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Conformational change during protein–ligand binding may significantly affect both the binding
mechanism and the rate constant. Most earlier theories and simulations treated conformational
change as stochastic gating with transition rates between reactive and nonreactive conformations
uncoupled to ligand binding. Recently, we introduced a dual-transition-rates model in which the
transition rates between reactive and nonreactive conformations depend on the protein–ligand dis-
tance [H.-X. Zhou, Biophys. J. 98, L15 (2010)]. Analytical results of that model showed that the
apparent binding mechanism switches from conformational selection to induced fit, when the rates
of conformational transitions increase from being much slower than the diffusional approach of the
protein–ligand pair to being much faster. The conformational-selection limit (kCS) and the induced-
fit limit (kIF) provide lower and upper bounds, respectively, for the binding rate constant. Here we
introduce a general model in which the energy surface of the protein in conformational space is
coupled to ligand binding, and present a method for calculating the binding rate constant from Brow-
nian dynamics simulations. Analytical and simulation results show that, for an energy surface that
switches from favoring the nonreactive conformation while the ligand is away to favoring the reactive
conformation while the ligand is near, kCS and kIF become close and, thus, provide tight bounds to
the binding rate constant. This finding has significant mechanistic implications and presents routes
for obtaining good estimates of the rate constant at low cost. © 2011 American Institute of Physics.
[doi:10.1063/1.3561694]

I. INTRODUCTION

Protein–ligand binding is generally accompanied by con-
formational change. Both the diffusional approach of the
protein–ligand pair and the conformational change can be
rate-limiting steps.1 When binding is rate-limited by diffu-
sion, only the relative translation and the overall rotation of
the binding molecules need to be considered; theories and
simulations have had great successes in this regime.2, 3 Out-
side this regime, one has to explicitly treat conformational
degrees of freedom. Theories have been presented where
the conformational degrees of freedom are uncoupled to the
translational–rotational degrees of freedom.4–7 However, one
expects the energy surface in conformational space to change
significantly when the protein–ligand pair moves from far
apart to near contact. Indeed, a far more realistic energy sur-
face is one that switches from favoring a “nonreactive” con-
formation while the protein–ligand pair is far apart to favor-
ing a “reactive” conformation while the protein–ligand pair
is near contact (Fig. 1). In this paper we deal with such a
binding-coupled energy surface.

Szabo et al.4 introduced a model in which conformational
change of the protein is treated as stochastic gating,

nonreactive
ω+−→←−
ω−

reactive, (1)

a)Electronic mail: hzhou4@fsu.edu.

with the transition rates ω± between reactive and nonreactive
conformations independent of the ligand position. Binding to
the protein can occur only when the ligand is in the “reactive”
region while the protein is in the reactive conformation. Such
a model predicts the following relation for the binding rate
constant kon:4, 7

1

kon
= 1

kon0
+ ω−

ω+

1

(ω+ + ω−)k̂0(ω+ + ω−)
, (2)

where k̂0(s) is the Laplace transform of the time-dependent
rate coefficient when the protein always stays in the reactive
conformation and kon0 is the long-time limit of that rate coef-
ficient. The limits of kon, when the gating rates are infinitely
slow and infinitely fast, are of particular interest. We denote
these two limits as kslow and kfast. When the reactivity of the
protein–ligand pair in the reaction region is small, kslow and
kfast are identical:

kslow = kfast = p+kon0, (3)

where p+ = ω+/(ω+ + ω−) is the equilibrium probability
for the protein to adopt the reactive conformation. However,
when the reactivity is large the two limits are very different:

kslow = p+kon0, (4a)

kfast = kon0. (4b)

So the slow-gating limit can be significantly less than the fast-
gating limit.
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FIG. 1. A model in which conformational change and ligand binding are
coupled. The energy surface of the protein depends on the protein–ligand
separation r.

We6 developed a related model, for the binding of a lig-
and to a buried site in a protein, which is accessible only
through a gate that undergoes open–closed transitions. The
open conformation allows for ligand entrance but the closed
conformation blocks it. The open–closed transitions are as-
sumed to be independent of the ligand position and de-
scribed by the scheme of Eq. (1). Instead of stochastic gat-
ing, Agmon5 treated the conformational change of an enzyme
as diffusion along a continuous coordinate, but here again the
energy surface of the enzyme was assumed to be unaffected
by substrate binding.

Wade, McCammon, and co-workers have carried out
Brownian dynamics and molecular dynamics simulations to
explore the conformational changes of a number of proteins in
the absence of ligands.8–12 Equation (4) was used to estimate
the ligand-binding rate constant. Similarly, the gating dynam-
ics of an enzyme with a buried site, obtained from molecu-
lar dynamics simulations in the absence of the substrate, was
used to estimate the substrate-binding rate constant.13 In an-
other interesting study,14 an ensemble of conformations of an
enzyme was generated by molecular dynamics simulations
and multiple “static” snapshots were used to calculate the
substrate-binding rate constant.

The most expensive and of most relevance to the present
paper is a study by Wade et al.,15 in which conformational
fluctuation and substrate binding to an enzyme were coupled.
The diffusional motion of the substrate and conformational
fluctuation of the enzyme were both modeled by Brownian
dynamics simulations. To reduce the computational cost of
simulating the conformational fluctuation, only a critical loop
over the active site was allowed to be flexible during the sim-
ulations. We note that Kim and Lee16 have recently derived an
formal expression for the binding rate coefficient for reactant
molecules with internal degrees of freedom.

To further investigate how conformational change that
is coupled to ligand binding affects binding mechanism and
rate constant, we17 extended the model of Szabo et al.4 to
include two sets of transition rates, one when the ligand is
far away from the protein and the other when the ligand is

near. The transition rates were chosen to favor the nonreac-
tive conformation when the ligand is away but the reactive
conformation when the ligand is near. In order to obtain an-
alytical results, the geometry of the model considered was
very simple. The protein was modeled as a sphere with a uni-
formly reactive surface. It was found that, when the rates of
conformational transitions are low, binding proceeds via an
apparently conformational-selection (CS) mechanism; in con-
trast, when the rates of conformational transitions are high,
binding proceeds via an apparently induced-fit (IF) mech-
anism. Moreover, the rate constants in these limiting sit-
uations, kCS and kIF, provide lower and upper bounds,
respectively.

Here we increase the realism of this line of development
by restricting the reactive region to a localized site on the pro-
tein surface. We describe a method for calculating the bind-
ing rate coefficient from Brownian dynamics simulations. Our
simulation results on a model system showed that the CS and
IF limits become closer and closer as the reactive region be-
comes more and more localized. This finding prompted us to
derive general relations for kCS and kIF. They confirm that,
for an energy surface that switches from favoring the nonre-
active conformation while the ligand is away to favoring the
reactive conformation while the ligand is near, kCS and kIF

are close. Therefore, these two limiting values provide tight
bounds on the binding rate constant. No simulation of con-
formational change is necessary in the calculation of either
kCS or kIF; hence these limits provide good estimates of kon at
low computational cost. The closeness of kCS and kIF under
conditions that realistically model protein–ligand binding has
significant mechanistic implications.

