, which regulate AMPK activity. Acti-
vation of AMPK using agonists such as AICAR, met-
formin, and 2-deoxyglucose increases the expression of
key cardiac ubiquitin ligases MAFBx/Atrogin-1 and
MuRF1. Given the potential of these ubiquitin ligases to
ubiquitinate key cardiac transcription factors as well as
AMPK itself suggests that AMPK’s role in cardiovascular
biology extends beyond metabolism and is important in
MAFBx/Atrogin-1– and MuRF1–dependent remodeling
and cell signaling regulation. The relevance of the ubiq-
uitination of AMPK in cardiac disease has not been tested
directly, but likely represents an important mechanism
that occurs in common cardiac diseases and that poten-
tially could be targeted for therapy. How the ubiquitin
proteasome system regulates AMPK activity is an emerg-
ing concept with far-reaching implications.
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