The rest of the paper is organized as follows. In Sec. II,
we present a general formulation of the time-dependent bind-
ing rate coefficient when the energy surface of the protein is
coupled to ligand binding. There we also present a method
for calculating the rate coefficient from Brownian dynamics
simulations. In Sec. III, we present analytical results for the
binding rate constant and its CS and IF limits. In Sec. IV, we
illustrate our Brownian dynamics method for calculating the
rate constant on a model system. Details of the implemen-
tation are described. In Sec. V, we present simulation results
and compare them against available analytical results. Finally,
in Sec. VI we discuss the implications and further extensions
of the present study.

II. FORMULATION OF THE GENERAL PROBLEM

Here, we present a general formulation of the time-
dependent binding rate coefficient when the energy surface of
the protein is coupled to ligand binding. A method to calcu-
late the rate coefficient from Brownian dynamics simulations
is described. For simplicity, we treat a pointlike ligand and
describe the conformational space by a single coordinate x.
Our basic formulation can be easily extended to a more gen-
eral case involving both translational and rotational diffusion
of the protein and the ligand as well as a higher-dimensional
conformational space. The motion along x is first treated as
continuous diffusion and then as transitions between two dis-
crete conformations.
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A. Continuous diffusion in conformational space

As illustrated in Fig. 1, in the system that we consider,
the protein with a conformation space specified by a one-
dimensional variable x binds with a pointlike ligand. For ex-
ample, x may represent the opening size of the ligand-binding
pocket on the protein surface. We note that the mathematics
is identical if the protein is modeled as rigid and the ligand,
such as a peptide, is modeled as flexible; in that case x repre-
sents the conformational degree of freedom of the ligand. Let
the protein–ligand separation be a three-dimensional vector r.
We treat the motions in r and along x both as diffusion, with
diffusion constants D and D1, respectively. Let the potential
of mean force in r and x be U(r, x). We envision that, for a
given r, U(r, x) has a double-well shape along x (Fig. 1); for
example, one well may correspond to a closed conformation
and the other well an open conformation. When the ligand is
far away, the Boltzmann weight of the open conformation is
much greater than that of the closed form, so that the protein
mostly adopts the open conformation. We denote the poten-
tial as U∞(x) when the protein and ligand are far apart. When
the ligand is near or inside the binding pocket, due to protein–
ligand interactions, the Boltzmann weights of the open and
closed conformations are reversed to favor the latter. Within
this loosely-bound state, the protein–ligand pair can form the
native complex. We treat the last step as a rate process with a
rate constant 1/τ .

In the Smoluchowski theory for diffusion-influenced bi-
molecular reactions, the rate coefficient, k(t), for protein–
ligand binding is calculated from the pair distribution func-
tion, P(r, x, t), where t denotes time.7, 16, 18 The pair distribu-
tion function satisfies the Smoluchowski equation augmented
by a “sink” term to account for the formation of the native
complex:

∂ P(r, x, t)

∂t
= ∇ · De−βU (r,x)∇eβU (r,x) P(r, x, t)

+ ∂

∂x
D1e−βU (r,x) ∂

∂x
eβU (r,x) P(r, x, t)

− τ−1 H (r, x)P(r, x, t), (5)

where β = (kBT)−1 and H(r, x) is either 1 if the ligand is in
the “reactive” region (forming the loosely-bound state with
the protein in the closed conformation) or 0 otherwise. At in-
finite protein–ligand separation the pair distribution function
is

P(r, x, t) = e−βU∞(x)∫ ∞
−∞ dxe−βU∞(x)

≡ Peq(x), r = |r| → ∞.

(6)

The inner boundary is reflecting, since the protein and ligand
cannot interpenetrate. The initial distribution is assumed to be
an equilibrium distribution:

P(r, x, 0) = Peq(r, x) ≡ e−βU (r,x)∫ ∞
−∞ dxe−βU∞(x)

. (7)

The rate coefficient is then

k(t) =
∫

drdxτ−1 H (r, x)P(r, x, t). (8)

This result generalizes the usual formulation of k(t) by includ-
ing the coordinate x for modeling conformational change. Us-
ing Eq. (7), the initial value k(0) is found as

k(0) =
∫

drdxτ−1 H (r, x)Peq(r, x). (9)

If diffusions (both in r and along x) were infinitely fast (or
equivalently, reactions were infinitely slow, i.e., τ → ∞), the
protein–ligand pair would stay in the equilibrium distribution
and the rate coefficient would stay at k(0). In general, k(t)
would decay over time.

We have previously developed an algorithm for calcu-
lating k(t) from Brownian dynamics simulations.19 The algo-
rithm is based on the relationship between the pair distribution
function P(r, x, t) and the survival probability S(t|r, x):

P(r, x, t) = Peq(r, x)S(t |r, x). (10)

The survival probability is the probability that a protein–
ligand pair, started at time t = 0 from separation r and confor-
mation x, has not formed the native complex by time t. Using
Eq. (10) in Eq. (8), we have

k(t) =
∫

drdxτ−1 H (r, x)Peq(r, x)S(t |r, x). (11)

Using Eq. (9), we find the ratio k(t)/k(0) as

k(t)

k(0)
=

∫
drdx H (r, x)Peq(r, x)S(t |r, x)∫

drdx H (r, x)Peq(r, x)
. (12)

The last result is the basis of our Brownian dynamics algo-
rithm for calculating the binding rate coefficient. When Brow-
nian trajectories are started at t = 0 from the reactive region
with a distribution proportional to Peq(r, x), the average sur-
vival probability at time t is k(t)/k(0). Multiplied by k(0) cal-
culated according to Eq. (9), we obtain k(t).

Let us briefly outline how our formulation of k(t) can be
extended to the more general case involving both translational
and rotational diffusion of the protein and the ligand as well
as a higher-dimensional conformational space. Now r repre-
sents the protein–ligand relative translational and overall rota-
tional degrees of freedom and x represents coordinates in the
higher-dimensional conformational space. The function H(r,
x) still defines the reaction criterion: it has a value of 1 only
if the protein–ligand pair is separated and orientated such that
it is in the loosely-bound state with the two molecules cor-
rectly facing each other and in their respective reactive con-
formations. The protein–ligand pair is started from the re-
gion in configurational–conformaitonal space where H(r, x)
= 1 and then propagated. Whenever it is found in the region
where H(r, x) = 1, the protein–ligand pair is allowed to be
transformed, with a mean lifetime τ , into the native complex.
Again, the survival probability at time t gives k(t)/k(0).

B. Transitions between two discrete conformations

For the model shown in Fig. 1, at each protein–ligand
separation r, the conformation of the protein is either open or
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closed. Let the location of the energy barrier separating the
two conformations be x = x‡(r). The open and closed confor-
mations are specified by −∞ < x < x‡(r) and x‡(r) < x < ∞,
respectively. If the energy barrier is high, then equilibration
within each well is fast and transitions between the two wells
can be treated as rate processes:

o
ω+(r)−→←−
ω−(r)

c. (13)

According to Kramers,20 the transition rate constants are
given by

ω+(r) = 1∫ x‡(r)
−∞ dxe−βU (r,x)

∫ xc(r)
xo(r) dx[D1e−βU (r,x)]−1

,

(14a)

ω−(r) = 1∫ ∞
x‡(r) dxe−βU (r,x)

∫ xc(r)
xo(r) dx[D1e−βU (r,x)]−1

,

(14b)

where xo(r) and xc(r) are the values of x at the bottoms
of the open and closed energy wells, respectively. In line
with fast equilibration within both energy wells, we define
conformation-specific potential energies, Uo(r) and Uc(r), for
protein–ligand interaction by

e−βUo(r) =
∫ x‡(r)
−∞ dxe−βU (r,x)

∫ x‡
∞

−∞ dxe−βU∞(x)
, (15a)

e−βUc(r) =
∫ ∞

x‡(r) dxe−βU (r,x)

∫ ∞
x‡
∞

dxe−βU∞(x)
, (15b)

where x‡
∞ is the location of the energy barrier separating the

open and closed conformations when the ligand is far away.
The denominators in Eq. (15) ensure that Uo(r) and Uc(r) go
to zero at infinite protein–ligand separation. Correspondingly
we denote the pair distribution as Po(r, t) and Pc(r, t) when the
protein is in the open and closed conformations, respectively,

Po(r, t) =
∫ x‡(r)

−∞
dx P(r, x, t), (16a)

Pc(r, t) =
∫ ∞

x‡(r)
dx P(r, x, t). (16b)

The initial values of the pair distribution function are

Pg(r, 0) = Pgeq(r) ≡ p∞ge−βUg(r), (17a)

where g = o or c, and the equilibrium probability, p∞g, of
conformation g at infinite protein–ligand separation is

p∞o =
∫ x‡

∞
−∞ dxe−βU∞(x)∫ ∞
−∞ dxe−βU∞(x)

; p∞c =
∫ ∞

x‡
∞

dxe−βU∞(x)∫ ∞
−∞ dxe−βU∞(x)

.

(17b)

With the transitions between the two conformations
treated as rate processes, the pair distribution now satisfies
(see Appendix A)

∂ Po(r, t)

∂t
= ∇ · De−βUo(r)∇eβUo(r) Po(r, t)

−ω+(r)Po(r, t) + ω−(r)Pc(r, t), (18a)

∂ Pc(r, t)

∂t
= ∇ · De−βUc(r)∇eβUc(r) Pc(r, t)

+ω+(r)Po(r, t) − ω−(r)Pc(r, t)

− τ−1 Hc(r)Pc(r, t), (18b)

where Hc(r) is given by Eq. (A8). Note that the ratio of the
transition rates between the two conformations is

ω+(r)

ω−(r)
=

∫ ∞
x‡(r) dxe−βU (r,x)

∫ x‡(r)
−∞ dxe−βU (r,x)

=
∫ ∞

x‡
∞

dxe−βU∞(x)

∫ x‡
∞

−∞ dxe−βU∞(x)
e−β[Uc(r)−Uo(r)].

(19a)
Denoting the transition rate constants at infinite separation as
ω∞±, we have

ω∞+
ω∞−

=
∫ ∞

x‡
∞

dxe−βU∞(x)

∫ x‡
∞

−∞ dxe−βU∞(x)
= p∞c

p∞o
(19b)

and Eq. (19a) can be expressed as

ω+(r)

ω−(r)
= ω∞+

ω∞−
e−β[Uc(r)−Uo(r)]. (19c)

This result has been written down based on detailed balance.17

The gating model of Shoup et al.4 has ω+(r) = ω∞+ and
ω−(r) = ω∞−; correspondingly Uc(r) = Uo(r) in their model.

The binding rate coefficient is now given by

k(t) =
∫

drτ−1 Hc(r)Pc(r, t). (20)

In the present case, the pair distribution function Pg(r, t) re-
lates to the survival probability S(t|r, g) via

Pg(r, t) = p∞ge−βUg(r)S(t |r|, g). (21)

Using the last result, we find

k(0) =
∫

drτ−1 Hc(r)p∞ce−βUc(r), (22)

k(t)

k(0)
=

∫
drHc(r)e−βUc(r)S(t |r, c)∫

drHc(r)e−βUc(r)
. (23)

The last result shows that k(t)/k(0) is given by the
average survival probability at time t when Brown-
ian trajectories are started with the ligand in the re-
active region specified by the condition Hc(r) = 1,
with position following the Boltzmann distribution
exp[−βUc(r)], and with the protein in the closed, i.e.,
reactive conformation.

C. Asymptotic behavior of k(t)

While the Brownian dynamics algorithm outlined above
gives the full time dependence of the binding rate coefficient,
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the limit of k(t) at t → ∞, i.e., the steady-state value, is of
particular interest. We refer to this steady-state value the rate
constant and denote it as kon. In previous work,7 we have
shown that k(t) has the following asymptotic behavior at long
times:

k(t) = kon

[
1 + kon

4π D
(π Dt)−1/2 + · · ·

]
. (24)

Even though Brownian dynamics simulations must have a fi-
nite cutoff time (tcut), yielding k(t) up to t = tcut, by fitting
the long-time portion of k(t) to Eq. (24) we can obtain the
steady-state value kon.19 The fitting function is linear when
the independent variable is chosen as (πDt)−1/2. The inter-
cept of the linear fit is kon and the slope is kon

2/4πD which can
be calculated from the intercept. That the slope is not a free
parameter but can be calculated from the intercept provides
a convenient way to validate the simulation results and de-
termine whether tcut is sufficiently long to ensure asymptotic
behavior.

III. ANALYTICAL RESULTS FOR RATE CONSTANTS

The preceding section outlines a Brownian dynamics
algorithm for calculating the binding rate coefficient when
protein–ligand binding is coupled to conformational change.
The conformational change is either treated as continuous
diffusion along a one-dimensional coordinate or as rate pro-
cesses between two discrete conformations. The latter treat-
ment will be the focus for the remainder of this paper. We
now present some analytical results for the rate constant kon,
i.e., the steady-state value of k(t). Both explicit kon results for
model systems and general relations for the CS and IF limits
of kon will be given. The analytical results obtained on model
systems can serve an important role in validating simulation
algorithms (see Sec. V).

A. Dual-transition-rates model: Spherical symmetry

In earlier work we introduced the dual-transition-rates
model.17 The model has spherical symmetry in r. The tran-
sition rates between the open and closed conformations have
two sets of values, ω± in the loosely-bound state, where R
< r < R + � ≡ R1, and ω∞±, when r > R1. The
conformation-specific interaction potentials are 0 when r
> R1 and constants Uo and Uc, respectively, for the open
and closed conformations when R < r < R1. According to
Eq. (19c), the two sets of transition rates are constrained by

ω+
ω−

= ω∞+
ω∞−

e−β(Uc−Uo). (25)

The reactive region is a very thin shell in R < r < R + ε.
When ε → 0 and τ → 0 but ε/τ has a finite value κ , the sink
term is equivalent to a radiation boundary condition19

De−βUc(r) ∂

∂r
eβUc(r) Pc(r, t) = κ Pc(r, t), r = R. (26)

The rate constant kon for this model is given by17

4π DR1 p∞ce−βUc (B+C− + B−C+)/kon

= pc(A+C− + A−C+) + pc(e−βUeff − 1)(B+C− + B−C+)

− (pc p∞o − po p∞c)[4 + (pc p∞o/po − p∞c)

× (B+eλ� + B−e−λ�)], (27)

where

A± = 1 ± (1 + κ R/D ± λR)/pcκλR2/D, (28a)

B± = ±(1 ± λR)/λR1, (28b)

C± = [1 ± λR1 − (1 + λ∞ R1)p∞o/poe−βUc ]e∓λ�,

(28c)

e−βUeff = p∞oe−βUo + p∞ce−βUc , (28d)

λ = [(ω+ + ω−)/D]1/2, (28e)

λ∞ = [(ω∞+ + ω∞−)/D]1/2, (28f)

pc = ω+/(ω+ + ω−); po = ω−/(ω+ + ω−). (28g)

In the dual-transition-rates model, conformational selec-
tion and induced fit are manifest at two extremes of the transi-
tion rates. When the transition rates are extremely small, con-
formational selection appears as the binding mechanism and
the rate constant is

kCS = p∞ckon0, (29)

where kon0 is the rate constant when the protein stays in the
closed (i.e., reactive) conformation, given by

1

kon0
= 1

4πκ R2e−βUc
+ 1 + (e−βUc − 1)R/R1

4π DRe−βUc
. (30)

In the opposite extreme, where the transition rates are large,
induced fit appears as the binding mechanism, and the rate
constant is given by

1

kIF
= 1

4πpcκ R2e−βUeff
+ 1 + (e−βUeff − 1)R/R1

4π DRe−βUeff
. (31)

Note that the last result is equivalent to the rate constant when
the protein stays in the reactive conformation but with the re-
activity κ replaced by pcκ and the potential Uc replaced by
Ueff. The CS and IF limits are lower and upper bounds of kon,
respectively.

B. Dual-transition-rates model: Reactive patch

The spherically symmetric dual-transition-rates model
can be made more realistic when the reactive region is re-
stricted to a patch, with the polar angle θ limited to the range
from 0 to θ0 (Fig. 2). We have not been able to find a gen-
eral expression for the rate constant of this model. However,
the CS and IF limits can be obtained. These results are based
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FIG. 2. The model system for which analytical and simulation results are
obtained in the present study.

on the rate constant for the situation where the protein al-
ways stays in the reactive conformation. The latter, denoted
as kon0(θ0, κ , U) to signify the dependence on the patch an-
gle θ0, the reactivity κ at r = R, and the potential U in R < r
< R1, is given by21

1

kon0(θ0, κ, U )
= 1

2π (1 − cos θ0)κ R2e−βU
+ 1

kD(θ0, U )
,

(32)

where

1

kD(θ0, U )
=

∑∞
l=0

cl

(l + 1)(2l + 1)

1 + (l + 1)Al

1 − l Al

4π DRe−βU c0
,

(33a)

cl = [Pl−1(cos θ0) − Pl+1(cos θ0)]2, (33b)

Al = (e−βU − 1)(R/R1)2l+1

l + 1 + le−βU
, (33c)

with Pl(x) denoting Legendre polynomials. The first term on
the right hand side of Eq. (32) gives the rate constant when the
reactivity is small, i.e., κR/D → 0, whereas the second term
gives the rate constant when the reactivity is large, i.e., κR/D
→ ∞. A similar interpretation applies to the two terms of Eq.
(30) or (31).

When θ0 = 180◦, Eq. (32) reduces to Eq. (30) with U
= Uc. However, for other values of θ0, the derivation of Eq.
(32) relies on the so-called constant-flux approximation.22 As
θ0 → 0, Eq. (33a) is known to underestimate kD(θ0, U) by a
factor 32/3π2 ≈ 1.08. Following our earlier work,21 we scale
up this kD(θ0, U) by 32/3π2 to calculate kon0(θ0, κ , U) when
comparison is made against simulation results for small reac-
tive patches (i.e., θ0 ≤ 15◦).

In the limit that conformational transitions are extremely
slow, the protein cannot change its conformation during the
binding process. If the protein started out in the closed (i.e.,
reactive) conformation, the binding rate constant would be
kon0(θ0, κ , Uc). If the protein started out in the open (i.e.,
nonreactive) conformation, it would not be able to bind with

the ligand at all and the binding rate constant would be 0.
Now the probability for the protein to start in the closed
conformation while the ligand is far away is p∞c. Therefore
the binding rate constant is the average over the two starting
conformations:

kCS = p∞ckon0(θ0, κ, Uc). (34)

In the limit that conformational transitions are extremely fast,
the ligand always experiences an average effective potential,
given by Eq. (28d). In the reactive region, the ligand likewise
experiences an average reactivity, given by pcκ . The binding
rate constant is, thus,

kIF = kon0(θ0, pcκ, Ueff). (35)

When κR/D → 0, kCS becomes

kCS → 2π (1 − cos θ0)κ R2 p∞ce−βUc , (36)

which is the initial value k(0) of the time-dependent rate co-
efficient [see Eq. (22)]. In fact, when κR/D → 0, the rate con-
stant should always be k(0) irrespective of the timescale of
the conformational transitions. It can be easily verified that
that kIF approaches k(0) when κR/D → 0.

How do kCS and kIF compare when κR/D → ∞? For no-
tational simplicity we denote kon0(θ0, κ , U) as kD(θ0, U) when
κR/D → ∞. For a small reactive patch (i.e., θ0 → 0), which
models stereospecific ligand binding, an approximate depen-
dence of kD(θ0, U) on U,21, 23

kD(θ0, U ) ≈ kD(θ0, 0)e−βU , (37)

is very useful here. The accuracy of this approximation is also
affected by the range (� in the present case) of the interaction
potential U, improving as � increases. Assuming that Eq. (37)
holds, then when κR/D → ∞, kCS becomes

kCS → kD(θ0, 0)p∞ce−βUc , (38)

and kIF becomes

kIF → kD(θ0, 0)e−βUeff = kD(θ0, 0)(p∞oe−βUo + p∞ce−βUc )

= kD(θ0, 0)p∞oe−βUo

+kD(θ0, 0)p∞ce−βUc . (39)

Note that the second term of Eq. (39) is the same as kCS of
Eq. (38). According to Eq. (25), the ratio of the second term
to the first term on the right hand side of Eq. (39) is pc/po.
For systems of biological interest, this ratio should be much
greater than 1. Therefore, Eq. (39) is dominated by the second
term. We can thus conclude that kCS and kIF are close when
κR/D → ∞. Since kCS and kIF are actually identical when
κR/D → 0, we can further conclude that kCS and kIF are close
irrespective of the value of κR/D, as long as the reactive patch
is small.

C. Stereospecific binding in general

The closeness of kCS and kIF derived for the model with
a small reactive patch actually holds in general, as long as
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the reactive region is small relative to the range of the inter-
action potential. This is a highly significant result. Because
kCS and kIF provide lower and upper bounds of kon, if they are
close in value then either of them can provide a good estimate
for kon. Below we outline a derivation for the closeness of kCS

and kIF, making clear the approximation involved. The deriva-
tion given here is for the case where conformational change is
treated as rate processes between two discrete conformations.
The case where conformational change is treated as continu-
ous diffusion along a one-dimensional coordinate is presented
in Appendix B.

When the reactivity is small, both kCS and kIF are identi-
cal to k(0). The difference between kCS and kIF is the greatest
when the reactivity is big. In that situation, when conforma-
tional change is treated as rate processes between two discrete
conformations, we have

kCS → p∞ckD[Uc(r)], (40)

where kD[Uc(r)] is the rate constant when the protein does
not undergo conformational change, the interaction potential
is Uc(r), and the reactivity is infinite. Correspondingly kIF

approaches

kIF → kD[Ueff(r)], (41)

where Ueff(r) is the conformation-averaged effective potential

e−βUeff(r) =
∫ ∞
−∞ dxe−βU (r,x)∫ ∞
−∞ dxe−βU∞(x)

, (42a)

= p∞oe−βUo(r) + p∞ce−βUc(r). (42b)

When the reactive region is small relative to the range of the
interaction potential U(r), our previous work21, 23 suggests an
approximate dependence of kD[U(r)] on U(r):

kD[U (r)] ≈ kD0e−βU (rRR), (43)

where kD0 denotes the counterpart of kD[U(r)] when the inter-
action potential U(r) is turned off, and rRR is a representative
point in the reactive region. This approximation holds when
the range of the potential U(r) is significantly greater than the
size of the reactive region. Applying this approximation, we
have

kCS → kD0 p∞ce−βUc(rRR), (44)

kCS → kD0e−βUeff(rRR)

= kD0[p∞oe−βUo(rRR) + p∞ce−βUc(rRR)]

= kD0 p∞oe−βUo(rRR) + kD0 p∞ce−βUc(rRR). (45)

The second term of Eq. (45) is the same as Eq. (44). In addi-
tion, we also expect the second term of Eq. (45) to dominate
over its first term. The preceding derivation thus shows that,
even when the reactivity increases to infinity, where the dif-
ference between kCS and kIF is the greatest, these two bounds
of kon are close as long as Uo(r) and Uc(r) vary slowly over
the reactive region and beyond.

IV. ILLUSTRATION OF THE BROWNIAN DYNAMICS
ALGORITHM

In Sec. II we described an algorithm for calculating
k(t) from Brownian dynamics simulations. This algorithm is
adapted from our earlier work19 but now accounts for protein
conformational change that is coupled to ligand binding. It
consists of the following steps. (i) At the start of each Brow-
nian trajectory, the protein is in the closed, i.e., reactive con-
formation and the ligand is in the reactive region. The start-
ing position of the ligand follows the Boltzmann distribution
exp[−βUc(r)]. (ii) The trajectory is then propagated (confor-
mational transition for the protein and translational diffusion
for the ligand). (iii) Whenever the ligand moves into the re-
active region while the protein is in the closed conforma-
tion, they can react with the rate constant 1/τ to form the
native complex. If the reaction occurs, the trajectory is ter-
minated; otherwise it is propagated to a preset cutoff time
tcut. (iv) Finally, after all the trajectories (totaling Ntraj) are
finished, the fraction of surviving trajectories at time t <

tcut is calculated. That fraction is equal to k(t)/k(0). Multi-
plying by k(0) [calculated according to Eq. (22)], we obtain
k(t). Below we further explain steps (ii) and (iii) of our algo-
rithm and provide details of its implementation on a model
system.

A. Trajectory propagation

Our simulations consist of simultaneous transition of
the protein in conformational space and translational diffu-
sion of the ligand in the three-dimensional space exterior to
the protein. The translational diffusion follows the Ermak–
McCammon algorithm:24

r = r0 + βF0 D�t + (2D�t)1/2R, (46)

where r0 is the current position, r is the position after timestep
�t, F0 = −∇Ug0 (r0) is the force calculated for the current
ligand position r0 and the current protein conformation g0,
and R is a random vector with components generated from a
normal distribution.

The conformational transition of the protein is imple-
mented as follows. Suppose that the current conformation
of the protein is open. The probability that, within the
timestep �t, the protein switches to the closed conformation
is exp[−(ω+(r0) + ω+(r))�t/2]. This probability is compared
with a random number uniformly distributed between 0 and
1. If the random number is smaller, then the conformational
switch takes place; otherwise the protein stays in the open
conformation. The case where the current conformation is
closed can be similarly treated.

The reflecting protein surface has to be dealt with. We
follow a very simple recipe.19 If the new position of the lig-
and penetrates inside the protein surface, the ligand is “re-
flected” back to its current position and, at the same time,
the protein is restored to its current conformation. The life-
time is incremented by the timestep, just like in a regular
move.
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B. Determination of whether reaction occurs

The probability that, within the timestep �t, the pro-
tein and ligand react to form the native complex is exp[−(i0
+ i)�t/2τ ], where i0 = 1 if the current ligand position is
inside the reactive region and the current protein conforma-
tion is closed and = 0 otherwise; and i is the counterpart
of i0 after the timestep. This probability is compared with
a random number uniformly distributed between 0 and 1. If
the random number is smaller, then the reaction takes place
and the trajectory is terminated; otherwise the trajectory is
continued.

C. Implementation on a model system

As illustration, we implemented the Brownian dynam-
ics algorithm for calculating k(t) on the dual-transition-rates
model with a reaction patch, introduced in Subsection III.B
(see Fig. 2). The interaction potential Uo for the open confor-
mation is 0 for any r > R. The interaction potential Uc for the
closed conformation has the form

Uc(r ) = −U0

2

(
tanh

r − R1

L
− 1

)
, (47)

which, when L/� → 0, approaches the step-function poten-
tial, having value U0 for R < r < R1 and 0 for r > R1, con-
sidered in the analytical solutions of Subsections III A and
III B. This smooth potential function is much easier to deal
with in the Brownian dynamics simulations than the step-
function potential. We chose R = 20 Å, R1 = 22 Å, and L
= 0.1 Å. When r − R1 � L, Uc(r) is practically 0. To min-
imize force calculations, we turned off Uc(r) when r > R2

= 23 Å.
We set ω − = ω∞−. There was no particular reason for

this choice except to reduce the number of parameters. Then
Eq. (19c) gives

ω+ = ω∞+e−βUc(r ). (48)

We set ω∞+/ω∞− to 0.1, reflecting the fact that the closed,
i.e., reactive conformation is disfavored when the ligand is
away. The value of ω∞− was varied to explore the full

timescale range of the conformational transitions, approach-
ing the CS limit at small ω∞− and the IF limit at large ω∞−.
The CS and IF limits were also studied directly. In these sim-
ulations, the protein was kept in the closed (i.e., reactive) con-
formation. The interaction potential was Uc(r) for the CS limit
and the effective potential Ueff(r) for the IF limit. For the
present model system, exp[−βUeff(r)] = p∞cexp[−βUc(r)]
+ p∞o. The reactivity was κ and pcκ , respectively, in the CS
and IF simulations. The rate constant from the former simu-
lations, after multiplication by p∞c, yields kCS, while the rate
constant from the latter simulations directly gives kIF.

The ligand diffusion constant D was chosen to be 10
Å2/ns. The timestep was �ti = 10−6 ns for r < R2. For r
> R2, the timestep was �ti + 10−3(r − R2)2/2D. The cutoff
time for all the simulations was 104 ns.

The reactive region was defined by R < r < R + ε and
θ < θ0. Corresponding to a reactivity κ , the rate constant for
forming the native constant is 1/τ = κ/ε. We fixed ε at 2 Å and
studied a range of κ values. When the reactive region covered
the full surface (θ0 = 180◦), κ was 0.5 Å/ns; 2 × 104 trajec-
tories were run. For small reactive patches, κ was 5, 50, and
500 Å/ns; 2 × 104, 4 × 104, and 105 trajectories, respectively,
were run.

V. SIMULATION RESULTS

Here we present simulation results for the rate coefficient
of the model system shown in Fig. 2 and compare them with
available analytical results. We pay particular attention to how
close the CS and IF limits of the rate constant are.

A. Asymptotic behavior of k(t)

At long times, k(t) is predicted to follow the asymptotic
behavior given by Eq. (24) Specifically, k(t) is a linear func-
tion of (πDt)−1/2. Furthermore, the slope is determined by the
intercept. All our simulation results conform to this asymp-
totic behavior. For illustration, in Fig. 3 we show two sets
of results, one for the case where the reactive region cov-
ers the whole surface of the protein with κ = 0.5 Å/ns and

FIG. 3. The asymptotic behavior of the rate coefficient. The solid curves show simulation results for k(t)/k(0); the dashed line show fits to a linear function of
(πDt)−1/2. The slope of the linear function is determined from the intercept according to Eq. (24). The values of ω∞−, in units of ns−1, are shown in the figure.
Results for two sets of model parameters are given: (a) θ0 = 180◦, κ = 0.5 Å/ns, and exp(−βU0) = 100; (b) θ0 = 10◦, κ = 5 Å/ns, and exp(−βU0) = 10.
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FIG. 4. Comparison of simulation (symbols) and analytical (curves) results
for kon/kon0. The model parameters are: θ0 = 180◦, κ = 0.5 Å/ns, with values
of exp(−βU0) shown in the figure.

exp(−βU0) = 100; the other for the case where the reactive
region spans up to θ = 10◦ with κ = 5 Å/ns and exp(−βU0)
= 10. The long-time portion of each k(t)/k(0) curve can be
fitted well to a linear function in (πDt)−1/2, with the slope
m related to the intercept b via m = b2k(0)/4πD, exactly as
Eq. (24) predicts. Form here on we focus on the steady-state
rate constant kon, which is given by bk(0).

B. Dual-transition-rates model: Spherical symmetry

For the case where the reactive region covers the whole
surface of the protein, the analytical result for kon is given by
Eq. (27). In Fig. 4 we compare the simulation results for kon

against the analytical theory. In the simulations, the reactive
region has a finite thickness ε, but in the theory the thick-
ness approaches 0, while keeping the same reactivity κ . To
reduce the effect of this difference for treating the reactive re-
gion, we scale both the simulation and analytical results by
their respective results for kon0. Figure 4 shows that the sim-
ulation results for kon/kon0 over the full range of ω∞− and a
range of U0 are in excellent agreement with the analytical
theory.

At a given U0, as ω∞− increases from 0 to ∞, kon in-
creases from the CS limit to the IF limit. Note that kCS/kon0

= p∞c. That is why the kon/kon0 curves for different U0 values

TABLE I. Comparison of simulation and theoretical results on kCS and kIF

for a range of reactive patch angles.

kCS/k(0) kIF/k(0)

θ0
◦ exp(−βU0) κ Simulation Theory Simulation Theory

3 5 5 0.73 0.665 0.93 0.881
3 10 5 0.69 0.634 0.89 0.826
5 5 5 0.55 0.516 0.87 0.817
5 10 5 0.49 0.468 0.79 0.735
8 5 5 0.38 0.370 0.78 0.738
8 10 5 0.31 0.314 0.67 0.629
10 5 5 0.31 0.306 0.72 0.693
10 10 5 0.24 0.250 0.61 0.573
15 5 5 0.20 0.208 0.62 0.605
15 10 5 0.15 0.158 0.49 0.469

all start from the same ω∞− → 0 limit. However, the ω∞− →
∞ limit, kIF/kon0, increases with increasing |U0|.

C. Dual-transition-rates model: Reactive patch

We now turn attention to the model with a small reactive
patch. In Table I we compare our simulation and analytical re-
sults on kCS and kIF for patch angles at 3◦, 5◦, 8◦, 10◦, and 15◦.
It can be seen that there is close agreement between simula-
tion and theory. The simulation results do seem to be slightly
larger than the analytical results. We attribute these small dis-
crepancies to the different treatments of the reaction region in
the simulations and in the theory. The effect of the different
treatments is magnified when the reactive patch becomes very
small.

To show the transition of kon from the CS limit to the IF
limit and the difference in magnitude between kIF and kCS, in
Figs. 5 and 6 we display kon/kCS as a function of ω∞− for a
variety of model parameters. Figure 5(a) presents the results
for exp(−βU0) = 5 and κ = 5 Å/ns. As the patch angle de-
creases from 15◦ to 3◦, kIF/kCS reduces from 3.1 to 1.3. This
is the main finding of the present study: kIF and kCS becomes
close (i.e., kIF/kCS ≈ 1) as the reactive patch becomes smaller.
Figure 5(b) shows that the closeness of kIF and kCS is affected
by the magnitude of the interaction potential. At exp(−βU0)

FIG. 5. Dependence of kon/kCS on ω∞− for a range of reactive patch angles (shown in the figure). Results for two values of exp(−βU0): (a) 5 and (b) 10 are
shown to illustrate that the difference between the CS and IF limits of kon increases as the magnitude of the interaction potential increases. κ = 5 Å/ns. Data for
the same patch angle are connected by dash.
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= 10, kIF/kCS increases slightly to 3.2 for θ0 = 15◦ and re-
mains at 1.3 for θ0 = 3◦.

Figure 6 further shows that, with exp(−βU0) fixed at
5, kIF/kCS increases as the reactivity κ increases. At κ

= 50, kIF/kCS changes from 5.8 to 2.6 as the patch angle de-
creases from 15◦ to 3◦. In comparison, at κ = 500, kIF/kCS

changes from 6.3 to 4.3 as the patch angle decreases from 15◦

to 3◦.
The simulation results presented here are for the extreme

case where the range of the interaction potential is the same
as the thickness of the reactive region. The analytical results
of Subsections III B and III C show that the approximation
kIF/kCS ≈ 1 improves when the range of the interaction poten-
tial widens beyond the reactive region.

VI. DISCUSSION

In the present study we have introduced a general model
for protein–ligand binding in which the energy surface of the
protein in conformational space is coupled to the binding of
its ligand. Two common features of most protein–ligand sys-
tems are that the energy surface switches from favoring non-
reactive conformations while the ligand is away to favoring
reactive conformations while the ligand is near and the reac-
tive region is highly localized.25, 26 We have also presented a
method for calculating the binding rate constant from Brown-
ian dynamics simulations.

For a given energy surface, the timescale of the confor-
mational transitions may affect the binding mechanism and
the binding rate constant. The binding mechanism appears
as conformational selection when conformational transitions
are slow relative to the time required for the diffusional ap-
proach of the protein–ligand pair, and gradually shifts to man-
ifestly induced fit when the rate of conformational transi-
tion increases. The CS and IF limits provide lower and upper
bounds, respectively, for the binding rate constant. The differ-
ence between kIF and kCS increases as the reactivity increases.
At infinite reactivity, we have derived the general result,

kIF

kCS
→ p∞oe−βUo(rRR) + p∞ce−βUc(rRR)

p∞ce−βUc(rRR)
= 1

pc(rRR)
,

(49)
where the reactive region is assumed to be small relative to
the range of the interaction potential, and pc(rRR) is the equi-
librium probability of the closed (i.e., reactive) conformation
in the reactive region. For systems of actual interest, when the
ligand is in the reactive region, the equilibrium probability
for the reactive conformation is much higher than that for the
nonreactive conformation, i.e., pc(rRR) → 1. Hence kIF/kCS is
close to 1. Our simulation results on a model with a small re-
active patch confirm (in fact, motivated the analytical deriva-
tion of) the closeness of kIF and kCS.

The closeness of kIF and kCS in our model is in contrast
to the relation between the limits of the rate constant under
fast and slow gating in the model of Szabo et al.4 In their
model the energy surface of the protein is unaffected by ligand
binding. At infinite reactivity, their model predicts kfast/kslow

→ 1/p∞c, where p∞c is the equilibrium probability for the
reactive conformation when the ligand is away. For systems
of actual interest, one expects that p∞c → 0; hence kfast �

kslow in the model of Szabo et al. Our model in fact assumes
a low equilibrium probability (i.e., p∞c → 0) for the protein
being in the reactive conformation when the ligand is away.
However, when near the protein, intermolecular interactions
place the ligand on the Uc(r) potential, which facilitates the
diffusion of the ligand toward the binding site and therefore
enhances the binding rate constant. Consequently, the differ-
ence between the limits (kCS and kIF) of the rate constant un-
der slow and fast conformational transitions is significantly
reduced.

Because kCS and kIF are lower and upper bounds of the
binding rate constant kon, when they are close they provide
good estimates of kon. This is significant because the calcu-
lation of kon involves expensive simulations of protein con-
formational fluctuation while running the Brownian dynamics
simulations of the ligand translational motion. In contrast, for
the calculations of both kCS and kIF, the ligand experiences a
fixed interaction potential and hence no simulation of protein
conformational fluctuation is necessary. For kCS, the interac-
tion potential is Uc(r) as the protein is fixed in the reactive
conformation. For kIF, the interaction potential is Ueff(r) as it
is assumed that, for each give ligand position r, the protein
instantaneously adopts an equilibrium distribution in confor-
mational space. The closeness of kCS and kIF and how good
estimates they provide for kon will be investigated in the fu-
ture with realistic representations of protein–ligand systems.

If conformational selection and induced fit can achieve
similar rate constants, is it still significant to distinguish the
two binding mechanisms? If so, what kinetic experiments can
ascertain the binding mechanism to be one but not the other?
These mechanistic questions remain to be addressed.

Finally, we note that the formulation of k(t) depends on
a single protein–ligand pair. As we pointed out in Subsection
II A, k(t) is unaffected whether the conformational coordinate
x refers to the protein or the ligand. That is, the same k(t) is
obtained whether it is the protein or the ligand that undergoes
conformational change. However, in experiments, rate coeffi-
cients can be measured only when many protein–ligand pairs
are present. Consider the case where one species is in excess
(with concentration C) so that the binding kinetics is pseudo-
first-order. If the ligand is the species that is both in excess
and undergoing conformational change, then the many ligand
molecules around a single protein molecule are independent.
The probability that the protein escapes binding with all the
ligand molecules is27

S(t) = e−C
∫ t

0 dt1k(t1). (50)

However, when the ligand is in excess but the protein under-
goes conformational change (or vice versa), then Eq. (50) is
no longer valid, except in the limit of fast conformational
change. That is because now the ligand molecules are no
longer independent: they experience the same change in re-
action condition at the same time whenever the protein goes
through a conformational transition. Therefore one has to deal
with a many-body problem. For the situation where confor-
mational change is uncoupled to ligand binding, Zhou and
Szabo27 have derived an approximate approach for calculat-
ing the many-body S(t), with k(t) from the pair problem as
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FIG. 6. Dependence of kon/kCS on ω∞− for a range of reactive patch angles. Results for two values of κ: (a) 50 and (b) 500 Å/ns are shown to illustrate that
the difference between the CS and IF limits of kon increases as the reactivity increases. exp(−βU0) = 5.

input. When conformational change is coupled to ligand bind-
ing we anticipate that the many-body binding kinetics will
have much richer features. In particular, using analyses based
on ordinary chemical kinetics, Hammes et al.28 proposed that
increasing ligand concentration can shift the binding mecha-
nism at the many-body level from conformational selection to
induced fit. We plan to investigate the many-body problem in
the future.
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APPENDIX A: GOVERNING EQUATION FOR
DISCRETE CONFORMATIONS

Here we derive Eqs. (18a) and (18b), the governing equa-
tion for the pair distribution function when the transitions be-
tween the two conformations of the protein are treated as rate
processes. To find Po(r, t), we integrate both sides of Eq. (5)
over x from −∞ to x‡(r), obtaining

∂ Po(r, t)

∂t
=

∫ x‡(r)

−∞
dx∇ · De−βU (r,x)∇eβU (r,x) P(r, x, t)

+
∫ x‡(r)

−∞
dx

∂

∂x
D1e−βU (r,x) ∂

∂x
eβU (r,x) P(r, x, t).

(A1)

The third term on the right hand side is absent because H(r,
x) is zero when x < x‡(r) (formation of the native complex
requires that the protein be in the closed, i.e., reactive confor-
mation). Since we assume fast equilibration within the open
energy well, we have

P(r, x, t) ≈ Poeq(x |r)Po(r, t), x < x‡(r), (A2)

where Poeq(x|r) is the equilibrium distribution for x in x <

x‡(r) with a given r:

Poeq(x |r) = e−βU (r,x)

∫ x‡(r)
−∞ dxe−βU (r,x)

= e−βU (r,x)

e−βUo(r)
∫ x‡

∞
−∞ dxe−βU∞(x)

.

(A3)

Combining the last two equations, we find

eβU (r,x) P(r, x, t) ≈ eβUo(r) Po(r, t)∫ x‡
∞

−∞ dxe−βU∞(x)
, x < x‡(r). (A4)

The first term on the right hand side of
Eq. (A1) now becomes

∫ x‡(r)

−∞
dx∇ · De−βU (r,x)∇eβU (r,x) P(r, x, t)

≈
∫ x‡(r)

−∞
dx∇ · D

e−βU (r,x)

∫ x‡
∞

−∞ dxe−βU∞(x)
∇eβUo(r) Po(r, t).

Now the integration over x is dominated by the region around
x = xo(r), and hence the precise value of the upper bound of
the integration is unimportant; therefore we may switch the
order of the integration over x and the gradient operator on r,
leading to

∫ x‡(r)

−∞
dx∇ · De−βU (r,x)∇eβU (r,x) P(r, x, t)

≈ ∇ · D

∫ x‡(r)
−∞ dxe−βU (r,x)

∫ x‡
∞

−∞ dxe−βU∞(x)
∇eβUo(r) Po(r, t)

= ∇ · De−βUo(r)∇eβUo(r) Po(r, t).

To treat the second term on the right hand side of Eq.
(A1), we follow the well-known reduction of the diffusive
barrier crossing problem to a rate-equation description. The
second term is essentially the rate of change in the probability
of the inactive conformation. In the rate-equation description,
this is

−ω+(r)Po(r, t) + ω−(r)Pc(r, t),

where ω±(r) are the rate constants introduced in Eq. (14a) and
(14b). Combining the results for the two terms, we find

∂ Po(r, t)

∂t
= ∇ · De−βUo(r)∇eβUo(r) Po(r, t)

−ω+(r)Po(r, t) + ω−(r)Pc(r, t). (A5)
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The equation for the distribution function Pc(r, t) when
the protein is in the closed conformation can be similarly de-
rived. Now the integration over x is from x‡(r) to ∞ and we
need to assume

P(r, x, t) ≈ Pceq(x |r)Pc(r, t), x > x‡(r), (A6)

where

Pceq(x |r) = e−βU (r,x)∫ ∞
x‡(r) dxe−βU (r,x)

. (A7)

In the closed conformation, formation of the native complex
can occur when the ligand is in the reactive region. Corre-
spondingly the third term on the right hand side of Eq. (5)
yields

∫ ∞

x‡(r)
dxτ−1 H (r, x)P(r, x, t)≈

∫ ∞

x‡(r)
dxτ−1 H (r, x)Pceq(x |r)

× Pc(r, t) ≡ τ−1 Hc(r)Pc(r, t),

where

Hc(r) =
∫ ∞

x‡(r) dx H (r, x)e−βU (r,x)

∫ ∞
x‡(r) dxe−βU (r,x)

. (A8)

Finally, the equation for Pc(r, t) is

∂ Pc(r, t)

∂t
= ∇ · De−βUc(r)∇eβUc(r) Pc(r, t)

+ω+(r)Po(r, t) − ω−(r)Pc(r, t)

−τ−1 Hc(r)Pc(r, t). (A9)

APPENDIX B: CLOSENESS OF kCS AND kIF FOR
CONTINUOUS CONFORMATIONS

Here we show that kCS and kIF are close when conforma-
tional change is treated as continuous diffusion along a one-
dimensional coordinate, provided that the reactive region is
small relative to the range of the interaction potential. As in
the main text, we use rRR to denote a representative point in
the reactive region. When the ligand is in the reactive region,
the closed conformation of the protein is specified by hc(x) =
1. We focus the calculation of kCS and kIF on an infinite re-
activity, since this is when the difference between them is the
greatest.

In calculating kCS, one first assumes that the protein is
fixed in conformation x; the resulting rate constant is then av-
eraged over the equilibrium distribution, Peq(x), of x. For a
fixed protein conformation x, the interaction potential that the
ligand experiences is �U(r|x) ≡ U(r, x) − U∞(x), where the
subtraction by U∞(x) is made so that the interaction potential
approaches 0 at infinite protein–ligand separation. When the
reactivity is infinite, we have

kCS →
∫ ∞

−∞
dx Peq(x)hc(x)kD[�U (r|x)], (B1)

where hc(x) is inserted to indicate the fact that binding occurs
only if the protein starts from a closed conformation [as spec-
ified by hc(x) = 1]; and kD[�U(r|x)] is the rate constant when
the protein conformation is fixed at x, the interaction poten-
tial is �U(r|x), and the reactivity is infinite. For calculating
kIF, the ligand experiences the conformation-averaged effec-
tive potential Ueff(r) given by Eq. (42a). When the reactivity
is infinite,

kIF → kD[Ueff(r)], (B2)

where kD[Ueff(r)] is the rate constant when the protein does
not under conformational change, the interaction potential is
Ueff(r), and the reactivity is infinite.

To proceed further, we now use the approximate depen-
dence of the kD[U(r)] on the interaction potential U(r), given
by Eq. (43). Using this approximation, Eq. (B1) becomes

kCS → kD0
∫ ∞
−∞ dx Peq(x)hc(x)e−β[U (rRR,x)−U∞(x)]

= kD0

∫ ∞
−∞ dxhc(x)e−βU (rRR,x)∫ ∞

−∞ dxe−βU∞(x)
,

(B3)

where we have used the expression for Peq(x) given by Eq.
(6). On the other hand, Eq. (B2) becomes

kIF → kD0e−βUeff(rRR)

= kD0

∫ ∞
−∞ dxe−βU (rRR,x)∫ ∞
−∞ dxe−βU∞(x)

= kD0

∫ ∞
−∞ dxhc(x)e−βU (rRR,x)∫ ∞

−∞ dxe−βU∞(x)

+kD0

∫ ∞
−∞ dx[1 − hc(x)]e−βU (rRR,x)∫ ∞

−∞ dxe−βU∞(x)
.

(B4)

Note that the first term is the same as Eq. (B3). In addition, we
also expect the first term of Eq. (B4) to dominate over its sec-
ond term, since the closed (i.e., reactive) conformation should
dominate over the open (i.e., nonreactive) conformation when
the ligand is in the reactive region. Therefore, kCS and kIF are
close even for an infinite reactivity as long as the interaction
potential varies slowly over the reactive region and beyond.
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